Effect of Plasma Treatment on the Impact Behavior of Epoxy/Basalt Fiber-Reinforced Composites: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Experimental Set-up
3. Results
3.1. Optical Contact Angle and Roughness Surface Data
3.2. Impact Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thorhallsson, E.R.; Snaebjornsson, J.T. Basalt fibers as new material for reinforcement and confinement of concrete. Solid State Phenom. 2016, 249, 79–84. [Google Scholar] [CrossRef]
- Lopresto, V.; Leone, C.; Iorio, I.D. Mechanical characterisation of basalt fibre reinforced plastic. Compos. Part B Eng. 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Wei, B.; Song, S.; Cao, H. Strengthening of basalt fibers with nano-SiO2-epoxy composite coating. Mater. Des. 2011, 32, 4180–4186. [Google Scholar] [CrossRef]
- Papa, I.; Ricciardi, M.R.; Antonucci, V.; Pagliarulo, V.; Lopresto, V. Impact behaviour of hybrid basalt/flax twill laminates. Compos. Part B Eng. 2018, 153, 17–25. [Google Scholar] [CrossRef]
- Hosseini, S.; Ibrahim, F.; Djordjevic, I.; Koole, L.H. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst 2014, 139, 2933–2943. [Google Scholar] [CrossRef]
- Li, X.; Tian, J.; Nguyen, T.; Shen, W. Paper-based microfluidic devices by plasma treatment. Anal. Chem. 2008, 80, 9131–9134. [Google Scholar] [CrossRef]
- Pabst, O.; Perelaer, J.; Beckert, E.; Schubert, U.S.; Eberhardt, R.; Tünnermann, A. All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems. Org. Electron. 2013, 14, 3423–3429. [Google Scholar] [CrossRef]
- Pankaj, S.; Bueno-Ferrer, C.; Misra, N.; Milosavljević, V.; O’Donnell, C.; Bourke, P.; Keener, K.; Cullen, P. Applications of cold plasma technology in food packaging. Trends Food Sci. Technol. 2014, 35, 5–17. [Google Scholar] [CrossRef]
- Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surface Coat. Technol. 2013, 233, 99–107. [Google Scholar] [CrossRef]
- Agrawal, N.K.; Agarwal, R.; Awasthi, K.; Vijay, Y.K.; Swami, K.C. Surface modification of nanocomposite polymer membranes by ion plasma irradiation for improving biocompatibility of polymer. Adv. Mat. Lett. 2014, 5, 645–651. [Google Scholar] [CrossRef]
- Fiore, V.; Di Bella, G.; Scalici, T.; Valenza, A. Effect of plasma treatment on mechanical and thermal properties of marble powder/epoxy composites. Polym. Compos. 2018, 39, 309–317. [Google Scholar] [CrossRef]
- Borooj, M.B.; Shoushtari, A.M.; Haji, A.; Nosratian Sabet, E. Optimization of plasma treatment variables for the improvement of carbon fibres/epoxy composite performance by response surface methodology. Compos. Sci. Technol. 2016, 128, 215–221. [Google Scholar] [CrossRef]
- Dightona, C.; Rezaia, A.; Ogin, S.L.; Watts, J.F. Atmospheric plasma treatment of CFRP composites to enhance structural bonding investigated using surface analytical techniques. Int. J. Adhes. Adhes. 2019, 91, 142–149. [Google Scholar] [CrossRef]
- Cho, B.G.; Hwang, S.H.; Park, M.; Park, J.K.; Park, Y.B.; Chae, H.G. The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites. Compos. Part B Eng. 2019, 160, 436–445. [Google Scholar] [CrossRef]
- Kafi, A.A.; Magniez, K.; Fox, B.L. A surface-property relationship of atmospheric plasma treated jute composites. Compos. Sci. Technol. 2011, 71, 1692–1698. [Google Scholar] [CrossRef]
- Baltazar-y-Jimenez, A.; Bistritz, M.; Schulz, E.; Bismarck, A. Atmospheric air pressure plasma treatment of lignocellulosic fibres: Impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos. Sci. Technol. 2008, 68, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Latif, R.; Wakeel, S.; Zaman Khan, N.; Noor Siddiquee, A.; Lal Verma, S.; Akhtar Khan, Z. Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: A review. J. Reinf. Plast. Compos. 2019, 38, 15–30. [Google Scholar] [CrossRef]
