A Critical Review of the Time-Dependent Performance of Polymeric Pipeline Coatings: Focus on Hydration of Epoxy-Based Coatings
Abstract
:1. Introduction
2. Mass Transport through Coating Materials
- Dissolution in the polymer (determined by the solubility coefficient) from the exposed side
- Diffusion from higher to lower concentration/pressure (determined by diffusion coefficient)
- Desorption from the other side of the polymer film
2.1. Water Ingress into an Epoxy Network
- when they form a single, easy-to-remove hydrogen bond with hydrophilic groups in the epoxy network; and
- when they form multiple, stronger bonds in the epoxy network [45].
2.1.1. Water Transport: Gravimetric Analysis
2.1.2. Water Transport: Infrared (IR) Spectroscopy Methods
2.1.3. Water Transport: Electrochemical Impedance Spectroscopy (EIS)
2.2. Vapor/Gas Transport
Material | Test Temp. | Tg | l | P × 1016 | D × 1013 | S × 105 | Ref. |
---|---|---|---|---|---|---|---|
(°C) | (°C) | (µm) | (mol/m−s−Pa) | (m2/s) | (mol/m3−Pa) | ||
DGEBA/PGE/DDM | 30 | 117 | 20 | - | 1.60 | 20.9 | [109] |
DGEBA/DDM | 30 | 164 | 20 | - | 2.40 | 18.0 | [109] |
40 | 164 | 20 | - | 2.80 | 30.3 | [109] | |
Epon828/A2049 | 25 | 150 | ~150 | 0.47 | 4.97 | 9.44 | [110] |
40 | 150 | ~150 | 0.80 | 10.1 | 7.63 | [110] | |
65 | 150 | ~150 | 1.70 | 32.8 | 5.19 | [110] | |
80 | 150 | ~150 | 2.57 | 52.2 | 4.82 | [110] |
- occupied “van der Waals” volume which is not a function of temperature,
- interstitial free volume stemming from vibrational energy of polymer bonds which increases marginally with temperature; and
- hole free volume which is related to volume relaxation and plasticization upon heating and cooling of the polymer.
2.3. Water/Salt Transport
3. The Long-Term Stability of FBE and Its Effects on Mass Transport
3.1. Effect of Coating Thickness
3.2. Salt Deterioration
3.3. Effect of CP on Ion Transfer
- a monolayer of water covers the coating layer and binds to exposed polar groups;
- water molecules jump to existing micropores in the cross-linked FBE structure, destabilize ether (C–O–C) and hydroxyl functional groups, disrupt hydrogen bonds, and create more pores;
- water and ions permeate through the micropore channels as a result of electroosmosis caused by CP potential.
4. Multi-Layer Coating Systems
4.1. Mass Transport through the PE Barrier
4.2. Analysis of Transport for Multi-Layered Membranes
5. Coating Imperfections and Remaining Life Assessments
6. Summary and Future Outlook
- Qualitative studies of water transmission rate at room temperature may provide a baseline to compare the extent of permeation among coating systems. However, they do not provide adequate information to assess coating performance, especially at elevated temperatures. Quantitative measurements of water transport based on its concentration and temperature are necessary and research in this area should be accelerated.
- Spectroscopic and electrochemical techniques yield a fundamental understanding of barrier properties of polymer structures. However, these methods may not be applicable for multilayered coatings. Properties of individual layers need to be related to the mass transport capacity of the composite coating.
- Although FBE shows high permeability to water, effects of water saturation on gaseous permeation have been poorly covered in the literature. Water is expected to have a partial immobilization effect on gas transport, which is sensitive to gas concentration and working temperature.
- Stockpiling coated pipes prior to their service life is a common practice by industry. Combined with moisture uptake, UV exposure can significantly affect the barrier properties of coatings. Analysis of UV exposure effects on the mass transfer capacity of these materials is lacking and is a requirement for corrosion protection assessment.
- Wet-state use can change mass transfer properties of polymers, depending on their molecular structure, in different ways than dry state use. Therefore, analysis from a corrosion model based on data from dry conditions may not generate an accurate assessment for wet-state conditions.
- A probabilistic model to predict the frequency and the extent of polymer degradation can increase the efficiency of pipeline inspection and corrosion protection.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DMS | Dual-Mode Sorption |
CD | Cathodic Disbondment |
CP | Cathodic Protection |
EIS | Electrochemical impedance spectroscopy |
FBE | Fusion-Bonded Epoxy |
HDPE | High-Density Polyethylene |
HPPC | High-Performance Powder Coating |
IR | Infrared |
LAT | Low Application Temperature |
PE | Polyethylene |
PP | Polypropylene |
RH | Relative Humidity |
3LPO | Three-Layer Polyolefin |
TGA | Thermogravimetric Analysis |
UV | Ultraviolet |
WVT | Water Vapor Transmission |
References
- Varley, R.J.; Leong, K.H. Polymer Coatings for Oilfield Pipelines. In Active Protective Coatings: New-Generation Coatings for Metals; Hughes, A.E., Mol, J.M.C., Zheludkevich, M.L., Buchheit, R.G., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 385–428. ISBN 9789401775380. [Google Scholar]
- Allcock, B.W.; Lavin, P.A. Novel composite coating technology in primary and conversion industry applications. Surf. Coat. Technol. 2003, 163, 62–66. [Google Scholar] [CrossRef]
- Romano, M.; Goldie, B.; Kehr, A.; Roche, M.; Papavinasam, S.; Attard, M.; Balducci, B.; Revie, R.W.; Melot, D.; Paugam, G. Protecting and Maintaining Transmission Pipeline. J. Prot. Coat. Linings e-book 2012. [Google Scholar]
- Popov, B.N. Organic coatings. In Corrosion Engineering—Principles and Solved Problems; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9781420094633. [Google Scholar]
- Sid Harris Powder Coatings Meet All Industrial Coating Requirements! Focus Powder Coat. 2012, 1–2. [CrossRef]
- Husain, A.; Al-Bahar, S.; Chakkamalayath, J.; Vikraman, A.; Al Ghamdi, A.; Kamshad, T.; Siriki, R.S. Differential scanning calorimetry and optical photo microscopy examination for the analysis of failure of fusion bonded powder epoxy internal coating. Eng. Fail. Anal. 2015, 56, 375–383. [Google Scholar] [CrossRef]
- Niu, L.; Cheng, Y.F. Development of innovative coating technology for pipeline operation crossing the permafrost terrain. Constr. Build. Mater. 2008, 22, 417–422. [Google Scholar] [CrossRef]
- Kehr, A. Fusion-bonded epoxy internal linings and external coatings for pipeline corrosion protection. In Piping Handbook, 7th ed.; McGraw-Hill Handbooks: New York, NY, USA, 1999; pp. B481–B505. [Google Scholar]
- Zhou, W.; Edmondson, S.J.; Jeffers, T.E. Effects of Application Temperature, Degree of Cure and Film Thickness on Cathodic Disbondment of Conventional and New Generation FBE Coatings. In Proceedings of the NACE—International Corrosion Conference & Expo; NACE International: San Diego, CA, USA, 2006. [Google Scholar]
- Waslen, D. External Coatings. In Oil and Gas Pipelines: Integrity and Safety Handbook; Winston, R.R., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2015; pp. 439–446. ISBN 978-1-118-21671-2. [Google Scholar]
- Verma, C.; Olasunkanmi, L.O.; Akpan, E.D.; Quraishi, M.A.; Dagdag, O.; El Gouri, M.; Sherif, E.S.M.; Ebenso, E.E. Epoxy resins as anticorrosive polymeric materials: A review. React. Funct. Polym. 2020, 156, 104741. [Google Scholar] [CrossRef]
