Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Imidazolium Benzene Fillers and Crosslinker
2.2.1. Synthesis of Di-, Tri-, Tetra- and Hexa(Imidazolium) Benzene ILs
Synthesis of 1,1′-(1,4-Phenylene)bis(3-Methyl-1H-Imidazol-3-ium) Bistriflimide (“[Di(Im+)Benz][Tf2N]”)
Synthesis of 1,1′,1″-(Benzene-1,3,5-Triyl)tris(3-Methyl-1H-Imidazol-3-Ium) Bistriflimide (“[Tri(Im+)Benz][Tf2N]”)
Synthesis of 1,1′,1″,1′′′-(Benzene-1,2,4,5-Tetrayl)Tetrakis(3-Methyl-1H-Imidazol-3-Ium) Bistriflimide (“[Tet(Im+)Benz][Tf2N]”)
Synthesis of 1,1′,1″,1′′′,1′′′′,1′′′′′-(Benzene-1,2,3,4,5,6-Hexayl)Hexakis(3-Methyl-1H-Imidazol-3-Ium) Bistriflimide (“[Hexa(Im+)Benz][Tf2N]”)
2.2.2. Synthesis of Imidazolium-Functionalized Tri- and Tetra Vinyl Crosslinking Agents
Synthesis of 1,1′,1″-(Benzene-1,3,5-Triyl)Tris(3-(4-(1-Vinyl-1H-Imidazol-3-Ium-3-yl)Butyl)-1H-Imidazol-3-Ium) Bistriflimide (“[Tri(VinylIm+)XL ][Tf2N]”)
Synthesis of 1,1′,1″,1′′′-(Benzene-1,2,4,5-Tetrayl)Tetrakis(3-(4-(1-Vinyl-1H-Imidazol-3-Ium-3-yl)Butyl)-1H-Imidazol-3-Ium) Bistriflimide (“[Tet(VinylIm+)XL ][Tf2N]”)
2.3. Characterization
2.4. Composite and Membrane Fabrication
3. Results and Discussion
3.1. Structural Characterizations
3.2. Gas Transport Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bernardo, P. Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Koros, W.J.; Fleming, G.K. Membrane-based gas separation. J. Membr. Sci. 1993, 83, 1–80. [Google Scholar] [CrossRef]
- Sanders, D.F.; Smith, Z.P.; Guo, R.; Robeson, L.M.; McGrath, J.E.; Paul, D.R.; Freeman, B.D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer 2013, 54, 4729–4761. [Google Scholar] [CrossRef] [Green Version]
- Carlisle, T.K.; Bara, J.E.; Lafrate, A.L.; Gin, D.L.; Noble, R.D. Main-chain imidazolium polymer membranes for CO2 separations: An initial study of a new ionic liquid-inspired platform. J. Membr. Sci. 2010, 359, 37–43. [Google Scholar] [CrossRef]
- Carlisle, T.K.; Nicodemus, G.D.; Gin, D.L.; Noble, R.D. CO2/light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content. J. Membr. Sci. 2012, 397–398, 24–37. [Google Scholar] [CrossRef]
- Dai, Z.; Noble, R.D.; Gin, D.L.; Zhang, X.; Deng, L. Combination of ionic liquids with membrane technology: A new approach for CO2 separation. J. Membr. Sci. 2016, 497, 1–20. [Google Scholar] [CrossRef]
- Li, P.; Paul, D.R.; Chung, T.-S. High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chem. 2012, 14, 1052–1063. [Google Scholar] [CrossRef]
- Neves, L.A.; Crespo, J.G.; Coelhoso, I.M. Gas permeation studies in supported ionic liquid membranes. J. Membr. Sci. 2010, 357, 160–170. [Google Scholar] [CrossRef]
- Sasikumar, B.; Arthanareeswaran, G.; Ismail, A.F. Recent progress in ionic liquid membranes for gas separation. J. Mol. Liq. 2018, 266, 330–341. [Google Scholar] [CrossRef]
- Tome, L.C.; Marrucho, I.M. Ionic liquid-based materials: A platform to design engineered CO2 separation membranes. Chem. Soc. Rev. 2016, 45, 2785–2824. [Google Scholar] [CrossRef]
