Recent Progress of High Performance Thermosets Based on Norbornene Functional Benzoxazine Resins
Abstract
:1. Introduction
2. Norbornene Based Benzoxazine Monomers
3. Synthesis of Side-Chain Type Benzoxazine Resins via Ring-Opening Metathesis Polymerization (ROMP)
4. Development of High Performance Thermosets through the Hydrosilylation Reaction
5. Concluding Remarks and Future Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zhuang, Y.; Seong, J.G.; Lee, Y.M. Polyimides containing aliphatic/alicyclic segments in the main chains. Prog. Polym. Sci. 2019, 92, 35–88. [Google Scholar] [CrossRef]
- Xiong, X.; Ren, R.; Cui, X.; Chen, P. Alkynyl-functionalized benzoxazine containing phthalide side group: Synthesis, characterization and curing mechanism. Polym. Test. 2018, 72, 232–237. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, K.; Min, C.; Liu, Y.; Wang, Y.; Zhang, J.; Li, S. Synthesis, characterization and structural thermally rearrangement of ortho-amide functional benzoxazine containing acetylene group. Thermochim. Acta 2018, 668, 1–8. [Google Scholar] [CrossRef]
- Chaisuwan, T.; Ishida, H. High-performance maleimide and nitrile-functionalized benzoxazines with good processibility for advanced composites applications. J. Appl. Polym. Sci. 2006, 101, 548–558. [Google Scholar] [CrossRef]
- Jin, L.; Agag, T.; Ishida, H. Bis (benzoxazine-maleimide) s as a novel class of high performance resin: Synthesis and properties. Eur. Polym. J. 2010, 46, 354–363. [Google Scholar] [CrossRef]
- Liu, Y.L.; Chen, Y.J. Novel thermosetting resins based on 4-(N-maleimidophenyl) glycidylether: II. Bismaleimides and polybismaleimides. Polymer 2004, 45, 1797–1804. [Google Scholar] [CrossRef]
- Ishida, H.; Low, H.Y. A study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules 1997, 30, 1099–1106. [Google Scholar] [CrossRef]
- Zhang, K.; Tan, X.X.; Wang, Y.T.; Ishida, H. Unique self-catalyzed cationic ring-opening polymerization of a high performance deoxybenzoin-based 1,3-benzoxazine monomer. Polymer 2019, 168, 8–15. [Google Scholar] [CrossRef]
- Zhang, K.; Han, M.C.; Han, L.; Ishida, H. Resveratrol-based tri-functional benzoxazines: Synthesis, characterization, polymerization, and thermal and flame retardant properties. Eur. Polym. J. 2019, 116, 526–533. [Google Scholar] [CrossRef]
- Dogan Demir, K.; Kiskan, B.; Yagci, Y. Thermally curable acetylene-containing main-chain benzoxazine polymers via sonogashira coupling reaction. Macromolecules 2011, 44, 1801–1807. [Google Scholar] [CrossRef]
- Arslan, M.; Motallebzadeh, A.; Kiskan, B.; Demirel, A.L.; Kumbaraci, I.V.; Yagci, Y. Combining benzoxazine and ketene chemistries for self-healing of high performance thermoset surfaces. Polym. Chem. 2018, 9, 2031–2039. [Google Scholar] [CrossRef]
- El-Mahdy, A.F.M.; Kuo, S.W. Direct synthesis of poly(benzoxazine imide) from an ortho-benzoxazine: Its thermal conversion to highly cross-linked polybenzoxazole and blending with poly(4-vinylphenol). Polym. Chem. 2018, 9, 1815–1826. [Google Scholar] [CrossRef]
- Shen, S.B.; Ishida, H. Processing and characterization of carbon fibre-reinforced polynaphthoxazine composite. J. Mater. Sci. 1996, 31, 5945–5952. [Google Scholar] [CrossRef]
