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Abstract: Antimony(III) is a rare element whose chemical and toxicological properties bear a resem-
blance to those of arsenic. As a result, the presence of Sb(III) in water might have adverse effects on
human health and aquatic life. However, Sb(III) exists at very ultra-trace levels which may be difficult
for direct quantification. Therefore, there is a need to develop efficient and reliable selective extraction
and preconcentration of Sb(III) in water systems. Herein, a selective extraction and preconcentration
of trace Sb(III) from environmental samples was achieved using ultrasound assisted magnetic solid-
phase extraction (UA-MSPE) based on magnetic Sb(III) ion imprinted polymer-Fe3O4@SiO2@CNFs
nanocomposite as an adsorbent. The amount of antimony in samples was determined using induc-
tively coupled plasma optical emission spectrometry (ICP-OES). The UA-MSPE conditions were
investigated using fractional factorial design and response surface methodology based on central
composite design. The Sb(III)-IIP sorbent displayed excellent selectivity towards Sb(III) as compared
to NIIP adsorbent. Under optimised conditions, the enrichment factor, limit of detection (LOD)
and limit of quantification (LOQ) of UA-MSPE/ICP-OES for Sb(III) were 71.3, 0.13 µg L−1 and
0.44 µg L−1, respectively. The intra-day and inter-day precision expressed as relative standard devia-
tions (%RSDs, n = 10 and n = 5) were 2.4 and 4.7, respectively. The proposed analytical method was
applied in the determination of trace Sb(III) in environmental samples. Furthermore, the accuracy of
the method was evaluated using spiked recovery experiments and the percentage recoveries ranged
from 95–98.3%.

Keywords: ion imprinted polymers; antimony(III); magnetic solid-phase extraction; environment
matrices; Sb(III) IIP@Fe3O4@CNF@SiO2

1. Introduction

Antimony (Sb) is a toxic metalloid that exists at very ultra-trace levels in the envi-
ronment [1–3]. Inorganic compounds of Sb are said to be more toxic than other metal
compounds [4]. Human beings may be exposed to Sb by breathing air, drinking water and
eating food that is contaminated with Sb [5]. The toxicity of Sb depends on its chemical
species. For instance, Sb(III) is ten times more toxic than Sb (V) [6] and Sb(III) shows
high affinity towards red blood cells [5]. Antimony levels in the environment have been
elevated due to its rapid use in batteries, plastics, paints, alloys and semiconductors [7]. In
addition, Sb is used as a catalyst in the production of poly(ethylene terephthalate) (PET),
which is used in plastic bottles [8]. These PET bottles are used as packages for beverages
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and water [9,10]. As such, Sb is often detected in bottled water and beverages because of
leakage from PET through storage [11,12].

Due to the toxicity of Sb, there are numerous analytical techniques that have been used
for the determination of total and Sb species. These include inductively coupled plasma
mass spectrometry (ICP-MS) [13], graphite furnace atomic absorption spectrometry (GF-
AAS) [14] and inductively coupled plasma optical emission spectrometry (ICP-OES) [15],
etc. Due to low concentrations of Sb and complexity of sample matrices, sample preparation
is required prior to its determination [16]. Several researchers have developed various
sample preparation methods, which include solid phase extraction (SPE) [2], ultrasound-
assisted cloud point extraction (UA-CPE) [17], dispersive micro-solid phase extraction
(DSPME) [18] and magnetic solid phase extraction (MSPE) [15], among others.

Among these methods, solid phase-based procedures have attracted a lot of attention.
This is due to their attractive features such as flexibility, simplicity and choice of adsorbent.
Therefore, in order to successfully and selectively extract Sb in various matrices, the choice
of suitable adsorbent is required [19]. As a result, several sorbents have been used for
extraction and preconcentration of Sb. These include Mg-Fe-OH- layered double hydrox-
ide [20], zirconium oxide-carbon nanofibres [21], reduced graphene oxides/Mn3O4 [22],
magnetic nickel ferrite (NiFe2O4) nanoparticles [23] and ion imprinted polymers (IIPs) [19],
to name a few. Ion imprinted polymers are one of the promising sorbents that have been
developed for selective extraction and preconcentration of trace metal ions [24,25].

