Dual Graded Lattice Structures: Generation Framework and Mechanical Properties Characterization
Abstract
:1. Introduction
2. Dual Grading Generation Algorithm
- Inputting of computer graphics parameters (Process I)
- Inputting of DGLS GUI parameters (Process II)
- Performing of lattice structure (Process III)
- Performing of shell operations (Process IV)
- Exporting final part (Process V)
2.1. Development Environment
2.2. DGLS Input Parameters
2.3. Lattice Structure Operations
2.4. Shell Operations and Part Finishing
3. Case Studies
4. Dual Grading Experimental Investigation
4.1. Lattice Structure Design
4.2. Specimen Manufacturing
4.3. Compression Test and Digital Image Correlation
4.4. Results
4.4.1. Mechanical Properties
4.4.2. Deformation Behavior
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bose, S.; Bandyopadhyay, A. Additive Manufacturing; CRC Press: Boca Raton, FL, USA, 2019; pp. 451–461. [Google Scholar]
- Aguilera, A.F.E.; Nagarajan, B.; Fleck, B.A.; Qureshi, A.J. Ferromagnetic particle structuring in material jetting—Manufacturing control system and software development. Procedia Manuf. 2019, 34, 545–551. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies; Springer: New York, NY, USA, 2015; ISBN 978-1-4939-2113-3. [Google Scholar]
- Hertafeld, E.; Zhang, C.; Jin, Z.; Jakub, A.; Russell, K.; Lakehal, Y.; Andreyeva, K.; Bangalore, S.N.; Mezquita, J.; Blutinger, J.; et al. Multi-material three-dimensional food printing with simultaneous infrared cooking. 3D Print. Addit. Manuf. 2019, 6, 13–19. [Google Scholar] [CrossRef]
- Singhal, T.; Khare, A.; Gupta, N.; Gandhi, T.K. 3D-printed sole with variable density using foot plantar pressure measurements. In Proceedings of the 2018 IEEE 8th International Advance Computing Conference (IACC), Greater Noida, India, 14–15 December 2018; pp. 136–141. [Google Scholar]
- Omiyale, B.O.; Farayibi, P.K. Additive manufacturing in the oil and gas industries. Analecta Tech. Szeged. 2020, 14, 9–18. [Google Scholar] [CrossRef]
- Paolini, A.; Kollmannsberger, S.; Rank, E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit. Manuf. 2019, 30, 100894. [Google Scholar] [CrossRef]
- Rupal, B.S.; Anwer, N.; Secanell, M.; Qureshi, A.J. Geometric tolerance and manufacturing assemblability estimation of metal additive manufacturing (AM) processes. Mater. Des. 2020, 194, 108842. [Google Scholar] [CrossRef]
- Rupal, B.S.; Mostafa, K.; Wang, Y.; Qureshi, A.J. A Reverse CAD approach for estimating geometric and mechanical behavior of fdm printed parts. Procedia Manuf. 2019, 34, 535–544. [Google Scholar] [CrossRef]
- Mostafa, K.; Qureshi, A.J.; Montemagno, C. Tolerance Control using subvoxel gray-scale DLP 3D printing. In ASME International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 58356, p. V002T02A035. [Google Scholar]
- Mostafa, K.G.; Arshad, M.; Ullah, A.; Nobes, D.S.; Qureshi, A.J. Concurrent Modelling and experimental investigation of material properties and geometries produced by projection microstereolithography. Polymers 2020, 12, 506. [Google Scholar] [CrossRef] [Green Version]
- Blanco, I. The use of composite materials in 3D printing. J. Compos. Sci. 2020, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Gibson, I. The changing face of additive manufacturing. J. Manuf. Technol. Manag. 2017, 28, 10–17. [Google Scholar] [CrossRef]
- Helou, M.; Kara, S. Design, analysis and manufacturing of lattice structures: An overview. Int. J. Comput. Integr. Manuf. 2017, 31, 243–261. [Google Scholar] [CrossRef]