- Armelin, E.; Alemán, C.; Iribarren, J.I. Anticorrosion performances of epoxy coatings modified with polyaniline: A comparison between the emeraldine base and salt forms. Prog. Org. Coat. 2009, 65, 88–93. [Google Scholar] [CrossRef]
- Aguirre-Vargas, F. Thermoset coatings. In Thermosets: Structure, Properties, and Applications, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 369–400. ISBN 9780081010211. [Google Scholar]
- Jasiukaitytė-Grojzdek, E.; Huš, M.; Grilc, M.; Likozar, B. Acid-catalysed α-O-4 aryl-ether bond cleavage in methanol/(aqueous) ethanol: Understanding depolymerisation of a lignin model compound during organosolv pretreatment. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Jasiukaitytė-Grojzdek, E.; Huš, M.; Grilc, M.; Likozar, B. Acid-Catalyzed α-O-4 Aryl-Ether Cleavage Mechanisms in (Aqueous) γ-Valerolactone: Catalytic Depolymerization Reactions of Lignin Model Compound during Organosolv Pretreatment. ACS Sustain. Chem. Eng. 2020, 8, 17475–17486. [Google Scholar] [CrossRef]
- Bjelić, A.; Hočevar, B.; Grilc, M.; Novak, U.; Likozar, B. A review of sustainable lignocellulose biorefining applying (natural) deep eutectic solvents (DESs) for separations, catalysis and enzymatic biotransformation processes. Rev. Chem. Eng. 2020. [Google Scholar] [CrossRef]
- Saliba, P.A.; Mansur, A.A.; Santos, D.B.; Mansur, H.S. Fusion-bonded epoxy composite coatings on chemically functionalized API steel surfaces for potential deep-water petroleum exploration. Appl. Adhes. Sci. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Saliba, P.A.; Mansur, A.A.P.; Mansur, H.S. Advanced Nanocomposite Coatings of Fusion Bonded Epoxy Reinforced with Amino-Functionalized Nanoparticles for Applications in Underwater Oil Pipelines. J. Nanomater. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Kehr, J.A. Fusion-Bonded Epoxy (FBE): A Foundation for Pipeline Corrosion Protection; NACE International: Houston, TX, USA, 2003; ISBN 157590148X. [Google Scholar]
- Ubaid, F.; Radwan, A.B.; Naeem, N.; Shakoor, R.A.; Ahmad, Z.; Montemor, M.F.; Kahraman, R.; Abdullah, A.M.; Soliman, A. Multifunctional self-healing polymeric nanocomposite coatings for corrosion inhibition of steel. Surf. Coat. Technol. 2019, 372, 121–133. [Google Scholar] [CrossRef]
- Schultze, J.D.; Böhning, M.; Springer, J. Sorption and permeation properties of poly(p-phenylene sulfide) crystallized in the presence of sorbed gas molecules. Die Makromol. Chem. 1993, 194, 431–444. [Google Scholar] [CrossRef]
- Naito, Y.; Kamiya, Y.; Terada, K.; Mizoguchi, K.; Wang, J. Pressure dependence of gas permeability in a rubbery polymer. J. Appl. Polym. Sci. 1996, 61, 945–950. [Google Scholar] [CrossRef]
- Sangaj, N.S.; Malshe, V.C. Permeability of polymers in protective organic coatings. Prog. Org. Coat. 2004, 50, 28–39. [Google Scholar] [CrossRef]
- Husain, A.; Chakkamalayath, J.; Al-Bahar, S. Electrochemical impedance spectroscopy as a rapid technique for evaluating the failure of fusion bonded epoxy powder coating. Eng. Fail. Anal. 2017, 82, 765–775. [Google Scholar] [CrossRef]
- Jadoon, A.N.K.; Thompson, I. Fusion bonded epoxy mainline and field joint coatings performance from the X100 field trial—A case study. Int. J. Press. Vessel. Pip. 2012, 92, 48–55. [Google Scholar] [CrossRef]
- Fu, A.Q.; Cheng, Y.F. Characterization of the permeability of a high performance composite coating to cathodic protection and its implications on pipeline integrity. Prog. Org. Coat. 2011, 72, 423–428. [Google Scholar] [CrossRef]
- Legghe, E.; Aragon, E.; Bélec, L.; Margaillan, A.; Melot, D. Correlation between water diffusion and adhesion loss: Study of an epoxy primer on steel. Prog. Org. Coat. 2009, 66, 276–280. [Google Scholar] [CrossRef]
- Varughese, K. Improving functional powder coatings’ corrosion protection. Prod. Finish. 2000, 64, 49–54. [Google Scholar]
- Guan, S.; Mayes, P.; Andrenacci, A.; Wong, D.; Shawcor, B.S. Advanced Two Layer Polyethylene Coating Technology for Pipeline Protection. In Proceedings of the International Corrosion Control Conference, Sydney, Australia, 25–28 November 2007; pp. 1–7. [Google Scholar]
- Guan, S.W.; Kehr, A.J. High temperature cathodic disbondment testing for pipeline coatings. In Proceedings of the Corrosion Conference, San Antonio, TX, USA, 1–17 March 2014. [Google Scholar]
- Singh, P.; Haberer, S.; Gritis, N.; Worthingham, R.; Cetiner, M. New developments in high performance coatings. In Proceedings of the BHR Group 2005, Pipeline Protect, Paphos, Cyprus, 2–4 November 2005; Volume 16, pp. 55–66. [Google Scholar]
- Andrenacci, A.; Wong, D.T. Simulation of coating behavior in buried service environment. In Proceedings of the NACE—International Corrosion Conference & Expo; NACE International: Nashville, TN, USA, 2007; pp. 1–14. [Google Scholar]
- Lam, C.N.C.; Wong, D.T.; Steele, R.E.; Edmondson, S.J. A New Approach To High Performance Polyolefin Coatings. In Proceedings of the Corrosion Conference and Expo; NACE International; NACE International: Nashville, TN, USA, 2007. [Google Scholar]
- Batallas, M.; Singh, P. Evaluation of Anticorrosion Coatings For High Temperature Service. In Proceedings of the NACE—International Corrosion Conference & Expo; NACE International: New Orleans, LA, USA, 2008; pp. 1–16. [Google Scholar]
- Linde, E.; Giron, N.H.; Celina, M.C. Water diffusion with temperature enabling predictions for sorption and transport behavior in thermoset materials. Polymer 2018, 153, 653–667. [Google Scholar] [CrossRef]
- Carfagna, C.; Apicella, A. Physical Degradation by Water Clustering in Epoxy Resins. J. Appl. Polym. Sci. 1983, 28, 2881–2885. [Google Scholar] [CrossRef]
- Perdomo, J.J.; Song, I. Chemical and electrochemical conditions on steel under disbonded coatings: The effect of applied potential, solution resistivity, crevice thickness and holiday size. Corros. Sci. 2000, 42, 1389–1415. [Google Scholar] [CrossRef]
- Asrar, N.; MacKay, B.; Øystein, B.; Stipaničev, M.; Jackson, J.E.; Jenkins, A.; Scheie, J.; Vittonato, J. Corrosion—The Longest War. Oilf. Rev. 2016, 28, 34–49. [Google Scholar]
- Malshe, V.C.; Sangaj, N.S. A simple method for detection of the onset of corrosion of mild steel panel. Prog. Org. Coat. 2005, 53, 312–314. [Google Scholar] [CrossRef]
- Pauly, S. Permeability and diffusion data. In Polymer Handbook; Brandrup, J., Immergut, E.H., Eds.; Wiley: New York, NY, USA, 1999; pp. 543–569. ISBN 9788578110796. [Google Scholar]
- Thomas, N.L. The barrier properties of paint coatings. Prog. Org. Coat. 1991, 19, 101–121. [Google Scholar] [CrossRef]
- Soles, C.L.; Chang, F.T.; Gidley, D.W.; Yee, A.F. Contributions of the nanovoid structure to the kinetics of moisture transport in epoxy resins. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 776–791. [Google Scholar] [CrossRef]
- Soles, C.L.; Yee, A.F. Discussion of the molecular mechanisms of moisture transport in epoxy resins. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 792–802. [Google Scholar] [CrossRef] [Green Version]