Over the past years, IIPs have attracted attention for the determination, speciation
and removal of metal ions due to their advantages, such as simplicity, high adsorption
capacity, high selectivity, low costs, reusability and high extractions efficiency [26]. The
general procedure for the synthesis of IIPs involves the formation of a metal ion (template)
complex with a suitable ligand followed by copolymerisation in the presence of cross-linker,
initiator and a monomer where a polymer matrix with recognition sites is formed [27].
Various researchers have reported they explored the use of IIPs as adsorbents for the
removal and speciation of toxic trace metals, such as Hg(II) [28], Pb(II) [29], Co(II) [30],
Pb(II) [31], As(II) [32], Sb(III) [19,26] and Cd(II) [33], among others. In addition, there
are also reports on the use of novel molecular imprinted electrochemical sensor for the
detection of different pollutants [34–38]. These studies have shown that the combination
of molecularly imprinted polymer (MIP) or IIP with other nanomaterials, such as carbon
materials, has attracted great consideration due to the synergetic effect which enables
a high mass transfer rate [34–36,38]. In addition, these nanomaterials serve as excellent
substrate in surface imprinting processes and some of these materials (e.g., magnetic
nanoparticles) provide better separability and reusability. According to the literature search,
when compared to other toxic trace metals, few studies have explored the use of IIPs for
selective extraction, preconcentration or removal of Sb [6,19,27,39–42]. Notwithstanding
the fact that there are already existing reports on the application of IIPs for the analysis of
Sb in water, there is a need for continuously monitoring the amount of Sb in these matrices.

Therefore, the aim of this study was to prepare Sb(III)-IIP by surface imprinting tech-
nique, using styrene as a monomer and Fe3O4@CNFs@SiO2 nanocomposite as a supporting
substrate. Carbon nanofibres were chosen because of their attractive properties, such
as large surface area, strong interaction with various substances as well as high affin-
ity towards metals. However, the major drawback of using CNFs as support for IIPs is
separability and regeneration. Therefore, anchoring of magnetic nanomaterials in CNFs
matrix allows better separation and reusability. Lastly, incorporating mesoporous silica to
magnetic CNFs leads to an excellent IIP carrier with large surface areas and tuneable pore
sizes. The Sb(III)-IIP-Fe3O4@CNFs@SiO2 was characterised using X-ray diffraction (XRD),
Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), en-
ergy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM).
The prepared Sb(III)-IIP-Fe3O4@CNFs@SiO2 was used as adsorbent for selective extraction
and preconcentration of Sb(III) in surface water samples prior to ICP-OES analysis. Factors
affecting the preconcentration process were optimised using a multivariate approach.
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2. Materials and Methods
2.1. Reagents and Materials

Analytical grade chemicals and ultrapure water were employed during the exper-
iments. Antimony single standard (1000 mg L−1), ammonium pyrrolidine dithiocarba-
mate (APDC), iron (II) chloride tetrahydrate, carbon nanofibres (CNFs), hydrochloric acid,
iron (III) chloride hexahydrate, ethanol, ammonia (25%), tetraethyl orthosilicate (TEOS),
ethanol, 2-methoxy ethanol, antimony(III) chloride, styrene, ethylene glycol dimethacry-
late (EGDMA), chloroform, 1,1′-azobisisobutyronitrile (AIBN) and nitric acid (65%) were
obtained from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Synthesis of Fe3O4 Coated with CNFs

The synthesis of Fe3O4 coated with CNFs was conducted according to previous
studies [43]. To describe the method briefly, appropriate amounts of FeCl2 (2.50 g) and
FeCl3 (6.82 g) were dissolved in deionised water and 2 mL of HCl was added in the mixture
to facilitate the complete dissolution of the iron salts. About 2.5 g of CNFs were dispersed
in the solution prepared above under continuous stirring. To precipitate the final product,
about 250 mL of 1.5 mol L−1 NH3 was added (dropwise) to the mixture until the pH of the
solution ranged from 11–12. The mixture was placed on a heater stirrer and the temperature
was set at 80–90 ◦C. The mixture was stirred until the resultant black product has formed.
The mixture was cooled to ambient temperature and the Fe3O4@CNFs nanocomposite
was collected using external magnet. The Fe3O4@CNFs nanocomposite was washed with
ethanol–water (50:50) mixture and dried at 100 ◦C for 2 h.