- Lodge, T.P. A Unique Platform for Materials Design. Science 2008, 321, 50. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Baker, R.W. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Anderson, E.B.; Long, T.E. Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer 2010, 51, 2447–2454. [Google Scholar] [CrossRef] [Green Version]
- Green, M.D.; Allen, M.H., Jr.; Dennis, J.M.; Salas-de la Cruz, D.; Gao, R.; Winey, K.I.; Long, T.E. Tailoring macromolecular architecture with imidazole functionality: A perspective for controlled polymerization processes. Eur. Polym. J. 2011, 47, 486–496. [Google Scholar] [CrossRef] [Green Version]
- O’Harra, K.E.; Bara, J.E. Toward controlled functional sequencing and hierarchical structuring in imidazolium ionenes. Polym. Int. 2020. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, J.; Wang, Y.; Wang, H.; Wang, R. One-Step Synthesis of Thermosensitive Nanogels Based on Highly Cross-Linked Poly(ionic liquid)s. Angew. Chem. Int. Ed. 2012, 51, 9114–9118. [Google Scholar] [CrossRef]
- Cowan, M.G.; Lopez, A.M.; Masuda, M.; Kohno, Y.; McDanel, W.M.; Noble, R.D.; Gin, D.L. Imidazolium-Based Poly(ionic liquid)/Ionic Liquid Ion-Gels with High Ionic Conductivity Prepared from a Curable Poly(ionic liquid). Macromol. Rapid Commun. 2016, 37, 1150–1154. [Google Scholar] [CrossRef]
- Carlisle, T.K.; McDanel, W.M.; Cowan, M.G.; Noble, R.D.; Gin, D.L. Vinyl-Functionalized Poly(imidazolium)s: A Curable Polymer Platform for Cross-Linked Ionic Liquid Gel Synthesis. Chem. Mater. 2014, 26, 1294–1296. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, H.; Lu, F.; Zheng, L. Preparation and characterization of directional conducting and lower methanol permeable ultrathin membrane based on poly (vinyl alcohol) and imidazolium compounds. Int. J. Hydrog. Energy 2014, 39, 17191–17200. [Google Scholar] [CrossRef]
- Das, T.; Paira, T.K.; Biswas, M.; Mandal, T.K. Ionic Liquid Cross-Linked Multifunctional Cationic Polymer Nanobeads via Dispersion Polymerization: Applications in Anion Exchange, Templates for Palladium, and Fluorescent Carbon Nanoparticles. J. Phys. Chem. C 2015, 119, 4324–4332. [Google Scholar] [CrossRef]
- Bratton, A.F.; Kim, S.-S.; Ellison, C.J.; Miller, K.M. Thermomechanical and Conductive Properties of Thiol–Ene Poly(ionic liquid) Networks Containing Backbone and Pendant Imidazolium Groups. Ind. Eng. Chem. Res. 2018, 57, 16526–16536. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Y.; Zhang, M.; Wang, Y.; Tang, H.; Li, N. Olefin metathesis-crosslinked, bulky imidazolium-based anion exchange membranes with excellent base stability and mechanical properties. J. Membr. Sci. 2020, 598, 117793. [Google Scholar] [CrossRef]