- Powers, D.A. Interaction of water with epoxy. SAND2009-4405. In Sandia National Laboratories; OSTI.GOV: Albuquerque, NM, USA, 2009; pp. 1–57. Available online: https://www.osti.gov/servlets/purl/985494 (accessed on 8 May 2021). [CrossRef] [Green Version]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy. Polymer 1999, 40, 5505–5512. [Google Scholar] [CrossRef]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part II: Variations of glass transition temeprature. Polymer 1999, 40, 5505–5512. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.; Chen, Y.; Liu, M.; Ding, Y.; Luo, X.; Pu, Z.; Zhou, W.; Li, S. Water transportation in epoxy resin. Chem. Mater. 2005, 17, 839–845. [Google Scholar] [CrossRef]
- Frank, K.; Wiggins, J. Effect of stoichiometry and cure prescription on fluid ingress in epoxy networks. J. Appl. Polym. Sci. 2013, 130, 264–276. [Google Scholar] [CrossRef]
- Frank, K.; Childers, C.; Dutta, D.; Gidley, D.; Jackson, M.; Ward, S.; Maskell, R.; Wiggins, J. Fluid uptake behavior of multifunctional epoxy blends. Polymer 2013, 54, 403–410. [Google Scholar] [CrossRef]
- Ping, Z.H.; Nguyen, Q.T.; Chen, S.M.; Zhou, J.Q.; Ding, Y.D. States of water in different hydrophilic polymers—DSC and FTIR studies. Polymer 2001, 42, 8461–8467. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, M.; Li, S.; Zhang, S.; Zhou, W.-F.; Wang, B. Contributions of the Side Groups to the Characteristics of Water Absorption in Cured Epoxy Resins. Mol. Chem. Phys. 2001, 202, 2681–2685. [Google Scholar] [CrossRef]
- Pathania, A.; Arya, R.K.; Ahuja, S. Crosslinked polymeric coatings: Preparation, characterization, and diffusion studies. Prog. Org. Coat. 2017, 105, 149–162. [Google Scholar] [CrossRef]
- Morsch, S.; Lyon, S.; Smith, S.D.; Gibbon, S.R. Mapping water uptake in an epoxy-phenolic coating. Prog. Org. Coat. 2015, 86, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Karimi, M.; Heuchel, M.; Albrecht, W.; Hofmann, D. A lattice-fluid model for the determination of the water/polymer interaction parameter from water uptake measurements. J. Memb. Sci. 2007, 292, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: London, UK, 1953. [Google Scholar]
- Flory, P.J. Thermodynamics of high polymer solutions. J. Chem. Phys. 1941, 9, 660–661. [Google Scholar] [CrossRef]
- Huggins, M.L. Solutions of long chain compounds. J. Chem. Phys. 1941, 9, 440. [Google Scholar] [CrossRef]
- George, S.C.; Thomas, S. Transport phenomena through polymeric systems. Prog. Polym. Sci. 2001, 26, 985–1017. [Google Scholar] [CrossRef]
- Minelli, M.; Sarti, G.C. Elementary prediction of gas permeability in glassy polymers. J. Memb. Sci. 2017, 521, 73–83. [Google Scholar] [CrossRef]
- Xie, W.; Cook, J.; Park, H.B.; Freeman, B.D.; Lee, C.H.; McGrath, J.E. Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Polymer 2011, 52, 2032–2043. [Google Scholar] [CrossRef]
- Yang, C.; Xing, X.; Li, Z.; Zhang, S. A Comprehensive Review on Water Diffusion in Polymers Focusing on the Polymer–Metal Interface Combination. Polymers 2020, 12, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coniglio, N.; Nguyen, K.; Kurji, R.; Gamboa, E. Characterizing water sorption in 100% solids epoxy coatings. Prog. Org. Coat. 2013, 76, 1168–1177. [Google Scholar] [CrossRef]
- Chin, J.W.; Nguyen, T.; Aouadi, K. Sorption and diffusion of water, salt water, and concrete pore solution in composite matrices. J. Appl. Polym. Sci. 1999, 71, 483–492. [Google Scholar] [CrossRef]
- Kim, H.; Ra, H.N.; Kim, M.; Kim, H.G.; Kim, S.S. Enhancement of barrier properties by wet coating of epoxy-ZrP nanocomposites on various inorganic layers. Prog. Org. Coat. 2017, 108, 25–29. [Google Scholar] [CrossRef]
- Ra, H.N.; Kim, H.G.; Kim, H.; Peak, S.H.; Kim, Y.C.; Kim, S.S. Effects of size and aspect ratio of zirconium phosphate (ZrP) on barrier properties of epoxy-ZrP nanocomposites. Prog. Org. Coat. 2019, 133, 1–7. [Google Scholar] [CrossRef]
- Iizuka, S.; Murata, K.; Sekine, M.; Sato, C. A novel cup with a pressure-adjusting mechanism for high- temperature water vapor transmission rate measurements. Polym. Test. 2016, 50, 73–78. [Google Scholar] [CrossRef]
- Joy, F.A.; Wilson, A.G. Standardization of the dish method for measuring water vapor transmission. In Proceedings of the International Symposium on Humidity and Moisture, Proceedings; National Research Council Canada: Washington, DC, USA, 1963; pp. 259–270. [Google Scholar]
- American Society for Testing and Materials ASTM D1653-03. Standard Test Methods for Water Vapor Transmission of Organic Coating Films; American Society for Testing Materials: West Conshohocken, PA, USA, 2003; Volume 11. [Google Scholar]
- Korikov, A.P.; Sirkar, K.K. Membrane gas permeance in gas-liquid membrane contactor systems for solutions containing a highly reactive absorbent. J. Memb. Sci. 2005, 246, 27–37. [Google Scholar] [CrossRef]
- Howell, G.R.; Cheng, Y.F. Characterization of high performance composite coating for the northern pipeline application. Prog. Org. Coat. 2007, 60, 148–152. [Google Scholar] [CrossRef]
- Baker, R.W.; Wijmans, J.G.; Huang, Y. Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data. J. Memb. Sci. 2010, 348, 346–352. [Google Scholar] [CrossRef]
- Feng, J.; Berger, K.R.; Douglas, E.P. Water vapor transport in liquid crystalline and non-liquid crystalline epoxies. J. Mater. Sci. 2004, 39, 3413–3423. [Google Scholar] [CrossRef]
- Madhup, M.K.; Shah, N.K.; Parekh, N.R. Investigation and improvement of abrasion resistance, water vapor barrier and anticorrosion properties of mixed clay epoxy nanocomposite coating. Prog. Org. Coat. 2017, 102, 186–193. [Google Scholar] [CrossRef]
- Chang, S.C.; Hutcheon, N.B. Dependence of water vapor permeability on temperature and humidity. Heat. Pip. Air Cond. 1956, 149–155. [Google Scholar]
- Ahluwalia, R.K.; Wang, X.; Johnson, W.B.; Berg, F.; Kadylak, D. Performance of a cross-flow humidifier with a high flux water vapor transport membrane. J. Power Sources 2015, 291, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Popineau, S.; Rondeau-mouro, C.; Sulpice-gaillet, C.; Shanahan, M.E.R. Free/bound water absorption in an epoxy adhesive. Polymer 2005, 46, 10733–10740. [Google Scholar] [CrossRef]
- Ogawa, T.; Nagata, T.; Hamada, Y. Determination of diffusion coefficient of water in polymer films by TGA. J. Appl. Polym. Sci. 1993, 50, 981–987. [Google Scholar] [CrossRef]
- Krongauz, V.V. Diffusion in polymers dependence on crosslink density. Eyring approach to mechanism. J. Therm. Anal. Calorim. 2010, 102, 435–445. [Google Scholar] [CrossRef]
- Krongauz, V.V. Crosslink density dependence of polymer degradation kinetics: Photocrosslinked acrylates. Thermochim. Acta 2010, 503–504, 70–84. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, L.; Lou, P.; Zhang, X.; Han, X.; Zhang, Z.; Zhu, S. Study on thermal degradation mechanism of heat-resistant epoxy resin modified with carboranes. Polym. Degrad. Stab. 2020, 176, 109143. [Google Scholar] [CrossRef]
- Zhou, G.; Mikinka, E.; Golding, J.; Bao, X.; Sun, W.; Ashby, A. Investigation of thermal degradation and decomposition of both pristine and damaged carbon/epoxy samples with thermal history. Compos. Part B Eng. 2020, 201, 108382. [Google Scholar] [CrossRef]