- Wu, J.; Xi, Y.; McCandless, G.T.; Xie, Y.; Menon, R.; Patel, Y.; Novak, B.M. Synthesis and characterization of partially fluorinated polybenzoxazine resins utilizing octafluorocyclopentene as a versatile building block. Macromolecules 2015, 48, 6087–6095. [Google Scholar] [CrossRef]
- Zhang, K.; Han, L.; Froimowicz, P.; Ishida, H. A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: Precursor for low temperature formation of very high Performance polybenzoxazole with low dielectric constant and high thermal stability. Macromolecules 2017, 50, 6552–6560. [Google Scholar] [CrossRef]
- Wang, C.F.; Su, Y.C.; Kuo, S.W.; Huang, C.F.; Sheen, Y.C.; Chang, F.C. Low-surface-free-energy materials based on polybenzoxazines. Angew. Chem. 2006, 118, 2306–2309. [Google Scholar] [CrossRef]
- Han, L.; Salum, M.L.; Zhang, K.; Froimowicz, P.; Ishida, H. Intrinsic self-initiating thermal ring-opening polymerization of 1,3-benzoxazines without the influence of impurities using very high purity crystals. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3434–3445. [Google Scholar] [CrossRef]
- Holly, F.W.; Cope, A.C. Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. J. Am. Chem. Soc. 1994, 66, 1875–1879. [Google Scholar] [CrossRef]
- Ning, X.; Ishida, H. Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J. Polym. Sci. Part A Polym. Chem. 1994, 32, 1121–1129. [Google Scholar] [CrossRef]
- Kiskan, B.; Yagci, Y. Benzoxazine resins as smart materials and future perspectives. In Thermosets; Elsevier: Amsterdam, The Netherlands, 2018; pp. 543–576. [Google Scholar]
- Kiskan, B. Adapting benzoxazine chemistry for unconventional applications. React. Funct. Polym. 2018, 129, 76–88. [Google Scholar] [CrossRef]
- Wang, J.; Ren, T.T.; Wang, Y.D.; He, X.Y.; Liu, W.B. Synthesis, curing behavior and thermal properties of fluorene-containing benzoxazines based on linear and branched butylamines. React. Funct. Polym. 2014, 74, 22–30. [Google Scholar] [CrossRef]
- Baqar, M.; Agag, T.; Huang, R.; Maia, J.; Qutubuddin, S.; Ishida, H. Mechanistic pathways for the polymerization of methylol-functional benzoxazine monomers. Macromolecules 2012, 45, 8119–8125. [Google Scholar] [CrossRef]
- Baqar, M.; Agag, T.; Qutubuddin, S.; Ishida, H. Handbook of Benzoxazine Resins; Hatsuo, I., Tarek, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Demir, K.D.; Kiskan, B.; Aydogan, B.; Yagci, Y. Thermally curable main-chain benzoxazine prepolymers via polycondensation route. React. Funct. Polym. 2013, 73, 346–359. [Google Scholar] [CrossRef]
- Serafini, T.T.; Cheng, P.G.; Ueda, K.K.; Wright, W.F. Improved High Temperature Resistant Matrix Resins. In Proceedings of the 22nd International SAMPE Technical Conference, Society for the Advancement of Material and Process Engineering, Boston, MA, USA, 6–8 November 1990; pp. 94–107. [Google Scholar]
- Ahn, M.K.; Stringfellow, T.C.; Lei, J.; Bowles, K.J.; Meador, M. An investigation of stable free radicals in polyimides using epr spectroscopy. Mrs Online Proc. Libr. Arch. 1993, 305. [Google Scholar] [CrossRef]
- Wilson, D. PMR-15 processing, properties and problems—A review. Br. Polym. J. 1988, 20, 405–416. [Google Scholar] [CrossRef]