2.3. Synthesis of Fe3O4@CNFs@SiO2 and Sb(III)-IIP-Fe3O4@SiO2@CNFs Nanocomposites

Synthesis of the Fe3O4@CNFs@SiO2 nanocomposite was carried according to previous
studies with minor adjustments [33]. Firstly, Fe3O4@CNFs (2.0 g) was dispersed in alcoholic
aqueous solution (45 mL of H2O and 100 mL of ethanol). The mixture was heated at 70 ◦C
and 4.5 mL of ammonium solution (25 wt. %) was added while stirring. The mixture was
further stirred continuously for 15 min. Ethanolic solution (50 mL) containing TEOS (8.25%
v/v) was added dropwise for 90 min and the mixture was stirred at 70 ◦C continuously
for 6 h. The final product was separated from the supernatant using external magnet. The
Fe3O4@CNFs@SiO2 nanocomposite was subsequently washed with ethanol (to remove
unreacted TEOS) followed by rinsing with distilled water and dried at 60 ◦C in an oven
for 12 h. The synthesis of Sb(III)-IIP was conducted according to [44] and the detailed
procedure is presented in Supplementary Information.

2.4. Ultrasonic-Assisted Magnetic Solid Phase Extraction (UA-MSPE) Procedure

The UA-MSPE method was performed according to [45]. The extraction procedure was
conducted as follows: 10–100 mg of Sb(III)-IIP-Fe3O4@SiO2@CNFs adsorbent was placed in
a centrifuge tube followed by the addition of 10 mL of sample solution at pH = 2, pH = 5.5,
pH = 9. The extraction and preconcentration steps were achieved by the dispersion of the
adsorbent in the sample via ultrasonication for 5–30 min. The adsorbent containing the
adsorbed analyte was separated from the aqueous solution by application of an external
magnet at the base of the centrifuge tube. The supernatant was filtered using 0.22 µm
PVDF membrane and the filtrate was analysed using inductively coupled plasma-optical
emission spectrometer (ICP-OES) (iCAP 6500 Duo, Thermo Scientific, Hemel Hempstead,
UK). The ICP-OES conditions are stated in Table S1.

2.5. Optimisation Strategy

The 26−2 fractional factorial design (FrFD) was used for the screening of the most
influential experimental factors affecting the extraction and preconcentration procedure.
These include elution time (ET), sample pH, eluent volume (EV), eluent concentration (EC),
sonication time (ST) and mass of adsorbent (MA). The independent and their levels are
shown in Table 1.
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Table 1. Lower and higher levels as well as central points of the investigated independent variables.

Parameters Lower Level (−) Central Point (0) Higher Level (+)

Adsorbent Mass (mg) 20 35 50
Elution time (min) 5 17.5 30

Eluent volume (mL) 7 8.5 10
Eluent concentration (M) 1 3 5

Sonication time (min) 5 22.5 40
pH 2 5.5 9

After the screening process using FrFD, the most influential parameters were found to
be MA and pH. These factors were optimised using response surface methodology (RSM)
based on central composite design (CCD).

2.6. Adsorption Experiments

The adsorption equilibrium experiments were carried out under optimised conditions.
Briefly, 56 mg of Sb(III)-IIP-Fe3O4@SiO2@CNFs and IIP-Fe3O4@SiO2@CNFs were added
into 30.0 mL of a synthetic sample that contains Sb(III) at initial concentrations ranging
from 2–10 mg/L. The samples were sonicated for 10 min at 25 ◦C and followed by external
magnet separation. The supernatant was filtered and analysed for residual Sb(III) using
ICP-OES. The amount of Sb(III) in the synthetic samples before adsorption and procedure
blanks were determined using ICP-OES. The analytical results obtained were processed
using Equation (1) to estimate adsorption capacity (qe, mg/g).

qe =
(C0 − Ce)V

m
(1)

where C0 and Ce are initial and equilibrium concentrations (mg/L) of Sb(III), V is the
volume of the sample (L) and m is the mass of the adsorbent (g).