- Röchow, E.T.; Coeler, M.; Pospiech, D.; Kobsch, O.; Mechtaeva, E.; Vogel, R.; Voit, B.; Nikolowski, K.; Wolter, M. In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems. Polymers 2020, 12, 1707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Zuo, Y.; Wang, R.; Xiong, Y. Preparation of Thermo-Responsive Poly(ionic liquid)s-Based Nanogels via One-Step Cross-Linking Copolymerization. Molecules 2015, 20, 7378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammakakam, I.; O’Harra, K.E.; Jackson, E.M.; Bara, J.E. Synthesis of imidazolium-mediated Poly(benzoxazole) Ionene and composites with ionic liquids as advanced gas separation membranes. Polymer 2021, 214, 123239. [Google Scholar] [CrossRef]
- O’Harra, K.E.; Kammakakam, I.; Devriese, E.M.; Noll, D.M.; Bara, J.E.; Jackson, E.M. Synthesis and Performance of 6FDA-Based Polyimide-Ionenes and Composites with Ionic Liquids as Gas Separation Membranes. Membranes 2019, 9, 79. [Google Scholar] [CrossRef] [Green Version]
- O’Harra, K.E.; Noll, D.M.; Kammakakam, I.; DeVriese, E.M.; Solis, G.; Jackson, E.M.; Bara, J.E. Designing Imidazolium Poly(amide-amide) and Poly(amide-imide) Ionenes and Their Interactions with Mono- and Tris(imidazolium) Ionic Liquids. Polymers 2020, 12, 1254. [Google Scholar] [CrossRef]
- O’Harra, K.E.; Kammakakam, I.; Noll, D.M.; Turflinger, E.M.; Dennis, G.P.; Jackson, E.M.; Bara, J.E. Synthesis and Performance of Aromatic Polyamide Ionenes as Gas Separation Membranes. Membranes 2020, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Bara, J.E.; O’Harra, K.E. Recent Advances in the Design of Ionenes: Toward Convergence with High-Performance Polymers. Macromol. Chem. Phys. 2019. [Google Scholar] [CrossRef]
- Mecerreyes, D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 2011, 36, 1629–1648. [Google Scholar] [CrossRef]
- Shaplov, A.S.; Marcilla, R.; Mecerreyes, D. Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s. Electrochim. Acta 2015, 175, 18–34. [Google Scholar] [CrossRef]
- Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036. [Google Scholar] [CrossRef]
- Whitley, J.W.; Jeffrey Horne, W.; Shannon, M.S.; Andrews, M.A.; Terrell, K.L.; Hayward, S.S.; Yue, S.; Mittenthal, M.S.; O’Harra, K.E.; Bara, J.E. Systematic Investigation of the Photopolymerization of Imidazolium-Based Ionic Liquid Styrene and Vinyl Monomers. J. Polym. Sci. Part. A Polym. Chem. 2018, 56, 2364–2375. [Google Scholar] [CrossRef]
- Yin, F.; Chen, J.; Liang, Y.; Zou, Y.; Yinzhi, J.; Xie, J. Syntheses, structures, and properties of Co(II)/Zn(II) mixed-ligand coordination polymers based on 4-[(3,5-dinitrobenzoyl)amino]benzoic acid and 1,4-bis(1-imidazolyl) benzene. J. Solid State Chem. 2015, 225, 310–314. [Google Scholar] [CrossRef]
- Rit, A.; Pape, T.; Hepp, A.; Hahn, F.E. Supramolecular Structures from Polycarbene Ligands and Transition Metal Ions. Organometallics 2011, 30, 334–347. [Google Scholar] [CrossRef]
- Henrie, R.N.; Yeager, W.H. An Unexpectedly Facile Entry into Hexa(diazol-1-yl)benzenes. Heterocycles 1993, 35, 415–426. [Google Scholar] [CrossRef]