- Barni, R.; Riccardi, C.; Selli, E.; Massafra, M.R.; Marcandalli, B.; Orsini, F.; Poletti, G.; Meda, L. Wettability and dyeability modulation of Poly(ethylene terephthalate) fibers through cold SF6 plasma treatment. Plasma Process. Polym. 2005, 2, 64–72. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, Y.; Han, S.; Kim, K.-J. Improvement of hydrophobic properties of polymer surfaces by plasma source ion implantation. Surf. Coatings Technol. 2006, 200, 4763–4769. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Wang, T. Plasma activation of carbon fibres for polyarylacetylene composites. Surf. Coat. Technol. 2007, 201, 4965–4968. [Google Scholar] [CrossRef]
- Tiwari, S.; Sharma, M.; Panier, S.; Mutel, B.; Mitschang, P.; Bijwe, J. Influence of cold remote nitrogen oxygen plasma treatment on carbon fabric and its composites with specialty polymers. J. Mater. Sci. 2010, 46, 964–974. [Google Scholar] [CrossRef]
- Puliyalil, H.; Filipič, G.; Cvelbar, U. Recent Advances in the Methods for Designing Superhydrophobic Surfaces. In Surface Energy; Aliofkhazraei, M., Ed.; InTech: Rijeka, Croatia, 2015; pp. 311–335. [Google Scholar]
- Ricciardi, M.R.; Papa, I.; Coppola, G.; Impero, F.; Lopresto, V.; Sansone, L.; Antonucci, V. Effect of Plasma Surface Treatment on the Impact Behavior of Basalt/Epoxy Composites. Key Eng. Mater. 2019, 813, 441–446. [Google Scholar] [CrossRef]
Sample | Surface Treatment Parameter |
---|---|
BS | Neat |
BS_1 | P = 155 W t = 10 min |
BS_2 | P = 155 W t = 20 min |
BS_3 | P = 155 W t = 40 min |
BS_4 | P = 300 W t = 10 min |
Sample | Contact Angle | Roughness [µm] |
---|---|---|
BS | 112.5° ± 0.13 | 5.31 ± 0.56 |
BS_1 | 125.3° ± 0.08 | 5.52 ± 0.29 |
BS_2 | 139.5° ± 0.10 | 4.60 ± 0.45 |
BS_3 | 131.5° ± 0.15 | 4.29 ± 0.25 |
BS_4 | 81.5° ± 0.62 | 4.75 ± 0.66 |
Sample | Protocol | Fmax [N] | Umax [J] | Ua [J] | d [mm] | I [µm] |
---|---|---|---|---|---|---|
BS | - | 7504.33 | 30.55 | 10.50 | 9.61 | 181.93 |
BS_1 | 155 W, 10 min | 6378.02 | 29.26 | 9.61 | 8.58 | 161.68 |
BS_2 | 155 W, 20 min | 7165.07 | 29.36 | 9.52 | 8.38 | 153.93 |
BS_3 | 155 W, 40 min | 7086.69 | 29.19 | 10.54 | 8.42 | 205.03 |
BS_4 | 300 W, 10 min | 7093.22 | 29.42 | 10.12 | 8.54 | 210.01 |
BS | BS_2 | |||
---|---|---|---|---|
U [J] | Fmax [N] | Ua [J] | Fmax [N] | Ua [J] |
10 | 3737.47 | 2.49 | 3794.81 | 0.10 |
20 | 5941.75 | 6.59 | 5656.29 | 5.40 |
30 | 7504.33 | 10.5 | 7165.07 | 9.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricciardi, M.R.; Papa, I.; Coppola, G.; Lopresto, V.; Sansone, L.; Antonucci, V. Effect of Plasma Treatment on the Impact Behavior of Epoxy/Basalt Fiber-Reinforced Composites: A Preliminary Study. Polymers 2021, 13, 1293. https://doi.org/10.3390/polym13081293
Ricciardi MR, Papa I, Coppola G, Lopresto V, Sansone L, Antonucci V. Effect of Plasma Treatment on the Impact Behavior of Epoxy/Basalt Fiber-Reinforced Composites: A Preliminary Study. Polymers. 2021; 13(8):1293. https://doi.org/10.3390/polym13081293
Chicago/Turabian StyleRicciardi, Maria Rosaria, Ilaria Papa, Giuseppe Coppola, Valentina Lopresto, Lucia Sansone, and Vincenza Antonucci. 2021. "Effect of Plasma Treatment on the Impact Behavior of Epoxy/Basalt Fiber-Reinforced Composites: A Preliminary Study" Polymers 13, no. 8: 1293. https://doi.org/10.3390/polym13081293
APA StyleRicciardi, M. R., Papa, I., Coppola, G., Lopresto, V., Sansone, L., & Antonucci, V. (2021). Effect of Plasma Treatment on the Impact Behavior of Epoxy/Basalt Fiber-Reinforced Composites: A Preliminary Study. Polymers, 13(8), 1293. https://doi.org/10.3390/polym13081293