2.7. Selectivity Experiments

The selectivity studies were performed by placing 56 mg of Sb-IIP and NIP into
100 mL sample bottle containing 30 mL of the sample containing Sb(III), Al(III), Cd(II),
Cu(II), Sn(IV) and Zn(II) at 10 mg/L (pH = 3). The samples were agitated using ultrasonic
bath for 10 min at 25 ◦C. The remaining concentrations of Al(III), Cd(II), Cu(II), Sb(III),
Sn(IV) and Zn(II) were determined using ICP-OES. Parameters such as distribution ratio
(D), selectivity coefficient and relative selectivity coefficient were calculated according to
Reference [20].

3. Results and Discussion
3.1. Characterisation
3.1.1. X-ray Powder Diffraction (XRD)

A PANalytical X’Pert Pro X-ray diffraction (XRD, PANalytical, Almelo, The Nether-
lands) was used to assess the crystalline structure of materials. Figure 1 displays the XRD
patterns for Fe3O4@CNFs, Fe3O4@SiO2@CNF, Sb(III) IIP-Fe3O4@SiO2@CNFs and NIP-
Fe3O4@SiO2@CNF. Figure 1a,b displays peaks at 2θ values of 26.5◦, 30.4◦, 32.7◦, 43.3◦, 53.8◦,
57.2◦ and 62.9◦, which are ascribed to Fe3O4 nanoparticle, confirming successful synthesis
and incorporation of the magnetic nanoparticles. Figure 1c,d shows the diffractograms for
Sb(III) IIP-Fe3O4@SiO2@CNFs and NIP-Fe3O4@SiO2@CNF and the peaks for the magnetic
composite were observed at 2θ values of 26.4, 30.3◦, 35.8◦, 43.2◦, 54.0◦, 57.2◦ and 63.0◦ with
reduced intensity. These results confirmed the loss of magnetic nanoparticles during the
polymerisation process.
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3.1.2. Fourier-Transform Infrared Spectroscopy (FTIR)

The structural properties of the prepared material were investigated using Perkin
Elmer spectrum 100 Fourier-transform infrared spectrometer (FTIR, Waltham, MA, USA).
(Figure 2). Figure 2a shows the spectrum of Fe3O4@CNFs and the peak at 604.5 cm−1

was assigned to the absorption of the Fe–O bond in Fe3O4. The peak at 1626 cm−1 was
assigned to the C–C stretching associated with the nanofibre surface defects [46]. The peak
at 3142 cm−1 was assigned to the –OH stretching of the CNFs. Figure 2b showed new peaks
at 756.4 and 1117 cm−1, which were assigned to Si–O vibration and bending vibration of the
Si–O–Si bond [47]. These findings confirmed the incorporation of SiO2 in nanocomposite
matrix. Figure 2c,d exhibited characteristic bands of the polymeric matrix showing the
presence of styrene–EGDMA polymers in the sample [48]. The peaks observed for the
IIP-Fe3O4@SiO2@CNFs and NIP-Fe3O4@SiO2@CNFs were: 2923.17 cm−1 aliphatic C–H;
1716.20 cm−1 for C=O; and 1157.40 and 1153.89 cm−1 for C–O, which is assigned to the
EDGMA ester group [48]. In Figure 2c, the C–S band of the APDC shifted from 595.99 (free
APDC, Figure 2d) to 632.40 cm−1 in IIP, which indicated the formation of complex between
Sb(III) and APDC [44].