- Tosto, C.; Saitta, L.; Pergolizzi, E.; Blanco, I.; Celano, G.; Cicala, G. Methods for the Characterization of polyetherimide based materials processed by fused deposition modelling. Appl. Sci. 2020, 10, 3195. [Google Scholar] [CrossRef]
- Cicala, G.; Giordano, D.; Tosto, C.; Filippone, G.; Recca, A.; Blanco, I. Polylactide (PLA) Filaments a biobased solution for additive manufacturing: Correlating rheology and thermomechanical properties with printing quality. Materials 2018, 11, 1191. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, D.; Elbestawi, M.A. Lattice structures and functionally graded materials applications in additive manufacturing of orthopedic implants: A Review. J. Manuf. Mater. Process. 2017, 1, 13. [Google Scholar] [CrossRef]
- Aremu, A.; Brennan-Craddock, J.; Panesar, A.; Ashcroft, I.; Hague, R.; Wildman, R.; Tuck, C. A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing. Addit. Manuf. 2017, 13, 1–13. [Google Scholar] [CrossRef]
- Feng, J.; Fu, J.; Shang, C.; Lin, Z.; Niu, X.; Li, B. Efficient generation strategy for hierarchical porous scaffolds with freeform external geometries. Addit. Manuf. 2020, 31, 100943. [Google Scholar] [CrossRef]
- Yang, C.; Xu, K.; Xie, S. Comparative study on the uniaxial behaviour of topology-optimised and crystal-inspired lattice materials. Metals 2020, 10, 491. [Google Scholar] [CrossRef] [Green Version]
- Bonatti, C.; Mohr, D. Mechanical performance of additively-manufactured anisotropic and isotropic smooth shell-lattice materials: Simulations & experiments. J. Mech. Phys. Solids 2019, 122, 1–26. [Google Scholar] [CrossRef]
- Nazir, A.; Abate, K.M.; Kumar, A.; Jeng, J.-Y. A state-of-the-art review on types, design, optimization, and additive manufacturing of cellular structures. Int. J. Adv. Manuf. Technol. 2019, 104, 3489–3510. [Google Scholar] [CrossRef]
- Kumar, S.; Tan, S.; Zheng, L.; Kochmann, D.M. Inverse-designed spinodoid metamaterials. NPJ Comput. Mater. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Wu, J.; Aage, N.; Westermann, R.; Sigmund, O. Infill optimization for additive manufacturing—Approaching bone-like porous structures. IEEE Trans. Vis. Comput. Graph. 2018, 24, 1127–1140. [Google Scholar] [CrossRef] [Green Version]
- Rana, U.A.; Koon, T.W.; Mostafa, K.; Baqai, A.A.; Qureshi, A.J. Characterization of cuttlebone for adaptive infills. In Proceedings of the 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), Prague, Czech Republic, 22–25 July 2017; pp. 591–595. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, Y.M.; Wu, X.; Wang, Z.; Li, Q.; Zhou, S. On hybrid cellular materials based on triply periodic minimal surfaces with extreme mechanical properties. Mater. Des. 2019, 183, 108109. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, X.; Wang, W.; Zhong, X.; Han, F. Compressive property of Al-based auxetic lattice structures fabricated by 3-D printing combined with investment casting. Mater. Sci. Eng. A 2018, 722, 255–262. [Google Scholar] [CrossRef]
- Liu, J.; Gaynor, A.T.; Chen, S.; Kang, Z.; Suresh, K.; Takezawa, A.; Li, L.; Kato, J.; Tang, J.; Wang, C.C.L.; et al. Current and future trends in topology optimization for additive manufacturing. Struct. Multidiscip. Optim. 2018, 57, 2457–2483. [Google Scholar] [CrossRef] [Green Version]
- Piper, S. From the Lab: Auxetic Smart Structures—PIPER3DP. Available online: http://www.piper3dp.com/blogs/from-the-lab-auxetic-smart-structures/ (accessed on 19 November 2020).