- Kammakakam, I.; Bara, J.E.; Jackson, E.M.; Lertxundi, J.; Mecerreyes, D.; Tomé, L.C. Tailored CO2-Philic Anionic Poly(ionic liquid) Composite Membranes: Synthesis, Characterization, and Gas Transport Properties. ACS Sustain. Chem. Eng. 2020, 8, 5954–5965. [Google Scholar] [CrossRef]
- Paschoal, V.H.; Faria, L.F.O.; Ribeiro, M.C.C. Vibrational Spectroscopy of Ionic Liquids. Chem. Rev. 2017, 117, 7053–7112. [Google Scholar] [CrossRef]
- Mittenthal, M.S.; Flowers, B.S.; Bara, J.E.; Whitley, J.W.; Spear, S.K.; Roveda, J.D.; Wallace, D.A.; Shannon, M.S.; Holler, R.; Martens, R.; et al. Ionic Polyimides: Hybrid Polymer Architectures and Composites with Ionic Liquids for Advanced Gas Separation Membranes. Ind. Eng. Chem. Res. 2017, 56, 5055–5069. [Google Scholar] [CrossRef]
- Kammakakam, I.; O’Harra, K.E.; Bara, J.E.; Jackson, E.M. Design and Synthesis of Imidazolium-Mediated Tröger’s Base-Containing Ionene Polymers for Advanced CO2 Separation Membranes. ACS Omega 2019, 4, 3439–3448. [Google Scholar] [CrossRef] [Green Version]
- Zarca, G.; Horne, W.J.; Ortiz, I.; Urtiaga, A.; Bara, J.E. Synthesis and gas separation properties of poly(ionic liquid)-ionic liquid composite membranes containing a copper salt. J. Membr. Sci. 2016, 515, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, A.S.L.; Yáñez, M.; Alves, V.D.; Palomar, J.; Moya, C.; Gorri, D.; Tomé, L.C.; Marrucho, I.M. CO2/H2 separation through poly(ionic liquid)–ionic liquid membranes: The effect of multicomponent gas mixtures, temperature and gas feed pressure. Sep. Purif. Technol. 2021, 259, 118113. [Google Scholar] [CrossRef]
- Bara, J.E.; Carlisle, T.K.; Gabriel, C.J.; Camper, D.; Finotello, A.; Gin, D.L.; Noble, R.D. Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids. Ind. Eng. Chem. Res. 2009, 48, 2739–2751. [Google Scholar] [CrossRef]
- Bara, J.E.; Lessmann, S.; Gabriel, C.J.; Hatakeyama, E.S.; Noble, R.D.; Gin, D.L. Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes. Ind. Eng. Chem. Res. 2007, 46, 5397–5404. [Google Scholar] [CrossRef]
- Kammakakam, I.; O’Harra, K.E.; Dennis, G.P.; Jackson, E.M.; Bara, J.E. Self-healing imidazolium-based ionene-polyamide membranes: An experimental study on physical and gas transport properties. Polym. Int. 2019. [Google Scholar] [CrossRef]
ID | Ionene Composite | Mass Ratio | Molar Ratio | d-Spacing (Å) | Density (g/cm3) | MWadd (g/mol) | MWPIL (g/mol) |
---|---|---|---|---|---|---|---|
1 | [C4vim][Tf2N]: [Di(Im+)Benz ][Tf2N] | 0.9:0.1 | 0.944:0.056 | 4.485 | 7.099 | 1.569 | 431.37 |
2 | [C4vim][Tf2N]: [Tri(Im+)Benz ][Tf2N] | 0.9:0.1 | 0.960:0.040 | 4.567 | 7.079 | 1.462 | |
3 | [C4vim][Tf2N]: [Tet(Im+)Benz ][Tf2N] | 0.9:0.1 | 0.969:0.031 | 4.380 | 7.338 | 1.562 | |
4 | [C4vim][Tf2N]: [Hex(Im+)Benz ][Tf2N] | 0.9:0.1 | 0.979:0.021 | 4.392 | 7.433 | 1.377 | |
5 | [C4vim][Tf2N]: [Tri(VinylIm+)XL ][Tf2N] | 0.99:0.01 | 0.983:0.017 | 4.585 | 6.904 | 1.528 | |