- Pascal, T.; Audigier, D.; Mercier, R.; Sillion, B. A soluble nadimide end-capped fluorinated resin. Polymer 1991, 32, 1119–1125. [Google Scholar] [CrossRef]
- Ishida, H.; Ohba, S. Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer 2005, 46, 5588–5595. [Google Scholar] [CrossRef]
- Zhang, K.; Ishida, H. Thermally stable polybenzoxazines via ortho-norbornene functional benzoxazine monomers: Unique advantages in monomer synthesis, processing and polymer properties. Polymer 2015, 66, 240–248. [Google Scholar] [CrossRef]
- Zhang, K.; Qiu, J.; Li, S.; Shang, Z.; Wang, J. Remarkable improvement of thermal stability of main-chain benzoxazine oligomer by incorporating o-norbornene as terminal functionality. J. Appl. Polym. Sci. 2017, 134, 45408. [Google Scholar] [CrossRef]
- Lyle, G.D.; Senger, J.S.; Chen, D.H.; Kilic, S.; Wu, S.D.; Mohanty, D.K.; McGrath, J.E. Synthesis, curing and physical behaviour of maleimide-terminated poly (ether ketones). Polymer 1989, 30, 978–985. [Google Scholar] [CrossRef]
- Agag, T.; Liu, J.; Graf, R.; Spiess, H.W.; Ishida, H. Benzoxazole resin: A novel class of thermoset polymer via smart benzoxazine resin. Macromolecules 2012, 45, 8991–8997. [Google Scholar] [CrossRef]
- Liu, J.; Ishida, H. Anomalous isomeric effect on the properties of bisphenol f-based benzoxazines: Toward the molecular design for higher performance. Macromolecules 2014, 47, 5682–5690. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, X. Catalyst-free and low-temperature terpolymerization in a single-component benzoxazine resin containing both norbornene and acetylene functionalities. Macromolecules 2018, 51, 6524–6533. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, X.; Wang, Y.; Liu, Y. Thermally activated structural changes of a Norbornene–Benzoxazine–Phthalonitrile thermosetting system: Simple synthesis, self-catalyzed polymerization, and outstanding flame Retardancy. ACS Appl. Polym. Mater. 2019, 1, 2713–2722. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, K. Studies on the isomeric effect of nitrile functionality on the polymerization and thermal properties of ortho-norbornene-based benzoxazine resins. J. Polym. Res. 2020, 27, 1–8. [Google Scholar] [CrossRef]
- Tasdelen, M.A.; Durmaz, H. Thermally curable polyoxanorbornene by ring opening metathesis polymerization. Macromol. Chem. Phys. 2011, 212, 2121–2126. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Wang, Y.; Sun, L. A high performance polybenzoxazine via smart ortho-norbornene functional benzoxazine monomer based on ring-opening metathesis polymerization. High. Perform. Polym. 2019, 31, 513–520. [Google Scholar] [CrossRef]
- Ardhyananta, H.; Wahid, M.H.; Sasaki, M.; Agag, T.; Kawauchi, T.; Ismail, H.; Takeichi, T. Performance enhancement of polybenzoxazine by hybridization with polysiloxane. Polymer 2008, 49, 4585–4591. [Google Scholar] [CrossRef]
- Chen, K.C.; Li, H.T.; Chen, W.B.; Liao, C.H.; Sun, K.W.; Chang, F.C. Synthesis and characterization of a novel siloxane-imide-containing polybenzoxazine. Polym. Int. 2011, 60, 436–442. [Google Scholar] [CrossRef]
- Chen, K.C.; Li, H.T.; Huang, S.C.; Chen, W.B.; Sun, K.W.; Chang, F.C. Synthesis and performance enhancement of novel polybenzoxazines with low surface free energy. Polym. Int. 2011, 60, 1089–1096. [Google Scholar] [CrossRef]