3.1.3. Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy (SEM/EDS)

The morphological properties and elemental composition of the synthesised materials
were investigated using scanning electron microscopy (SEM, TESCAN VEGA 3 XMU, LMH
instrument, Tescan Company, Brno, Czech Republic)) coupled with energy dispersive X-ray
spectroscopy (EDS). Figure 3 presents the SEM images and respective EDS spectra for
(a) Fe3O4@SiO2@CNFs, (b) NIP-Fe3O4@SiO2@CNFs and (c) Sb(III) IIP-Fe3O4@SiO2@CNFs.
The SEM/EDS was used to confirm the morphological elemental changes of the nanocom-
posites. Figure 3a confirmed the incorporation of magnetic nanoparticles on the surface
of the carbon nanofibres. Moreover, the elemental analysis results of Fe3O4@SiO2@CNFs
nanocomposite confirmed the presence of expected elements including C, O, Si and Fe
in the ternary nanocomposite. Figure 3b,c reveals the growth of IIP on the surface of
Fe3O4@SiO2@CNFs nanocomposite. In addition, the presence of C, Fe, O, Si and S in
Figure 3b confirms that the surface imprinting was successful. Furthermore, the presence of
Sb in Figure 3c confirm that the Sb(III) IIP-Fe3O4@SiO2@CNFs was successfully synthesised.
The presence of Cl was from antimony chloride which was used during the synthesis of IIP.
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3.1.4. Transmission Electron Microscopy (TEM)

The transmission electron microscopy (TEM, JEM-2100, JEOL, Tokyo, Japan) was
used to investigate the nano structure and particle size of the adsorbents. Figure 4 Illus-
trates the TEM images of (A) Fe3O4@SiO2@CNFs, (B) NIP-Fe3O4@SiO2@CNFs and (C) IIP-
Fe3O4@SiO2@CNFs. Figure 4A reveals that spherical shape of Fe3O4@SiO2 nanocomposite
evenly dispersed in the surface of carbon nanofibres. Figure 4B,C shows the growth of the
polymer on the surface of Fe3O4@SiO2@CNFs nanocomposite.
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3.2. Optimisation Strategy

The fractional factorial design 26−2 (FrFD) was used for selection of the most influen-
tial experimental parameters (eluent concentration (EC), sonication time (ST), elution time
(ET), eluent volume (EV), mass of adsorbent (MA) and sample pH). The design matrix and
the analytical response are presented in Table S2. The data was processed using Statistica
version 13 software. The analysis of variance (ANOVA) was used to examine the signif-
icance of each independent factors. ANOVA results presented as Pareto chart (Figure 5)
was used to assess the importance of independent variables and their interactions [49].
The results obtained on the Pareto chart showed that MA and pH were significant at 95%
confidence level. This means that the two independent variables played a significant role
in the preconcentration of Sb(III). Therefore, further optimisation was required to give
optimum conditions for MA and pH.
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3.2.1. Response Surface Methodology

For further optimisation, response surface methodology (RSM) based on central com-
posite design (CCD) was used to evaluate the interaction between MA and pH. The CCD
matrix and respective analytical response are shown in Table S3. The 3D response surface
plot shows the analytical response against individual factors (Figure 6). As can be seen in
Figure 6, an enhanced analytical response (% recovery) at a pH value between 2 and 4 was
observed and, for the MA, maximum recoveries were achieved at a mass between 50 and
60 mg. Above pH 4, lower recoveries were observed, and this might be due to the reduced
interactions between the negatively charged analyte and positively charged adsorbent.

3.2.2. Estimation of Optimum Conditions Using Desirability Functions

In Figure 7, the desirability functions of 0.0, 0.5 and 1.0 were assigned to undesirable
(33.7%), middle (66.5%) and desirable (maximum recoveries, (99.3%), respectively. Herein,
the desirability score of 1.0 was chosen to estimate the desirable optimal parameters. There-
fore, based on the screening results and desirability score of 1.0, the optimum conditions,
were, 3.0, 56 mg, 3.0 mol L−1, 10 min, 20 min and 7.0 mL, for pH, MA, EC, ST, ET and
EV, respectively. These conditions were confirmed experimentally (in triplicates) and the
experimental recoveries (98.7 ± 1.2%) agreed with the RSM predicted value (99.3%) at 95%
confidence level.
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3.3. Scatchard Analysis, Adsorption Isotherms and Selectivity Studies
3.3.1. Scatchard Analysis