- González, M.G.; Cabanelas, J.C.; Baselga, J. Applications of FTIR on Epoxy Resins—Identification, Monitoring the Curing Process, Phase Separation and Water Uptake. Infrared Spectrosc. Mater. Sci. Eng. Technol. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Netravali, A.N.; Fornes, R.E.; Gilbert, R.D.; Memory, J.D. Thermogravimetric analysis of water-epoxy interaction. J. Appl. Polym. Sci. 1986, 31, 1531–1535. [Google Scholar] [CrossRef]
- Linossier, I.; Gaillard, F.; Romand, M.; Feller, J.-F. Measuring Water Diffusion in Polymer Films on the Substrate by Internal Reflection Fourier Transform Infrared Spectroscopy. J. Appl. Polym. Sci. 1997, 66, 2465–2473. [Google Scholar] [CrossRef]
- Bouvet, G.; Dang, N.; Cohendoz, S.; Feaugas, X.; Mallarino, S.; Touzain, S. Impact of polar groups concentration and free volume on water sorption in model epoxy free films and coatings. Prog. Org. Coat. 2015, 96, 32–41. [Google Scholar] [CrossRef]
- Musto, P.; Abbate, M.; Ragosta, G.; Scarinzi, G. A study by Raman, near-infrared and dynamic-mechanical spectroscopies on the curing behaviour, molecular structure and viscoelastic properties of epoxy/anhydride networks. Polymer 2007, 48, 3703–3716. [Google Scholar] [CrossRef]
- Fieldson, G.T.; Barbari, T.A. The use of FTi.r.-a.t.r. spectroscopy to characterize penetrant diffusion in polymers. Polymer 1993, 34, 1146–1153. [Google Scholar] [CrossRef]
- Cabanelas, J.C.; Prolongo, S.G.; Serrano, B.; Bravo, J.; Baselga, J. Water absorption in polyaminosiloxane-epoxy thermosetting polymers. J. Mater. Process. Technol. 2003, 143–144, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yu, Y.; Su, H.; Zhan, G.; Li, S.; Wu, P. The diffusion mechanism of water transport in amine-cured epoxy networks. Appl. Spectrosc. 2010, 64, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Musto, P.; Ragosta, G.; Mensitieri, G. Time-resolved FTIR/FTNIR spectroscopy: Powerful tools to investigate diffusion processes in polymeric films and membranes. e-Polymers 2002, 2. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.; Bentz, D.; Byrd, E. Study of water at the organic coating/substrate interface. J. Coat. Technol. 1994, 66, 39–50. [Google Scholar]
- Latino, M.; Varela, F.; Tan, Y.; Forsyth, M. The effect of ageing on cathodic protection shielding by fusion bonded epoxy coatings. Prog. Org. Coat. 2019, 134, 58–65. [Google Scholar] [CrossRef]
- Nguyen, T.; Martin, J.W. Modes and mechanisms for the degradation of fusion-bonded epoxy-coated steel in a marine concrete environment. J. Coat. Technol. Res. 2004, 1, 81–92. [Google Scholar] [CrossRef]
- Krzak, M.; Tabor, Z.; Nowak, P.; Warszyński, P.; Karatzas, A.; Kartsonakis, I.A.; Kordas, G.C. Water diffusion in polymer coatings containing water-trapping particles. Part 2. Experimental verification of the mathematical model. Prog. Org. Coat. 2012, 75, 200–206. [Google Scholar] [CrossRef]
- Brasher, D.M.; Kingsbury, A.H. Electrical Measurements in the Study of Immersed Paint Coatings on Metal. 1. Comparison between Capacitance and Gravimetric Methods of Estimating Water-Uptake. J. Appl. Chem. 1954, 4, 62–72. [Google Scholar] [CrossRef]
- De Rosa, L. Monitoring Degradation of Single and Multilayer Organic Coatings. J. Electrochem. Soc. 1998, 145, 3830. [Google Scholar] [CrossRef]
- Stafford, O.A.; Hinderliter, B.R.; Croll, S.G. Electrochemical impedance spectroscopy response of water uptake in organic coatings by finite element methods. Electrochim. Acta 2006, 52, 1339–1348. [Google Scholar] [CrossRef]
- Miszczyk, A.; Darowicki, K. Water uptake in protective organic coatings and its reflection in measured coating impedance. Prog. Org. Coat. 2018, 124, 296–302. [Google Scholar] [CrossRef]
- Hinderliter, B.R.; Allahar, K.N.; Bierwagen, G.P.; Tallman, D.E.; Croll, S.G. Water sorption and diffusional properties of a cured epoxy resin measured using alternating ionic liquids/aqueous electrolytes in electrochemical impedance spectroscopy. J. Coat. Technol. Res. 2008, 5, 431–438. [Google Scholar] [CrossRef]
- Lacombre, C.V.; Bouvet, G.; Trinh, D.; Mallarino, S.; Touzain, S. Water uptake in free films and coatings using the Brasher and Kingsbury equation: A possible explanation of the different values obtained by electrochemical Impedance spectroscopy and gravimetry. Electrochim. Acta 2017, 231, 162–170. [Google Scholar] [CrossRef]
- Philippe, L.V.S.; Lyon, S.B.; Sammon, C.; Yarwood, J. Validation of electrochemical impedance measurements for water sorption into epoxy coatings using gravimetry and infra-red spectroscopy. Corros. Sci. 2008, 50, 887–896. [Google Scholar] [CrossRef]
- Zhang, J.T.; Hu, J.M.; Zhang, J.Q.; Cao, C.N. Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS. Prog. Org. Coat. 2004, 51, 145–151. [Google Scholar] [CrossRef]
- Kandeloos, A.J.; Attar, M.M. The diffusion and adhesion relationship between free films and epoxy coated mild steel. Prog. Org. Coat. 2019, 105405. [Google Scholar] [CrossRef]
- Morsch, S.; Lyon, S.; Gibbon, S.R. The degradation mechanism of an epoxy-phenolic can coating. Prog. Org. Coat. 2017, 102, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Shi, J.; Dilger, K. Water uptake and interfacial delamination of an epoxy-coated galvanized steel: An electrochemical impedance spectroscopic study. Prog. Org. Coat. 2019, 137, 105333. [Google Scholar] [CrossRef]
- Daynes, H.A. The Process of Diffusion through a Rubber Membrane. Proc. R. Soc. A Math. Phys. Eng. Sci. 1920, 97, 286–307. [Google Scholar] [CrossRef]
- Fraga, S.C.; Monteleone, M.; Lan, M.; Esposito, E.; Fuoco, A.; Giorno, L.; Pilná, K.; Friess, K. A novel time lag method for the analysis of mixed gas diffusion in polymeric membranes by on-line mass spectrometry: Method development and validation. J. Memb. Sci. 2018, 561, 39–58. [Google Scholar] [CrossRef]
- American Society for Testing and Materials ASTM D3985-05. Standard Test Method for Oxygen Gas Transmission Rate through Plastic Film and Sheeting Using a Coulometric Sensor; ASTM Stand.: West Conshohocken, PA, USA, 2005; Volume 15. [Google Scholar]
- Damian, C.; Espuche, E.; Escoubes, M. Influence of three ageing types (thermal oxidation, radiochemical and hydrolytic ageing) on the structure and gas transport properties of epoxy–amine networks. Polym. Degrad. Stab. 2001, 72, 447–458. [Google Scholar] [CrossRef]
- Celina, M.C.; Quintana, A. Oxygen diffusivity and permeation through polymers at elevated temperature. Polymer 2018, 150, 326–342. [Google Scholar] [CrossRef]
- Sonchaeng, U.; Iñiguez-Franco, F.; Auras, R.; Selke, S.; Rubino, M.; Lim, L.T. Poly(lactic acid) mass transfer properties. Prog. Polym. Sci. 2018, 86, 85–121. [Google Scholar] [CrossRef]
- Ismail, A.F.; Lorna, W. Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. Sep. Purif. Technol. 2002, 27, 173–194. [Google Scholar] [CrossRef]
- Freeman, B.D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 1999, 32, 375–380. [Google Scholar] [CrossRef]
- Sanders, D.F.; Smith, Z.P.; Guo, R.; Robeson, L.M.; McGrath, J.E.; Paul, D.R.; Freeman, B.D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. Polymer 2013, 54, 4729–4761. [Google Scholar] [CrossRef] [Green Version]
- Eceolaza, S.; Iriarte, M.; Uriarte, C.; Etxeberria, A. Influence of the organic compounds addition in the polymer free volume, gas sorption and diffusion. Eur. Polym. J. 2012, 48, 1218–1229. [Google Scholar] [CrossRef]