- Zhang, K.; Yu, X.; Kuo, S.W. Outstanding dielectric and thermal properties of main chain-type poly (benzoxazine-co-imide-co-siloxane)-based cross-linked networks. Polym. Chem. 2019, 10, 2387–2396. [Google Scholar] [CrossRef]
- Chen, W.C.; Kuo, S.W. Ortho-imide and allyl groups effect on highly thermally stable polybenzoxazine/double-decker-shaped polyhedral silsesquioxane hybrids. Macromolecules 2018, 51, 9602–9612. [Google Scholar] [CrossRef]
Monomer | T5 (°C) | T10 (°C) | Char Yield (wt%) |
---|---|---|---|
BZ1 | 319 | 366 | 39 (850 °C) |
BZ10 | 371 | 431 | 52 (850 °C) |
BZ11 | ca. 360 | ca. 395 | ca. 43 (800 °C) |
Monomer | Curing Time (h) | T5 (℃) | T10 (°C) | Td (°C) | Char Yield (wt%) | |
---|---|---|---|---|---|---|
at 200 °C | at 230 °C | |||||
BA-a | 2 | 2 | 334.6 | 356.8 | 334.2 | 34.3 |
4 | 328.8 | 360.7 | 342.7 | 42.7 | ||
6 | 336.5 | 369.8 | 341.6 | 46.3 | ||
BZ12 | 2 | 2 | 355.7 | 417.8 | 452.9 | 48.0 |
4 | 361.5 | 427.2 | 448.4 | 48.4 | ||
6 | 358.5 | 415.8 | 446.5 | 49.3 | ||
BZ13 | 2 | 2 | 437.1 | 474.2 | 471.0 | 45.1 |
4 | 437.2 | 481.3 | 459.9 | 48.1 | ||
6 | 430.6 | 477.4 | 463.7 | 50.9 |
Monomer | Curing Conditions | Contact Angle (°) | Surface Free Energy, γs (mJ m−2) | |||
---|---|---|---|---|---|---|
Temperature | Time (h) | Water | EG | DIM | ||
BA-a | 230 | 1 | 106.1 | 82.5 | 84.3 | 16.6 |
2 | 93.9 | 70.0 | 76.3 | 22.5 | ||
4 | 78.8 | 55.6 | 68.6 | 30.0 | ||
8 | 59.4 | 25.5 | 53.8 | 43.6 | ||
24 | 13.7 | 20.3 | 45.8 | 42.6 | ||
BZ12 | 230 | 1 | 108.8 | 85.4 | 86.8 | 15.1 |
2 | 108.0 | 83.5 | 83.6 | 16.6 | ||
4 | 106.5 | 82.5 | 83.1 | 17.0 | ||
8 | 99.4 | 74.7 | 78.2 | 20.4 | ||
24 | 84.0 | 69.3 | 71.5 | 24.6 | ||
BZ13 | 230 | 1 | 113.7 | 93.9 | 92.3 | 12.4 |
2 | 112.2 | 89.0 | 86.9 | 14.7 | ||
4 | 111.9 | 88.7 | 86.8 | 14.7 | ||
8 | 110.9 | 88.2 | 86.8 | 14.8 | ||
24 | 108.3 | 82.3 | 84.3 | 16.2 |
Polymer | Atmosphere | T5 (°C) | T10 (°C) | Char Yield (wt%) |
---|---|---|---|---|
PBZ14 | N2 | 429 | 461 | 46.0 (850 °C) |
air | 400 | 436 | 45.0 (850 °C) | |
PBZ15 | N2 | 400 | 431 | 55.0 (850 °C) |
air | 412 | 449 | 15.0 (850 °C) | |
PBZ16 | N2 | / | 494 | 72.7 (800 °C) |
PBZ17 | N2 | / | 512 | 75.0 (800 °C) |
PBZ18 | N2 | / | 471 | 67.2 (800 °C) |
PBZ19 | N2 | / | 512 | 75.0 (800 ℃) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Yu, X.; Han, L.; Zhang, K. Recent Progress of High Performance Thermosets Based on Norbornene Functional Benzoxazine Resins. Polymers 2021, 13, 1417. https://doi.org/10.3390/polym13091417
Lu Y, Yu X, Han L, Zhang K. Recent Progress of High Performance Thermosets Based on Norbornene Functional Benzoxazine Resins. Polymers. 2021; 13(9):1417. https://doi.org/10.3390/polym13091417
Chicago/Turabian StyleLu, Yin, Xinye Yu, Lu Han, and Kan Zhang. 2021. "Recent Progress of High Performance Thermosets Based on Norbornene Functional Benzoxazine Resins" Polymers 13, no. 9: 1417. https://doi.org/10.3390/polym13091417
APA StyleLu, Y., Yu, X., Han, L., & Zhang, K. (2021). Recent Progress of High Performance Thermosets Based on Norbornene Functional Benzoxazine Resins. Polymers, 13(9), 1417. https://doi.org/10.3390/polym13091417