The theoretical maximum Sb(III) binding or adsorption capacity of IIP was also esti-
mated using Scatchard plot obtained according to Equation (1).

qe

Ce
=

qmax − qe

Kd
(2)

where qe (mg/g) is the adsorption or binding capacity at equilibrium, Ce is the residual
concentration of Sb(III) at equilibrium, Kd (mg/L) is the equilibrium dissociation constant
at binding sites and qmax (mg/g) is the maximum binding [32]. The values of Kd and qmax
were calculated from the slope and the intercept of the linear plot of qe/Ce versus qe [32].
According to the literature, Scatchard plot shape is correlated to the nature of the interaction
between the adsorbate and adsorbent [47,50]. For example, if the plot of qe/Ce versus qe
forms one straight line, this suggests that there is only one type of binding site on the
surface of the sorbent [31]. Furthermore, when the Scatchard plot displays an anomaly
from linearity (showing two linear plots in one set of data), the results suggest that the
adsorbent has more than one type of binding site. These binding sites can be categorised as
high-affinity (low Kd value) and low-affinity (high Kd value) binding sites [51,52]. Figure 8
shows the Scatchard plots of Sb(III)-IIP-Fe3O4@SiO2@CNFs and NIP-Fe3O4@SiO2@CNFs.
As seen in Figure 8A, the Scatchard plot for Sb(III)-IIP-Fe3O4@SiO2@CNFs was nonlinear
and it was divided into two linear sections that had two different slopes. As discussed
earlier, these observations suggest that IIP@Fe3O4@CNF@SiO2 had two types of binding
sites that have different affinities for the adsorption of Sb(III). On the contrary, the Scatchard
plot of NIP-Fe3O4@SiO2@CNFs (Figure 8B) fitted to one linear curve, suggesting that NIP
had only one type of binding site.

The slope and intercept of the fitted Scatchard plots were used to estimate the values
maximum adsorption capacities and equilibrium dissociation constants for Sb(III)-IIP and
NIP (Table 2). The qmax and Kd values from the higher affinity binding sites (Curve A-1)
were found to be 0.162 13.4 mg/g and mg/L, respectively. In the low affinity binding
sites (Curve A-2), the Kd and qmax values were 3.03 mg/L and 47.3 mg/g, respectively.
Furthermore, the R2 of curves A-1 and A-2, confirmed existence of two types of binding
sites in Sb(III)-IIP and lower R2 value (0.9215) for Curve A-2 suggested that the cavities
in this region were not specific to Sb(III) adsorption. On the other hand, the qmax and Kd
values for Sb(III)-IIP were 16.1 mg/g and 4.29 mg/L, respectively. As seen in Table 2, the
highest dissociation equilibrium constant was obtained when NIP-Fe3O4@SiO2@CNFs
was used as an absorbent. Overall, the trend of dissociation equilibrium constant in this
study was as follows: KdA-1 < KdA-2 < KdB. These findings further demonstrate that IIP-
Fe3O4@SiO2@CNFs had a higher affinity for Sb(III) than the NIP. Similar results have been
reported in the literature [50–52].

Table 2. Scatchard plot parameters.

Sb(III)-IIP NIP

Regression equation qe/Ce = −6.1852x + 82.7 (Curve A-1) qe/Ce = −0.2333 + 3.7493
R2 0.9981 0.9557

Kd (mg/L) 0.162 4.29
qmax (mg/g) 13.4 16.1

Regression equation (Curve A-2) qe/Ce = −0.2282x + 15.04
R2 0.9215

Kd (mg/L) 3.05
qmax (mg/g) 47.3
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3.3.2. Adsorption Isotherms