- Rao, Y.Q.; Liu, A.; O’Connell, K. Barrier properties and structure of liquid crystalline epoxy and its nanocomposites. Polymer 2018, 142, 109–118. [Google Scholar] [CrossRef]
- Cohen, M.H. Molecular Transport in Liquids and Glasses. J. Chem. Phys. 1959, 31, 1164–1169. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, N.; Davis, P.K.; Zielinski, J.M.; Danner, R.P.; Duda, J.L. Application of Free-Volume Theory to Self Diffusion of Solvents in Polymers Below the Glass Transition Temperature: A Review. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1629–1644. [Google Scholar] [CrossRef]
- Vrentas, J.S.; Duda, J.L. A free-volume interpretation of the influence of the glass transition on diffusion in amorphous polymers. J. Appl. Polym. Sci. 1978, 22, 2325–2339. [Google Scholar] [CrossRef]
- Van Der Wel, G.K.; Adan, O.C.G. Moisture in organic coatings—A review. Prog. Org. Coat. 1999, 37, 1–14. [Google Scholar] [CrossRef]
- Paul, D.R.; Koros, W.J.; Engineering, C. Effect of Partially Immobilizing Sorption on Permeability and the Diffusion Time Lag. J. Polym. Sci. Polym. Phys. Ed. 1976, 14, 675–685. [Google Scholar] [CrossRef]
- Duda, J.L.; Zielinski, J.M. Free-Volume Theory. In Diffusion in Polymers; Neogi, P., Ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 143–172. ISBN1 082479530X. ISBN2 9780824795306. [Google Scholar]
- Kanehashi, S.; Nagai, K. Analysis of dual-mode model parameters for gas sorption in glassy polymers. J. Memb. Sci. 2005, 253, 117–138. [Google Scholar] [CrossRef]
- Paul, D.R. Effect of Immobilizing Adsorption on the Diffusion Time Lag. J. Polym. Sci. Part A-2 1969, 7, 1811–1818. [Google Scholar] [CrossRef]
- Minelli, M.; Sarti, G.C. Permeability and diffusivity of CO2 in glassy polymers with and without plasticization. J. Memb. Sci. 2013, 435, 176–185. [Google Scholar] [CrossRef]
- Minelli, M.; Sarti, G.C. Gas permeability in glassy polymers: A thermodynamic approach. Fluid Phase Equilib. 2016, 424, 44–51. [Google Scholar] [CrossRef]
- Hirata, Y.; Miura, Y.; Nakagawa, T. Oxygen permeability and the state of water in Nafion® membranes with alkali metal and amino sugar counterions. J. Memb. Sci. 1999, 163, 357–366. [Google Scholar] [CrossRef]
- Nicodemo, L.; Marcone, A.; Monetta, T.; Mensitieri, G.; Bellucci, F. Transport of water dissolved oxygen in polymers via electrochemical technique. J. Memb. Sci. 1992, 70, 207–215. [Google Scholar] [CrossRef]
- Mensitieri, G.; Del Nobile, M.A.; Monetta, T.; Nicodemo, L.; Bellucci, F. The effect of film thickness on oxygen sorption and transport in dry and water-saturated Kapton® polyimide. J. Memb. Sci. 1994, 89, 131–141. [Google Scholar] [CrossRef]
- Efron, N.; Morgan, P.B.; Cameron, I.D.; Brennan, N.A.; Goodwin, M. Oxygen permeability and water content of silicone hydrogel contact lens materials. Optom. Vis. Sci. 2007, 84, E328–E337. [Google Scholar] [CrossRef]
- Zargarnezhad, H.; Asselin, E.; Wong, D.; Lam, C. Oxygen permeability of powder-based coatings in wet diffusion systems. In Proceedings of the 59th Conference of Metallurgists, COM2020, Toronto, ON, Canada, 14–15 October 2020. [Google Scholar]
- Maeda, Y.; Paul, D.R. Effect of antiplasticization on selectivity and productivity of gas separation membranes. J. Memb. Sci. 1987, 30, 1–9. [Google Scholar] [CrossRef]
- Maeda, Y.; Paul, D.R. Effect of antiplasticization on gas sorption and transport. III. Free volume interpretation. J. Polym. Sci. Part B Polym. Phys. 1987, 25, 1005–1016. [Google Scholar] [CrossRef]
- Reid, R.C.; Prausnitz, J.M.; Poling, B.E. The Properties of Gases and Liquids; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Ismail, A.F.; Khulbe, K.C.; Matsuura, T. Gas Separation Membranes: Polymeric and Inorganic; Springer: Cham, Switzerland, 2015; ISBN 9783319010953. [Google Scholar]
- Robeson, L.M.; Smith, Z.P.; Freeman, B.D.; Paul, D.R. Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes. J. Memb. Sci. 2014, 453, 71–83. [Google Scholar] [CrossRef]
- Scholes, C.A.; Kanehashi, S.; Stevens, G.W.; Kentish, S.E. Water permeability and competitive permeation with CO2 and CH4 in perfluorinated polymeric membranes. Sep. Purif. Technol. 2015, 147, 203–209. [Google Scholar] [CrossRef]
- Rowe, B.W.; Robeson, L.M.; Freeman, B.D.; Paul, D.R. Influence of temperature on the upper bound: Theoretical considerations and comparison with experimental results. J. Memb. Sci. 2010, 360, 58–69. [Google Scholar] [CrossRef]
- Sharma, H.N.; Harley, S.J.; Sun, Y.; Glascoe, E.A. Dynamic Triple-Mode Sorption and Outgassing in Materials. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.M.; Elabd, Y.A. Water clustering in glassy polymers. J. Phys. Chem. B 2013, 117, 10629–10640. [Google Scholar] [CrossRef] [PubMed]
- Woo, M.S.; Piggott, M.R. Water Absorption of Resins and Composites: I. Epoxy Homopolymers and Copolymers. J. Compos. Technol. Res. 1987, 9, 101–107. [Google Scholar]
- Woo, M.S.; Piggott, M.R. Water Absorption of Resins and Composites: II. Diffusion in Carbon and Glass Reinforced Epoxies. J. Compos. Technol. Res. 1987, 9, 162–166. [Google Scholar]
- Williams, J.L.; Hopfenberg, H.B.; Stannett, V. Water Transport and Clustering in Poly(vinyl cloride), Poly(oxymethylene), and Other Polymers. J. Macromol. Sci. Part B Phys. 1969, 3, 711–725. [Google Scholar] [CrossRef]
- Park, G.S. Transport Principles—Solution, Diffusion and Permeation in Polymer Membranes. In Synthetic Membranes: Science, Engineering and Applications; Bungay, P.M., Lonsdale, H.K., de Pinho, M.N., Eds.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1986; pp. 57–107. ISBN 9789401085960. [Google Scholar]
- Nightingale, E.R. Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 1959, 63, 1381–1387. [Google Scholar] [CrossRef]
- Geise, G.M.; Paul, D.R.; Freeman, B.D. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 2014, 39, 1–24. [Google Scholar] [CrossRef]
- Geise, G.M.; Park, H.B.; Sagle, A.C.; Freeman, B.D.; McGrath, J.E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Memb. Sci. 2011, 369, 130–138. [Google Scholar] [CrossRef]
- Zhang, H.; Geise, G.M. Modeling the water permeability and water/salt selectivity tradeoff in polymer membranes. J. Memb. Sci. 2016, 520, 790–800. [Google Scholar] [CrossRef]
- Kingsbury, R.S.; Zhu, S.; Flotron, S.; Coronell, O. Microstructure Determines Water and Salt Permeation in Commercial Ion-Exchange Membranes. ACS Appl. Mater. Interfaces 2018, 10, 39745–39756. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Lamaze, C.E.; Ikenberry, L.D. Permeability of Solutes through Hydrated Polymer Membranes. Macromol. Chem. Phys. 1968, 118, 19–35. [Google Scholar] [CrossRef]
- Tran, T.; Lin, C.; Chaurasia, S.; Lin, H. Elucidating the relationship between states of water and ion transport properties in hydrated polymers. J. Memb. Sci. 2018, 574, 299–308. [Google Scholar] [CrossRef]
- Dong, Y.; Zhou, Q. Relationship between ion transport and the failure behavior of epoxy resin coatings. Corros. Sci. 2014, 78, 22–28. [Google Scholar] [CrossRef]
- Hu, J.M.; Zhang, J.Q.; Cao, C.N. Determination of water uptake and diffusion of Cl-ion in epoxy primer on aluminum alloys in NaCl solution by electrochemical impedance spectroscopy. Prog. Org. Coat. 2003, 46, 273–279. [Google Scholar] [CrossRef]