- Rahmani, R.; Antonov, M.; Kollo, L.; Holovenko, Y.; Prashanth, K.G. Mechanical behavior of Ti6Al4V scaffolds filled with CaSiO3 for implant applications. Appl. Sci. 2019, 9, 3844. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Wen, P.; Guo, H.; Xia, D.; Zheng, Y.; Jauer, L.; Poprawe, R.; Voshage, M.; Schleifenbaum, J.H. Additive manufacturing of biodegradable metals: Current research status and future perspectives. Acta Biomater. 2019, 98, 3–22. [Google Scholar] [CrossRef]
- Zadpoor, A.A. Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater. 2019, 85, 41–59. [Google Scholar] [CrossRef]
- Espin-Lopez, P.; Pasian, M. Compact 3D-printed variable-infill antenna for snow cover monitoring. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 2016, 65, 737–760. [Google Scholar] [CrossRef] [Green Version]
- Dumas, M.; Terriault, P.; Brailovski, V. Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials. Mater. Des. 2017, 121, 383–392. [Google Scholar] [CrossRef]
- De Aquino, D.A.; Maskery, I.; Longhitano, G.A.; Jardini, A.L.; Del Conte, E.G. Investigation of load direction on the compressive strength of additively manufactured triply periodic minimal surface scaffolds. Int. J. Adv. Manuf. Technol. 2020, 109, 771–779. [Google Scholar] [CrossRef]
- Cutolo, A.; Engelen, B.; Desmet, W.; Van Hooreweder, B. Mechanical properties of diamond lattice Ti–6Al–4V structures produced by laser powder bed fusion: On the effect of the load direction. J. Mech. Behav. Biomed. Mater. 2020, 104, 103656. [Google Scholar] [CrossRef]
- Liu, L.; Kamm, P.; García-Moreno, F.; Banhart, J.; Pasini, D. Elastic and failure response of imperfect three-dimensional metallic lattices: The role of geometric defects induced by Selective Laser Melting. J. Mech. Phys. Solids 2017, 107, 160–184. [Google Scholar] [CrossRef]
- Maconachie, T.; Leary, M.; Lozanovski, B.; Zhang, X.; Qian, M.; Faruque, O.; Brandt, M. SLM lattice structures: Properties, performance, applications and challenges. Mater. Des. 2019, 183, 108137. [Google Scholar] [CrossRef]
- Abou-Ali, A.M.; Al-Ketan, O.; Lee, D.-W.; Rowshan, R.; Abu Al-Rub, R.K. Mechanical behavior of polymeric selective laser sintered ligament and sheet based lattices of triply periodic minimal surface architectures. Mater. Des. 2020, 196, 109100. [Google Scholar] [CrossRef]
- Nagesha, B.; Dhinakaran, V.; Shree, M.V.; Kumar, K.M.; Chalawadi, D.; Sathish, T. Review on characterization and impacts of the lattice structure in additive manufacturing. Mater. Today Proc. 2020, 21, 916–919. [Google Scholar] [CrossRef]
- Tao, W.; Leu, M.C. Design of lattice structure for additive manufacturing. In Proceedings of the 2016 International Symposium on Flexible Automation (ISFA), Cleveland, OH, USA, 1–3 August 2016; pp. 325–332. [Google Scholar] [CrossRef]
- Du Plessis, A.; Yadroitsava, I.; Yadroitsev, I.; Le Roux, S.; Blaine, D. Numerical comparison of lattice unit cell designs for medical implants by additive manufacturing. Virtual Phys. Prototyp. 2018, 13, 266–281. [Google Scholar] [CrossRef]
- Marschall, D.; Rippl, H.; Ehrhart, F.; Schagerl, M. Boundary conformal design of laser sintered sandwich cores and simulation of graded lattice cells using a forward homogenization approach. Mater. Des. 2020, 190, 108539. [Google Scholar] [CrossRef]
- Teimouri, M.; Asgari, M. Mechanical performance of additively manufactured uniform and graded porous structures based on topology-optimized unit cells. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, 1–26. [Google Scholar] [CrossRef]
- Maskery, I.; Aboulkhair, N.; Aremu, A.; Tuck, C.; Ashcroft, I. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit. Manuf. 2017, 16, 24–29. [Google Scholar] [CrossRef]
- Kumar, A.; Collini, L.; Daurel, A.; Jeng, J.-Y. Design and additive manufacturing of closed cells from supportless lattice structure. Addit. Manuf. 2020, 33, 101168. [Google Scholar] [CrossRef]
- Yang, L.; Han, C.; Wu, H.; Hao, L.; Wei, Q.; Yan, C.; Shi, Y. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion. J. Mech. Behav. Biomed. Mater. 2020, 109, 103843. [Google Scholar] [CrossRef]
- Cheng, L.; Liang, X.; Belski, E.; Wang, X.; Sietins, J.M.; Ludwick, S.; To, A.C. Natural frequency optimization of variable-density additive manufactured lattice structure: Theory and experimental Validation. J. Manuf. Sci. Eng. 2018, 140, 1–16. [Google Scholar] [CrossRef]
- Vantyghem, G.; De Corte, W.; Steeman, M.; Boel, V. Density-based topology optimization for {3D}-printable building structures. Struct. Multidiscip. Optim. 2019, 60, 2391–2403. [Google Scholar] [CrossRef]