The adsorption of Sb(III) on IIP-Fe3O4@SiO2@CNFs and NIP-Fe3O4@SiO2@CNFs is
shown in Figure 9. The Sb(III) adsorption or binding capacity of both IIP-Fe3O4@SiO2@CNFs
and NIP-Fe3O4@SiO2@CNFs increased with increasing initial concentration until the satu-
ration point was achieved. The adsorption capacity of IIP-Fe3O4@SiO2@CNFs was found
to be higher than that of NIP-Fe3O4@SiO2@CNFs, suggesting that the imprinting played
a significant role in the formatting of cavities that are specific to Sb(III). Isotherm models
such as Langmuir and Freundlich were used to exam the adsorption behaviour of Sb(III)-
IIP-Fe3O4@SiO2@CNFs and NIP-Fe3O4@SiO2@CNFs) towards Sb(III). The linear equations
for the isotherm models and their constant parameters are presented in Table 3. The linear
plots for Langmuir (Ce/qe vs. Ce) and Freundlich (ln qe vs. ln Ce) models using IIP and
NIP are shown in Figures S1–S4. The isotherm constant values were estimated from the
slope and intercept of each plot (Table 3). The correlation of determination (R2) values
was used to select the model that best explains adsorption results. As seen, the data for
Sb(III)-IIP were best described by the Langmuir model (R2 = 0.9969) and the qmax value was
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47.4 mg g−1. Furthermore, the qmax obtained from the Langmuir isotherm model was in
agreement with the experimental adsorption capacity (46.7 mg g−1). These results suggest
that the adsorption process was dominated by a monolayer sorption on homogenous
adsorption or binding sites. The R2 (0.9806) of the Freundlich model revealed that there
was relative correlation, but Langmuir model explains the adsorption data better. Similarly,
adsorption data obtained using NIP-Fe3O4@SiO2@CNFs revealed that the Langmuir model
(0.9912) fitted the data better than Freundlich model (0.9869). The adsorption capacity
obtained in this study was higher than those reported by Zhang et al. [42] (39.6 mg g−1)
and Shakerian et al. [44] (6.7 mg g−1) on the application of IIPs for adsorption antimony
The imprinting factor (α = qmax (IIP)/qmax (NIP)) value was found to be 2.82, confirming
successful imprinting.
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Table 3. Adsorption isotherms models and constant r values.

Isotherms Parameters Sb(III)-IIP Non-IIP

Langmuir qmax (mg/g) 47.4 16.8
Ce
qe

= Ce
qmax

+ 1
qmaxKL

KL 1.81 0.29
R2 0.9969 0.9912

Freundlich Kf 33.6 3.74
lnqe = lnK f +

1
n Ce n 1.73 1.4

R2 0.9806 0.9869

3.3.3. Selectivity

The selectivity studies of Sb(III)-IIP-Fe3O4@SiO2@CNFs and NIP-Fe3O4@SiO2@CNFs
were carried out using a multielement sample solution containing Sb(III), Al(III), Cd(II),
Cu(II), Sn(IV), Zn(II). Table 4 presents the selectivity experiment data and parameters,
such as distribution ratio (D), adsorption capacities (qe), selectivity coefficient (β), relative
selectivity coefficient (βr) and imprinting factor (α). Table 4 shows that the distribution
ratio of Sb(III) ions for the Sb(III)-IIP adsorbent was 10 times higher than that of Sb(III)-NIP.
On the contrary, the distribution ratio of co-exiting ions for Sb(III)-IIP was somehow lower
than or equal to that of NIP except for Sn(IV). Furthermore, the adsorption capacity of
Sb(III)-IIP towards Sb(III) was higher than other coexisting ions. Selectivity coefficient
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values of Sb(III)-IIP for Sb(III), Al(III), Cd(II), Cu(II), Sn(IV) and Zn(II) were 6–25 times
higher than NIP, indicating that the IIP had higher binding specificity for Sb(III). Moreover,
the imprinting factor value of the Sb(III) was greater than 1, demonstrating that the Sb(III)-
IIP had a higher affinity toward the target analyte. These findings demonstrated that
IIP-Fe3O4@SiO2@CNFs had strong binding property towards Sb(III) in the presence of
other elements.

Table 4. Selectivity studies.