6 | [C4vim][Tf2N]: [Tet(VinylIm+)XL ][Tf2N] | 0.99:0.01 | 0.987:0.013 | 4.576 | 6.904 | 1.480 | |
7 | [C4vim][Tf2N]: [Tri(VinylIm+)XL ][Tf2N] | 0.995:0.005 | 0.991:0.009 | 4.568 | 7.359 | 1.461 | |
8 | [C4vim][Tf2N]: [Tet(VinylIm+)XL ][Tf2N] | 0.995:0.005 | 0.993:0.007 | 4.521 | 6.904 | 1.463 |
ID | Ionene Composite | Mass Ratio | Data a | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Permeability and Selectivity | PCO2 | ± | PN2 | ± | PCH4 | ± | PH2 | ± | ||
* | [C4vim][Tf2N] Neat | 1.0:0.0 | 5.2 | - | 0.3 | - | - | - | 4.9 | - |
1 | [C4vim][Tf2N]: [Di(Im+)Benz ][Tf2N] | 0.9:0.1 | 28.7 | 0.19 | 1.22 | 0.05 | 1.26 | 0.05 | 16.6 | 0.15 |
2 | [C4vim][Tf2N]: [Tri(Im+)Benz ][Tf2N] | 0.9:0.1 | 28.5 | 1.11 | 0.98 | 0.03 | 1.18 | 0.09 | 14.4 | 0.16 |
3 | [C4vim][Tf2N]: [Tet(Im+)Benz ][Tf2N] | 0.9:0.1 | 28.3 | 0.44 | 1.47 | 0.04 | 1.85 | 0.17 | 8.16 | 0.05 |
4 | [C4vim][Tf2N]: [Hex(Im+)Benz ][Tf2N] | 0.9:0.1 | 37.2 | 0.83 | 1.58 | 0.05 | 1.84 | 0.10 | 16.4 | 0.08 |
5 | [C4vim][Tf2N]: [Tri(VinylIm+)XL ][Tf2N] | 0.99:0.01 | 23.5 | 0.50 | 1.08 | 0.04 | 1.29 | 0.08 | 13.2 | 0.03 |
6 | [C4vim][Tf2N]: [Tet(VinylIm+)XL ][Tf2N] | 0.99:0.01 | 38.4 | 0.42 | 1.72 | 0.04 | 2.31 | 0.09 | 18.7 | 0.10 |
7 | [C4vim][Tf2N]: [Tri(VinylIm+)XL ][Tf2N] | 0.995:0.005 | 19.8 | 0.38 | 0.63 | 0.01 | 0.81 | 0.03 | 9.29 | 0.55 |
8 | [C4vim][Tf2N]: [Tet(VinylIm+)XL ][Tf2N] | 0.995:0.005 | 23.3 | 0.40 | 1.09 | 0.05 | 1.15 | 0.05 | 13.0 | 0.04 |
Permeability and Selectivity | αCO2/N2 | αCO2/CH4 | αCO2/H2 | αH2/CH4 | αH2/N2 | Film Thickness (μm) | ||||
* | [C4vim][Tf2N] Neat | 1.0:0.0 | 17.3 | - | 1.06 | - | 16.3 | 150 | ||
1 | [C4vim][Tf2N]: [Di(Im+)Benz ][Tf2N] | 0.9:0.1 | 23.6 | 22.8 | 1.72 | 13.21 | 13.7 | 130 | ||
2 | [C4vim][Tf2N]: [Tri(Im+)Benz ][Tf2N] | 0.9:0.1 | 29.2 | 24.1 | 1.98 | 12.12 | 14.7 | 130 | ||
3 | [C4vim][Tf2N]: [Tet(Im+)Benz ][Tf2N] | 0.9:0.1 | 19.2 | 15.3 | 3.46 | 4.42 | 5.55 | 237 | ||
4 | [C4vim][Tf2N]: [Hex(Im+)Benz ][Tf2N] | 0.9:0.1 | 23.6 | 20.2 | 2.27 | 8.91 | 10.4 | 155 | ||
5 | [C4vim][Tf2N]: [Tri(VinylIm+)XL ][Tf2N] | 0.99:0.01 | 21.8 | 18.2 | 1.79 | 10.17 | 12.2 | 122 | ||
6 | [C4vim][Tf2N]: [Tet(VinylIm+)XL ][Tf2N] | 0.99:0.01 | 22.4 | 16.6 | 2.06 | 8.07 | 10.8 | 190 | ||
7 | [C4vim][Tf2N]: [Tri(VinylIm+)XL ][Tf2N] | 0.995:0.005 | 31.5 | 24.6 | 2.13 | 11.53 | 14.8 | 148 | ||
8 | [C4vim][Tf2N]: [Tet(VinylIm+)XL ][Tf2N] | 0.995:0.005 | 21.4 | 20.2 | 1.79 | 11.30 | 12.0 | 142 |
ID | Ionene Composite | Mass Ratio | Data a | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Diffusivity and Solubility | DCO2 | ± | DN2 | ± | DCH4 | ± | DH2 | ± | ||
1 | [C4vim][Tf2N]: [Di(Im+)Benz ][Tf2N] | 0.9:0.1 | 1.10 × 10−7 | 6.53 × 10−9 | 5.86 × 10−7 | 5.53 × 10−7 | 7.10 × 10−8 | 5.00 × 10−9 | 5.41 × 10−7 | 9.23 × 10−8 |
2 | [C4vim][Tf2N]: [Tri(Im+)Benz ][Tf2N] | 0.9:0.1 | 1.00 × 10−7 | 1.54 × 10−8 | 5.78 × 10−8 | 2.34 × 10−8 | 3.46 × 10−8 | 7.25 × 10−9 | 2.61 × 10−7 | 9.99 × 10−8 |