- Aksu, E. Thermosets for pipeline corrosion protection. In Thermosets; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 453–476. ISBN 978-0-08-101021-1. [Google Scholar]
- Kehr, J.A.; Enos, D.G. FBE, a foundation for pipeline corrosion coating. In Proceedings of the Corrosion, Orlando, FL, USA, 26–31 March 2000; pp. 1–20. [Google Scholar]
- Wong, D.; Lam, C.; Singh, P. Development of Low Application Temperature Coating Systems for Steel Pipelines. In Proceedings of the NACE—International Corrosion Conference & Expo; NACE International: Phoenix, AZ, USA, 2018; pp. 1–10. [Google Scholar]
- Zhou, W.; Jeffers, T.E.; Decker, O.H. Properties of a Novel High Tg FBE Coating for High Temperature Service. In Proceedings of the NACE—International Corrosion Conference & Expo; NACE International: Nashville, TN, USA, 2007; pp. 1–8. [Google Scholar]
- Wei, Y.H.; Zhang, L.X.; Ke, W. Evaluation of corrosion protection of carbon black filled fusion-bonded epoxy coatings on mild steel during exposure to a quiescent 3% NaCl solution. Corros. Sci. 2007, 49, 287–302. [Google Scholar] [CrossRef]
- Wang, D.; Sikora, E.; Shaw, B. A study of the effects of filler particles on the degradation mechanisms of powder epoxy novolac coating systems under corrosion and erosion. Prog. Org. Coat. 2018, 121, 97–104. [Google Scholar] [CrossRef]
- Luo, S.; Zheng, Y.; Li, J.; Ke, W. Slurry erosion resistance of fusion-bonded epoxy powder coating. Wear 2001, 249, 733–738. [Google Scholar] [CrossRef]
- Luo, S.; Zheng, Y.; Li, J.; Ke, W. Effect of curing degree and fillers on slurry erosion behavior of fusion-bonded epoxy powder coatings. Wear 2003, 254, 292–297. [Google Scholar] [CrossRef]
- Yan, M.; Sun, C.; Xu, J.; Wu, T.; Yang, S.; Ke, W. Stress corrosion of pipeline steel under occluded coating disbondment in a red soil environment. Corros. Sci. 2015, 93, 27–38. [Google Scholar] [CrossRef]
- Tsujita, Y. Gas sorption and permeation of glassy polymers with microvoids. Prog. Polym. Sci. 2003, 28, 1377–1401. [Google Scholar] [CrossRef]
- Cetiner, M.; Singh, P.; Abes, J.; Gilroy-Scott, A. UV Degradation of Fusion Bonded Epoxy Coating in Stockpiled Pipes. In Proceedings of the 2000 3rd International Pipeline Conference; ASME: Calgary, AB, Canada, 2000; Volume 2, pp. 691–702. [Google Scholar]
- Rowe, B.W.; Freeman, B.D.; Paul, D.R. Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer 2009, 50, 5565–5575. [Google Scholar] [CrossRef]
- Kirkpatrick, D.; Aguirre, F.; Jacob, G. Review of epoxy polymer thermal aging behavior relevant to fusion bonded epoxy coatings. In Proceedings of the NACE—International Corrosion Conference & Expo; NACE International: New Orleans, LA, USA, 2008; pp. 1–12. [Google Scholar]
- Weishaar, A.; Carpenter, M.; Loucks, R.; Sakulich, A.; Peterson, A.M. Evaluation of self-healing epoxy coatings for steel reinforcement. Constr. Build. Mater. 2018, 191, 125–135. [Google Scholar] [CrossRef]
- Zamanzadeh, M.; Xu, H. Fusion Bonded Epoxy Coatings (FBE) and Disbondment. In Proceedings of the NACE—International Corrosion Conference & Expo; NACE International: Vancouver, BC, Canada, 2016; pp. 1–11. [Google Scholar]
- Williamson, A.I.S.; Singh, P.; Associates, J.R.H. The resistance of advanced pipeline coatings to penetration and abrasion by hard rock. In Proceedings of the IPC 2000: International Pipeline Conference; ASME: Palliser, AB, Canada, 2000; pp. 1–7. [Google Scholar]
- Funke, W.; Haagen, H. Empirical or Scientific Approach to Evaluate the Corrosion Protective Performance of Organic Coatings. Ind. Eng. Chem. Prod. Res. Dev. 1978, 17, 50–53. [Google Scholar] [CrossRef]
- Quintana, A.; Celina, M.C. Overview of DLO modeling and approaches to predict heterogeneous oxidative polymer degradation. Polym. Degrad. Stab. 2018, 149, 173–191. [Google Scholar] [CrossRef]
- Schilling, M.S. Osmotic Blistering—Coatings Under Pressure. In Proceedings of the NACE—International Corrosion Conference & Expo; NACE International: Atlanta, GA, USA, 2009; pp. 1–29. [Google Scholar]
- Pommersheim, J.M.; Nguyen, T. Prediction of Blistering in Coating Systems. In Organic Coatings for Corrosion Control, Volume 689; Bierwagen, G.P., Ed.; American Chemical Society: Washington, DC, USA, 1998; pp. 137–150. [Google Scholar]
- Simpson, C.H.; Ray, C.J.; Skerry, B.S. Accelerated corrosion testing of industrial maintenance paints using a cyclic corrosion weathering method. J. Prot. Coat. Linings 1991, 8, 28–36. [Google Scholar]
- Skerry, B.S.; Alavi, A.; Lindgren, K.I. Environmental and electrochemical test methods for the evaluation of protective organic coatings. J. Coat. Technol. 1988, 60, 97–106. [Google Scholar]
- Skerry, B.S.; Simpson, C.H. Corrosion and Weathering of Paints for Atmospheric Corrosion Control. Corrosion 1993, 49, 663–674. [Google Scholar] [CrossRef]
- Bierwagen, G.; Tallman, D.; Li, J.; He, L.; Jeffcoate, C. EIS studies of coated metals in accelerated exposure. Prog. Org. Coat. 2003, 46, 149–158. [Google Scholar] [CrossRef]
- Green, D.W.; Southard, M.Z. Perry’s Chemical Engineers’ Handbook; McGraw-Hill: New York, NY, USA, 2008; ISBN 9780071422949. [Google Scholar]
- Dean, J.A.; Lange, N.A. Lange’s Handbook of Chemistry, 14th ed.; McGraw-Hill: New York, NY, USA, 1992; ISBN 9780070161948. [Google Scholar]
- Esfahany, H.R. The study of diffusion ions and water in powder and liquid epoxy coatings of pipeline with using fluorescence microscopy and AFM methodology. In Proceedings of the NACE—International Corrosion Conference & Expo; NACE International: Houston, TX, USA, 2011; pp. 1–11. [Google Scholar]
- Sørensen, P.A.; Dam-johansen, K.; Weinell, C.E.; Kiil, S. Cathodic delamination of seawater-immersed anticorrosive coatings: Mapping of parameters affecting the rate. Prog. Org. Coat. 2010, 68, 283–292. [Google Scholar] [CrossRef]
- Wei, Y.H.; Zhang, L.X.; Ke, W. Comparison of the degradation behaviour of fusion-bonded epoxy powder coating systems under flowing and static immersion. Corros. Sci. 2006, 48, 1449–1461. [Google Scholar] [CrossRef]
- Mišković-Stanković, V.; Maksimović, M.; Kačarević-Popović, Z.; Zotović, J. The sorption characteristics and thermal stability of epoxy coatings electrodeposited on steel and steel electrochemically modified by Fe-P alloys. Prog. Org. Coat. 1998, 33, 68–75. [Google Scholar] [CrossRef]
- Qian, S.; Cheng, Y.F. Degradation of fusion bonded epoxy pipeline coatings in the presence of direct current interference. Prog. Org. Coat. 2018, 120, 79–87. [Google Scholar] [CrossRef]
- Kuang, D.; Cheng, Y.F. Study of cathodic protection shielding under coating disbondment on pipelines. Corros. Sci. 2015, 99, 249–257. [Google Scholar] [CrossRef]
- Latino, M.; Varela, F.; Forsyth, M.; Tan, Y. Self-validating electrochemical methodology for quantifying ionic currents through pipeline coatings. Prog. Org. Coat. 2018, 120, 153–159. [Google Scholar] [CrossRef]
- Perdomo, J.J.; Chabica, M.E.; Song, I. Chemical and electrochemical conditions on steel under disbonded coatings: The effect of previously corroded surfaces and wet and dry cycles. Corros. Sci. 2001, 43, 515–532. [Google Scholar] [CrossRef]
- Xu, M.; Lam, C.N.C.; Wong, D.; Asselin, E. Evaluation of the cathodic disbondment resistance of pipeline coatings—A review. Prog. Org. Coat. 2020, 146, 105728. [Google Scholar] [CrossRef]