- Plocher, J.; Panesar, A. Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures. Addit. Manuf. 2020, 33, 101171. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Lee, D.-W.; Rowshan, R.; Abu Al-Rub, R.K. Functionally graded and multi-morphology sheet TPMS lattices: Design, manufacturing, and mechanical properties. J. Mech. Behav. Biomed. Mater. 2020, 102, 103520. [Google Scholar] [CrossRef]
- Singh, G.; Pandey, P.M. Uniform and graded copper open cell ordered foams fabricated by rapid manufacturing: Surface morphology, mechanical properties and energy absorption capacity. Mater. Sci. Eng. A 2019, 761, 138035. [Google Scholar] [CrossRef]
- Maskery, I.; Aremu, A.; Parry, L.; Wildman, R.; Tuck, C.; Ashcroft, I. Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Mater. Des. 2018, 155, 220–232. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Abu Al-Rub, R.K. MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Mater. Des. Process. Commun. 2020, e205. [Google Scholar] [CrossRef]
- Dong, G.; Tang, Y.; Zhao, Y.F. A Survey of modeling of lattice structures fabricated by additive manufacturing. J. Mech. Des. 2017, 139, 100906. [Google Scholar] [CrossRef]
- Montoya-Zapata, D.; Moreno, A.; Pareja-Corcho, J.; Posada, J.; Ruiz-Salguero, O. Density-sensitive implicit functions using sub-voxel sampling in additive manufacturing. Metals 2019, 9, 1293. [Google Scholar] [CrossRef] [Green Version]
- Chougrani, L.; Pernot, J.-P.; Véron, P.; Abed, S. Lattice structure lightweight triangulation for additive manufacturing. Comput. Des. 2017, 90, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Xue, D.; Zhu, Y.; Guo, X. Generation of smoothly-varying infill configurations from a continuous menu of cell patterns and the asymptotic analysis of its mechanical behaviour. Comput. Methods Appl. Mech. Eng. 2020, 366, 113037. [Google Scholar] [CrossRef] [Green Version]
- Autodesk NETFABB. Available online: https://www.autodesk.com/products/netfabb/ (accessed on 25 April 2021).
- Altair. Available online: https://www.altair.com/additive-manufacturing/ (accessed on 25 April 2021).
- Ansys Spaceclaim. Available online: https://www.ansys.com/products/3d-design/ansys-spaceclaim (accessed on 25 April 2021).
- Materialize 3-Matic. Available online: https://www.materialise.com/en/software/3-matic (accessed on 25 April 2021).
- ParaMatters. Available online: https://paramatters.com/ (accessed on 25 April 2021).
- Garber, T.; Goldenberg, J.; Libai, B.; Muller, E. Design and analysis of a mask projection micro- stereolithography system. Mark. Sci. 2004, 23, 419–428. [Google Scholar] [CrossRef]
- Jacobson, A.; Panozzo, D. A Simple C++ Geometry Processing Library. Available online: https://github.com/libigl/libigl (accessed on 15 December 2020).
- Fabri, A.; Pion, S. CGAL—The computational geometry algorithms library: Demo paper. In Proceedings of the 17th SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 4–6 November 2009; ACM Press: New York, NY, USA, 2009; pp. 538–539. [Google Scholar]
- G-Truc Creation OpenGL Mathematics (GLM). Available online: https://glm.g-truc.net (accessed on 15 January 2020).
- Bernstein, G. Cork Boolean Library. Available online: https://github.com/gilbo/cork (accessed on 15 December 2020).
- Guennebaud, G.; Jacob, B. Eigen v3: Linear algebra library. Available online: http://eigen.tuxfamily.org (accessed on 15 December 2020).
- Winkle, L. Van Tiny recursive descent expression parser, compiler, and evaluation engine for math expressions. Available online: https://codeplea.com/tinyexpr (accessed on 15 December 2020).
- Koc, B.; Lee, Y.-S. Non-uniform offsetting and hollowing objects by using biarcs fitting for rapid prototyping processes. Comput. Ind. 2002, 47, 1–23. [Google Scholar] [CrossRef]
- Rigid Cellular. Plastics—Determination of Compression Properties; ISO 844:2014(E); International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- Garcia, E.A.; Ayranci, C.; Qureshi, A.J. Material property-manufacturing process optimization for form 2 vat-photo polymerization 3D Printers. J. Manuf. Mater. Process. 2020, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Plastics—Determination of Compressive Properties; ISO 604:2002(E); International Organization for Standardization: Geneva, Switzerland, 2002.
- Mechanical Testing of Metals—Ductility Testing—Compression Test for Porous and Cellular Metals, 1st ed.; ISO 13314:2011(E); International Organization for Standardization: Geneva, Switzerland, 2011.