3 | [C4vim][Tf2N]: [Tet(Im+)Benz ][Tf2N] | 0.9:0.1 | 9.53 × 10−8 | 1.13 × 10−9 | 2.69 × 10−8 | 1.09 × 10−9 | 2.61 × 10−8 | 3.36 × 10−9 | 3.53 × 10−7 | 9.70 × 10−8 |
4 | [C4vim][Tf2N]: [Hex(Im+)Benz ][Tf2N] | 0.9:0.1 | 9.44 × 10−8 | 6.58 × 10−9 | 2.39 × 10−8 | 4.48 × 10−9 | 2.55 × 10−8 | 8.43 × 10−9 | 2.24 × 10−7 | 5.57 × 10−8 |
5 | [C4vim][Tf2N]: [Tri (VinylIm+)XL ][Tf2N] | 0.99:0.01 | 6.66 × 10−8 | 4.29 × 10−9 | 1.63 × 10−8 | 8.88 × 10−10 | 9.59 × 10−9 | 1.67 × 10−9 | 4.75 × 10−7 | 8.12 × 10−8 |
6 | [C4vim][Tf2N]: [Tet (VinylIm+)XL ][Tf2N] | 0.99:0.01 | 2.45 × 10−7 | 3.78 × 10−8 | 3.91 × 10−8 | 5.78 × 10−9 | 1.41 × 10−7 | 2.20 × 10−8 | 1.81 × 10−7 | 4.33 × 10−8 |
7 | [C4vim][Tf2N]: [Tri (VinylIm+)XL ][Tf2N] | 0.995:0.005 | 7.99 × 10−8 | 4.51 × 10−9 | 6.02 × 10−7 | 8.83 × 10−8 | 1.87 × 10−7 | 1.86 × 10−8 | 1.2 × 10−7 | 5.00 × 10−10 |
8 | [C4vim][Tf2N]: [Tet (VinylIm+)XL ][Tf2N] | 0.995:0.005 | 4.57 × 10−8 | 1.01 × 10−8 | 1.86 × 10−8 | 7.71 × 10−9 | 2.47 × 10−8 | 3.73 × 10−9 | 2.59 × 10−7 | 6.14 × 10−8 |
Diffusivity and Solubility | SCO2 | ± | SN2 | ± | SCH4 | ± | SH2 | ± | ||
1 | [C4vim][Tf2N]: [Di(Im+)Benz ][Tf2N] | 0.9:0.1 | 1.98 | 0.122 | 0.15 | 0.139 | 0.14 | 0.010 | 0.24 | 0.039 |
2 | [C4vim][Tf2N]: [Tri(Im+)Benz ][Tf2N] | 0.9:0.1 | 2.19 | 0.239 | 0.16 | 0.068 | 0.29 | 0.076 | 0.46 | 0.157 |
3 | [C4vim][Tf2N]: [Tet(Im+)Benz ][Tf2N] | 0.9:0.1 | 2.25 | 0.062 | 0.42 | 0.004 | 0.54 | 0.009 | 0.35 | 0.120 |
4 | [C4vim][Tf2N]: [Hex(Im+)Benz ][Tf2N] | 0.9:0.1 | 3.01 | 0.274 | 0.59 | 0.102 | 0.46 | 0.087 | 0.59 | 0.129 |
5 | [C4vim][Tf2N]: [Tri (VinylIm+)XL ][Tf2N] | 0.99:0.01 | 3.53 | 0.230 | 0.51 | 0.008 | 1.02 | 0.008 | 0.21 | 0.090 |
6 | [C4vim][Tf2N]: [Tet (VinylIm+)XL ][Tf2N] | 0.99:0.01 | 1.56 | 0.157 | 0.33 | 0.012 | 0.12 | 0.062 | 0.78 | 0.142 |
7 | [C4vim][Tf2N]: [Tri (VinylIm+)XL ][Tf2N] | 0.995:0.005 | 2.47 | 0.872 | 0.02 | 0.006 | 0.03 | 0.006 | 0.61 | 0.005 |
8 | [C4vim][Tf2N]: [Tet (VinylIm+)XL ][Tf2N] | 0.995:0.005 | 5.09 | 0.967 | 0.54 | 0.244 | 0.36 | 0.071 | 0.40 | 0.095 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Harra, K.E.; DeVriese, E.M.; Turflinger, E.M.; Noll, D.M.; Bara, J.E. Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents. Polymers 2021, 13, 1388. https://doi.org/10.3390/polym13091388
O’Harra KE, DeVriese EM, Turflinger EM, Noll DM, Bara JE. Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents. Polymers. 2021; 13(9):1388. https://doi.org/10.3390/polym13091388
Chicago/Turabian StyleO’Harra, Kathryn E., Emily M. DeVriese, Erika M. Turflinger, Danielle M. Noll, and Jason E. Bara. 2021. "Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents" Polymers 13, no. 9: 1388. https://doi.org/10.3390/polym13091388
APA StyleO’Harra, K. E., DeVriese, E. M., Turflinger, E. M., Noll, D. M., & Bara, J. E. (2021). Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents. Polymers, 13(9), 1388. https://doi.org/10.3390/polym13091388