- Guan, S.W.; Bacon, T.; Chen, K.Y.; Mclennan, S.; Uppal, N. Preservation of Coated Pipes for Long Term Storage in Tropical Environment. In Proceedings of the NACE International East Asia Pacific Rim Area, Bali, Indonesia, 2–4 September 2014. [Google Scholar]
- Guan, S.W.; Kehr, A.J. High-Temperature Cathodic Disbondment Testing—Part 2: Parallel Testing. Mater. Perform. 2015, 54, 2–6. [Google Scholar]
- Legghe, E.; Joliff, Y.; Belec, L.; Aragon, E. Computational analysis of a three-layer pipeline coating: Internal stresses generated during the manufacturing process. Comput. Mater. Sci. 2011, 50, 1533–1542. [Google Scholar] [CrossRef]
- Deng, S.; Djukic, L.; Paton, R.; Ye, L. Thermoplastic–epoxy interactions and their potential applications in joining composite structures—A review. Compos. Part A 2015, 68, 121–132. [Google Scholar] [CrossRef]
- Gajdoš, J.; Galić, K.; Kurtanjek, Ž.; Ciković, N. Gas permeability and DSC characteristics of polymers used in food packaging. Polym. Test. 2001, 20, 49–57. [Google Scholar] [CrossRef]
- Ranade, A.; D’Souza, N.A.; Wallace, R.M.; Gnade, B.E. High sensitivity gas permeability measurement system for thin plastic films. Rev. Sci. Instrum. 2005, 76, 1–5. [Google Scholar] [CrossRef]
- Siracusa, V. Food packaging permeability behaviour: A report. Int. J. Polym. Sci. 2012, 2012, 1–11. [Google Scholar] [CrossRef]
- Bento, A.; Lourenço, J.P.; Fernandes, A.; Ribeiro, M.R.; Arranz-Andrés, J.; Lorenzo, V.; Cerrada, M.L. Gas permeability properties of decorated MCM-41/polyethylene hybrids prepared by in-situ polymerization. J. Memb. Sci. 2012, 415–416, 702–711. [Google Scholar] [CrossRef]
- McGonigle, E.A.; Liggat, J.J.; Pethrick, R.A.; Jenkins, S.D.; Daly, J.H.; Hayward, D. Permeability of N2, Ar, He, 2, and CO2 through as-extruded amorphous and biaxially oriented polyester films—Dependence on chain mobility. Polymer 2001, 42, 2413–2426. [Google Scholar] [CrossRef]
- Mrkić, S.; Galić, K.; Ivanković, M.; Hamin, S.; Ciković, N. Gas transport and thermal characterization of mono- and Di-polyethylene films used for food packaging. J. Appl. Polym. Sci. 2006, 99, 1590–1599. [Google Scholar] [CrossRef]
- Lasoski, S.W.; Cobbs, W.H. Moisture permeability of polymers. I. Role of crystallinity and orientation. J. Polym. Sci. 1959, 36, 21–33. [Google Scholar] [CrossRef]
- Mathlouthi, M. Food Packaging and Preservation; Springer: Dordrecht, The Netherlands, 1994; ISBN 0834213494. [Google Scholar]
- Marais, S.; Hirata, Y.; Cabot, C.; Morin-Grognet, S.; Garda, M.R.; Atmani, H.; Poncin-Epaillard, F. Effect of a low-pressure plasma treatment on water vapor diffusivity and permeability of poly(ethylene-co-vinyl alcohol) and polyethylene films. Surf. Coat. Technol. 2006, 201, 868–879. [Google Scholar] [CrossRef]
- Kurek, M.; Ščetar, M.; Voilley, A.; Galić, K.; Debeaufort, F. Barrier properties of chitosan coated polyethylene. J. Memb. Sci. 2012, 403–404, 162–168. [Google Scholar] [CrossRef]
- Basmadjian, D. Mass Transfer: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2004; ISBN 0849322391. [Google Scholar]
- Webb, J.A.; Bower, D.I.; Ward, I.M.; Cardew, P.T. The Effect of Drawing on the Transport of Gases through Polyethylene. J. Polym. Sci. Part B Polym. Phys. 1993, 31, 743–757. [Google Scholar] [CrossRef]
- Michaels, A.S.; Bixler, H.J. Flow of gases through polyethylene. J. Polym. Sci. 1961, 50, 413–439. [Google Scholar] [CrossRef]
- Grüniger, A.; Von Rohr, P.R. Influence of defects in SiOx thin films on their barrier properties. Thin Solid Films 2004, 459, 308–312. [Google Scholar] [CrossRef]
- Chung, T.S.; Shieh, J.J.; Lau, W.W.Y.; Srinivasan, M.P.; Paul, D.R. Fabrication of multi-layer composite hollow fiber membranes for gas separation. J. Memb. Sci. 1999, 152, 211–225. [Google Scholar] [CrossRef]
- Liang, C.Z.; Liu, J.T.; Lai, J.Y.; Chung, T.S. High-performance multiple-layer PIM composite hollow fiber membranes for gas separation. J. Memb. Sci. 2018, 563, 93–106. [Google Scholar] [CrossRef]
- Dai, Z.; Ansaloni, L.; Deng, L. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review. Green Energy Environ. 2016. [Google Scholar] [CrossRef] [Green Version]
- Behera, K.; Pandey, S.; Kadyan, A.; Pandey, S. Ionic liquid-based optical and electrochemical carbon dioxide sensors. Sensors 2015, 15, 30487–30503. [Google Scholar] [CrossRef] [Green Version]
- Diodjo, M.R.T.; Joliff, Y.; Belec, L.; Aragon, E.; Perrin, F.X.; Bonnaudet, M.; Lanarde, L. Numerical modeling of stresses relaxation phenomena in the complex assembly steel pipe/three layers polyethylene coating. Prog. Org. Coat. 2017, 104, 152–160. [Google Scholar] [CrossRef]
- Joliff, Y.; Belec, L.; Aragon, E. Influence of the thickness of pipeline coating on internal stresses during the manufacturing process by finite element analysis. Comput. Mater. Sci. 2013, 68, 342–349. [Google Scholar] [CrossRef]
- Guermazi, N.; Elleuch, K.; Ayedi, H.F. The effect of time and aging temperature on structural and mechanical properties of pipeline coating. Mater. Des. 2009, 30, 2006–2010. [Google Scholar] [CrossRef]
- Abdou, M.I.; Ayad, M.I.; Diab, A.S.M.; Hassan, I.A.; Fadl, A.M. Influence of surface modified ilmenite/melamine formaldehyde composite on the anti-corrosion and mechanical properties of conventional polyamine cured epoxy for internal coating of gas and oil transmission pipelines. Prog. Org. Coat. 2017, 113, 1–14. [Google Scholar] [CrossRef]
- Samad, U.A.; Alam, M.A.; Chafidz, A.; Al-Zahrani, S.M.; Alharthi, N.H. Enhancing mechanical properties of epoxy/polyaniline coating with addition of ZnO nanoparticles: Nanoindentation characterization. Prog. Org. Coat. 2018, 119, 109–115. [Google Scholar] [CrossRef]
- Liu, A.; Chen, K.; Huang, X.; Chen, J.; Zhou, J.; Xu, W. Corrosion failure probability analysis of buried gas pipelines based on subset simulation. J. Loss Prev. Process Ind. 2019, 57, 25–33. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, D.W.; Dai, J.G.; Fang, M.S.; Jin, W.L. Determining the service life extension of silane treated concrete structures: A probabilistic approach. Constr. Build. Mater. 2020, 249, 118802. [Google Scholar] [CrossRef]
- Lampe, J.; Hamann, R. Probabilistic model for corrosion degradation of tanker and bulk carrier. Mar. Struct. 2018, 61, 309–325. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Qin, G. Non-probabilistic time-dependent reliability analysis for suspended pipeline with corrosion defects based on interval model. Process Saf. Environ. Prot. 2019, 124, 290–298. [Google Scholar] [CrossRef]
- Hu, J.; Tian, Y.; Teng, H.; Yu, L.; Zheng, M. The probabilistic life time prediction model of oil pipeline due to local corrosion crack. Theor. Appl. Fract. Mech. 2014, 70, 10–18. [Google Scholar] [CrossRef]
- Melchers, R.E.; Jeffrey, R.J. Probabilistic models for steel corrosion loss and pitting of marine infrastructure. Reliab. Eng. Syst. Saf. 2008, 93, 423–432. [Google Scholar] [CrossRef]
- Aguirre, F.; Kirkpatrick, D. Accelerated Aging of Fusion Bonded Epoxy Coating. In Proceedings of the NACE—International Corrosion Conference & Expo; NACE International: Houston, TX, USA, 2011; pp. 1–8. [Google Scholar]