- Mostafa, K.G.; Qureshi, A.J. Dual Graded Lattice Structures Framework: STL Files; Mendeley Data; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
Design Configurations | Modulus of Elasticity (MPa) | Compressive Strength (MPa) | Compressive Strain (%) | Absorbed Energy (MJ/m3) | Volume Ratio | |
---|---|---|---|---|---|---|
LD | SS | 10.50 ± 1.90 | 0.40 ± 0.05 | 10 | 0.12 ± 0.08 | 0.36 |
LS | 18.70 ± 3.40 | 0.80 ± 0.03 | 8 | 0.20 ± 0.12 | 0.36 | |
HD | SS | 330.30 ± 22.30 | 11.70 ± 1.30 | 10 | 3.90 ± 0.20 | 0.73 |
LS | 369.60 ± 28.70 | 13.50 ± 1.60 | 5.5 | 1.50 ± 0.13 | 0.71 |
Design Configurations | Modulus of Elasticity (MPa) | Compressive Strength (MPa) | Compressive Strain (%) | Absorbed Energy (MJ/m3) | Volume Ratio | |
---|---|---|---|---|---|---|
D1 | S1 | 51.60 ± 7.80 | 2.30 ± 0.60 | 10 | 0.64 ± 0.13 | 0.53 |
S2 | 86.10 ± 14.70 | 3.10 ± 0.10 | 8 | 0.73 ± 0.12 | 0.53 | |
S3 | 81.50 ± 9.60 | 3.00 ± 0.70 | 6 | 0.27 ± 0.08 | 0.53 | |
S4 | 52.90 ± 11.10 | 3.10 ± 0.80 | 10 | 0.76 ± 0.13 | 0.53 | |
S5 | 67.50 ± 8.60 | 3.10 ± 0.06 | 10 | 0.80 ± 0.09 | 0.53 | |
D2 | S1 | 139.30 ± 12.40 | 5.50 ± 0.30 | 10 | 1.55 ± 0.30 | 0.60 |
S2 | 169.20 ± 14.70 | 8.10 ± 0.40 | 10 | 2.54 ± 0.27 | 0.60 | |
S3 | 139.70 ± 12.20 | 5.70 ± 0.60 | 5 | 1.00 ± 0.12 | 0.55 | |
S4 | 150.00 ± 15.80 | 7.80 ± 0.30 | 10 | 2.27 ± 0.26 | 0.60 | |
S5 | 138.50 ± 13.60 | 5.90 ± 1.30 | 10 | 1.52 ± 0.20 | 0.55 | |
D3 | S1 | 126.50 ± 7.90 | 4.70 ± 0.30 | 10 | 0.43 ± 0.17 | 0.55 |
S2 | 131.80 ± 6.80 | 4.70 ± 0.80 | 6 | 0.23 ± 0.14 | 0.55 | |
S3 | 199.60 ± 20.00 | 5.80 ± 1.10 | 5 | 0.47 ± 0.10 | 0.60 | |
S4 | 121.20 ± 8.30 | 4.50 ± 0.70 | 7 | 0.70 ± 0.13 | 0.55 | |
S5 | 133.50 ± 11.80 | 5.20 ± 0.50 | 10 | 1.30 ± 0.20 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mostafa, K.G.; Momesso, G.A.; Li, X.; Nobes, D.S.; Qureshi, A.J. Dual Graded Lattice Structures: Generation Framework and Mechanical Properties Characterization. Polymers 2021, 13, 1528. https://doi.org/10.3390/polym13091528
Mostafa KG, Momesso GA, Li X, Nobes DS, Qureshi AJ. Dual Graded Lattice Structures: Generation Framework and Mechanical Properties Characterization. Polymers. 2021; 13(9):1528. https://doi.org/10.3390/polym13091528
Chicago/Turabian StyleMostafa, Khaled G., Guilherme A. Momesso, Xiuhui Li, David S. Nobes, and Ahmed J. Qureshi. 2021. "Dual Graded Lattice Structures: Generation Framework and Mechanical Properties Characterization" Polymers 13, no. 9: 1528. https://doi.org/10.3390/polym13091528
APA StyleMostafa, K. G., Momesso, G. A., Li, X., Nobes, D. S., & Qureshi, A. J. (2021). Dual Graded Lattice Structures: Generation Framework and Mechanical Properties Characterization. Polymers, 13(9), 1528. https://doi.org/10.3390/polym13091528