- Li, L.; Yu, Y.; Wu, Q.; Zhan, G.; Li, S. Effect of chemical structure on the water sorption of amine-cured epoxy resins. Corros. Sci. 2009, 51, 3000–3006. [Google Scholar] [CrossRef]
- Milenin, A.; Velikoivanenko, E.; Rozynka, G.; Pivtorak, N. Probabilistic procedure for numerical assessment of corroded pipeline strength and operability. Int. J. Press. Vessel. Pip. 2019, 171, 60–68. [Google Scholar] [CrossRef]
- Syed, Z.; Lawryshyn, Y. Risk analysis of an underground gas storage facility using a physics-based system performance model and Monte Carlo simulation. Reliab. Eng. Syst. Saf. 2020, 199, 106792. [Google Scholar] [CrossRef]
- Tee, K.F.; Khan, L.R.; Li, H. Application of subset simulation in reliability estimation of underground pipelines. Reliab. Eng. Syst. Saf. 2014, 130, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Y.; Kennedy, D. Reliability analysis of subsea pipelines under spatially varying ground motions by using subset simulation. Reliab. Eng. Syst. Saf. 2018, 172, 74–83. [Google Scholar] [CrossRef]
- Seidenberger, K.; Wilhelm, F.; Schmitt, T.; Lehnert, W.; Scholta, J. Estimation of water distribution and degradation mechanisms in polymer electrolyte membrane fuel cell gas diffusion layers using a 3D Monte Carlo model. J. Power Sources 2011, 196, 5317–5324. [Google Scholar] [CrossRef]
- Zennaro, F.M.; Ivanovska, M.; Jøsang, A. An empirical evaluation of the approximation of subjective logic operators using Monte Carlo simulations. Int. J. Approx. Reason. 2019, 111, 56–77. [Google Scholar] [CrossRef] [Green Version]
- Vinu, R.; Levine, S.E.; Wang, L.; Broadbelt, L.J. Detailed mechanistic modeling of poly(styrene peroxide) pyrolysis using kinetic Monte Carlo simulation. Chem. Eng. Sci. 2012, 69, 456–471. [Google Scholar] [CrossRef]
- Makki, H.; Adema, K.N.S.; Peters, E.A.J.F.; Laven, J.; Van Der Ven, L.G.J.; Van Benthem, R.A.T.M.; De With, G. A simulation approach to study photo-degradation processes of polymeric coatings. Polym. Degrad. Stab. 2014, 105, 68–79. [Google Scholar] [CrossRef]
Material | Test Temp. (°C) | Tg (°C) | l (µm) | D × 1013 (m2/s) | Ref. |
---|---|---|---|---|---|
DGEBA/DBP | 20 | 120 | 1500 | 1.77 a | [62] |
40 | 120 | 1500 | 11.4 a | [62] | |
DGEBA + mPDA | 45 | 173 | 1150 | 3.35 | [37,38] |
60 | 173 | 1150 | 7.93 | [37,38] | |
EPON 828RS | 22 | 80 | ~245 | 0.53 | [63] |
60 | 80 | ~245 | 13.6 | [63] | |
FBE | 60 | ~110 | 500 | 3.00 | [27] |
DER332 (Semirigid 80%) | 35 | 146 | 300 | 3.41 | [42] |
70 | 146 | 300 | 13.5 | [42] | |
DER332 (Flexible 100%) | 35 | 113 | 300 | 1.61 | [42] |
70 | 113 | 300 | 14.4 | [42] |
Material | Test Temp. | RH | Tg | l | P/l × 109 | P × 1013 | Ref. |
---|---|---|---|---|---|---|---|
(°C) | f/p (%) | (°C) | (µm) | (mol/m2−s−Pa) | (mol/m−s−Pa) | ||
Liquid epoxy a | 38 | 100/90 | 91 | 30 | 3.3 | - | [73] |
DER-SAA-1.0 | 37.8 | 100/0 | 158 | 100 | - | ~7 | [72] |
Epon828/A2049 | 65 | 100/0 | 150 | 78 | - | 2.6 | [35] |
Epon828/D230 | 65 | 100/0 | 150 | 83 | - | 3.8 | [35] |
Gas | Molecular Weight M (g/mol) | Critical Temperature a Tc (K) | Kinetic Diameter b | Condensability a |
---|---|---|---|---|
H2O | 18.015 | 647.3 | 2.65 | 809.1 |
O2 | 31.999 | 154.6 | 3.46 | 106.7 |
CO2 | 44.010 | 304.1 | 3.30 | 195.2 |
H2 | 2.016 | 32.9 | 2.89 | 59.7 |
N2 | 28.013 | 126.2 | 3.64 | 71.4 |
CH4 | 16.043 | 190.4 | 3.80 | 148.6 |
Ion | Crystal Radius (Å) | Hydrated Radius (Å) | |
---|---|---|---|
Iron (II) | Fe2+ | 0.75 | 4.28 |
Iron (III) | Fe3+ | 0.60 | 4.57 |
Magnesium | Mg2+ | 0.65 | 4.28 |
Sodium | Na+ | 0.95 | 3.58 |
Calcium | Ca2+ | 0.99 | 4.12 |
Potassium | K+ | 1.33 | 3.31 |
Ammonium | NH4+ | 1.48 | 3.31 |
Chloride | Cl− | 1.81 | 3.32 |
Nitrate | NO3− | 2.64 | 3.35 |
Carbonate | CO32− | 2.66 | 3.94 |
Sulfate | SO42− | 2.90 | 3.79 |
Salt | Formula Weight (g/moles) | Solubility (g/100 mL aq.) | Moles Ion | Total Ions (Moles) | Rank |
---|---|---|---|---|---|
FeCl3 | 162.21 | 91.8 a | 0.5659 | 2.264 | 1 |
MgCl2 | 95.23 | 54.6 b | 0.5733 | 1.720 | 2 |
(NH4)2SO4 | 132.14 | 75.4 a | 0.5706 | 1.711 | 3 |
FeCl2 | 126.75 | 62.5 b | 0.4930 | 1.479 | 4 |
NaCl | 58.45 | 35.9 a | 0.6142 | 1.228 | 5 |
CaCl2·6H2O | 219.07 | 74.5 b | 0.3400 | 1.020 | 6 |
KCl | 74.55 | 34.2 b | 0.4587 | 0.9175 | 7 |
Na2SO4 | 142.04 | 19.5 b | 0.1372 | 0.4118 | 8 |
MgSO4·6H2O | 228.45 | 44.5 a | 0.1947 | 0.3895 | 9 |
FeSO4·7H2O | 278.08 | 48.0 b | 0.1726 | 0.3452 | 10 |
Salt | 0 °C | 10 °C | 20 °C | 30 °C | 40 °C | 50 °C | 60 °C | 70 °C | 80 °C | 90 °C | 100 °C |
---|---|---|---|---|---|---|---|---|---|---|---|
FeCl3 a | 74.4 | 81.9 | 91.8 | - | - | 315.1 | - | - | 525.8 | - | 535.7 |
MgCl2 b | 59.2 | 53.6 | 54.6 | 55.8 | 57.5 | - | 61.0 | - | 66.1 | 69.5 | 73.3 |
(NH4)2SO4 a | 70.6 | 73 | 75.4 | 78.0 | 81.0 | - | 88.0 | - | 95.3 | - | 103.3 |
FeCl2 b | 49.7 | 59.0 | 62.5 | 66.7 | 70 | - | 78.3 | - | 88.7 | 92.3 | 94.9 |
NaCl a | 35.7 | 35.7 | 35.9 | 36.1 | 36.4 | 36.7 | 37.0 | 37.5 | 37.9 | 38.5 | 39.0 |
CaCl2·6H2O b | 59.5 | 64.7 | 74.5 | 100 | 128 | - | 137 | - | 147 | 154 | 159 |
KCl b | 28 | 31.2 | 34.2 | 37.2 | 40.1 | - | 45.8 | - | 51.3 | 53.9 | 56.3 |
Na2SO4 b | 4.9 | 9.1 | 19.5 | 40.8 | 48.8 | - | 45.3 | - | 43.7 | 42.7 | 42.5 |
MgSO4·6H2O a | 40.8 | 42.2 | 44.5 | 45.3 | - | 50.4 | 53.5 | 59.5 | 64.2 | 69.0 | 74.0 |
FeSO4·7H2O b | 28.8 | 40.0 | 48.0 | 60.0 | 73.3 | - | 100.7 | - | 79.9 | 68.3 | 57.8 |
Material | Temperature | P × 1016 | D × 1011 | S × 105 | Ref. |
---|---|---|---|---|---|
(°C) | (mol/m−s−Pa) | (m2/s) | (mol/m3−Pa) | ||
H2O | |||||
HDPE (0.938 g/cm3) | 23 | 83.7 | - | - | [40] |
HDPE (0.96 g/cm3) | 25 | 40 | - | - | [203] |
O2 | |||||
HDPE | 23 | 2.2 | - | - | [41] |
HDPE (0.945 g/cm3) | 25 | 3.39 | 1.96 | 1.76 | [204] |
HDPE (0.964 g/cm3) | 25 | 1.33 | 1.70 | 0.80 | [205] |
40 | 2.62 | 3.46 | 0.78 | [205] | |
60 | 5.89 | 8.10 | 0.75 | [205] | |
HDPE | 30 | 6.53 | 2.63 | - | [196] |
40 | 14.6 | 4.91 | - | [196] | |
60 | 33.3 | 10.3 | - | [196] | |
CO2 | |||||
HDPE | 23 | 6.01 | - | - | [41] |
HDPE (0.945 g/cm3) | 25 | 10.4 | 1.48 | 9.64 | [204] |
HDPE (0.964 g/cm3) | 25 | 1.2 | 1.20 | 0.98 | [205] |
40 | 2.14 | 2.39 | 0.88 | [205] | |
60 | 4.29 | 5.43 | 0.88 | [205] | |
HDPE | 30 | 35.5 | 2.16 | - | [196] |
40 | 52.9 | 3.42 | - | [196] | |
60 | 105 | 6.35 | - | [196] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zargarnezhad, H.; Asselin, E.; Wong, D.; Lam, C.N.C. A Critical Review of the Time-Dependent Performance of Polymeric Pipeline Coatings: Focus on Hydration of Epoxy-Based Coatings. Polymers 2021, 13, 1517. https://doi.org/10.3390/polym13091517
Zargarnezhad H, Asselin E, Wong D, Lam CNC. A Critical Review of the Time-Dependent Performance of Polymeric Pipeline Coatings: Focus on Hydration of Epoxy-Based Coatings. Polymers. 2021; 13(9):1517. https://doi.org/10.3390/polym13091517
Chicago/Turabian StyleZargarnezhad, Hossein, Edouard Asselin, Dennis Wong, and C. N. Catherine Lam. 2021. "A Critical Review of the Time-Dependent Performance of Polymeric Pipeline Coatings: Focus on Hydration of Epoxy-Based Coatings" Polymers 13, no. 9: 1517. https://doi.org/10.3390/polym13091517
APA StyleZargarnezhad, H., Asselin, E., Wong, D., & Lam, C. N. C. (2021). A Critical Review of the Time-Dependent Performance of Polymeric Pipeline Coatings: Focus on Hydration of Epoxy-Based Coatings. Polymers, 13(9), 1517. https://doi.org/10.3390/polym13091517