Metal Ions qe (mg/g) Distribution Ratio (D, mL/g) β βr α

IIP NIP IIP NIP IIP NIP

Sb 46.1 16.6 22.2 2.19 2.78
Al 6.52 7.97 0.69 0.87 32.3 2.52 12.8 0.82
Cd 8.41 8.53 0.92 0.94 24.1 2.33 10.3 0.99
Cu 3.70 8.46 0.37 0.93 60.0 2.35 25.5 0.44
Sn 11.2 12.1 2.19 1.44 10.2 1.52 6.67 0.93
Zn 6.24 7.47 0.66 0.80 33.9 2.71 12.5 0.83

3.4. Analytical Performances

The linearity, limit of detection (LOD), limit of quantification (LOQ) and the precision
(intra-day and inter-day) were used to evaluate the performance of the method. The
linearity was assessed by analysing a series of standard solutions (0–150 µg L−1) using the
UA-MSPE/ICP-OES method. The linear range was obtained between 0.44 and 100 µg L−1

with a correlation of determinations (R2) of 0.9976. The LOD and LOQ were 0.13 and
0.44 µg L−1, respectively. To investigate the precision of the method, a standard solution
containing 100 µg L−1 Sb(III) ions was analysed repeatedly using the UA-MSPE/ICP-OES
method. The intra-day (n = 10) and inter-day (n = 5 working days) expressed as relative
standard deviations (RSD) were 2.4 and 4.7%, respectively. The enrichment factor of the
proposed UA-DSPE/ICP-OES procedure was 71.3.

The analytical characteristics of the IIP-Fe3O4@SiO2@CNFs adsorbent were compared
with those reported in the literature for the preconcentration of Sb(III) and are presented
in Table 5. The developed method showed improved or similar analytical performance in
terms of LOD, LOQ and linearity as compared to those reported by References [48–50,52].
However, the current method had high LOD and LOQ as well as narrow linear range as
compared to those reported in the literature [2,17,39,51,53]. In addition, the preconcentra-
tion factor of the current method was lower than those reported elsewhere [2,17,48].

Table 5. Comparison of the proposed adsorbent with other reported adsorbent for extraction and
preconcentration of Sb.

Analyte Adsorbent Linear Range (µg L−1) LOD (µg L−1) LOQ (µg L−1) PF RSD (%) Refs

Sb PAN 0.027–650 0.008 0.027 150 1.8–4.1 [17]
Sb(III) SiO2/Al2O3/SnO2 0.50–5.00 0.17 0.56 136 - [53]
Sb(III) TAR 0.5–180 0.13 0.43 - 0.9 [54]

Sb Zr-NPs 30–250 8.0 26.8 - - [55]
Sb(III) IIP - 0.04 0.13 - 2.3 [42]

Sb, Sb(III) Mercapto-functionalised
hybrid sorbent - 0.0025 0.008 - 1.6 [56]

Sb(III) TAC 0.93–180 0.28 0.93 - 3.6 [54]
Sb IIP - 0.0039 0.13 - 3.1 [44]
Sb DBD 1–200 0.2 0.67 - 3 [57]

Sb(III) POIP - 0.006 0.02 100 4.2 [2]
Sb PIL 0.20–200 0.084 0.28 - <9 [58]

Sb(III) IIP-Fe3O4@SiO2@CNFs 0.44–100 0.13 0.44 71.3 2.4 and 4.7 This
work

IIP: ion imprinted polymers, PIL: polymeric ionic liquid, DBD: dielectric barrier discharge, POIP: polystyrene oleic
acid imidazole polymer, TAR: 4-(2-thiazolylazo) resorcinol, TAC: 2-(2-thiazolylazo)-p-cresol, PAN: peroxyacetyl
nitrate, Zr-NPs: zirconium nanoparticles, SiO2/Al2O3/SnO2: silicon dioxide/aluminium oxide/tin oxide.
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3.5. Application to Real Samples

The applicability of Sb(III)-IIP-Fe3O4@SiO2@CNFs adsorbent on selective extraction
and preconcentration of Sb(III) in real water samples was studied. The method was applied
for the analysis of Sb(III) in surface water collected from the local dams (DW1 and DW2)
and river (RW). The concentrations of Sb(III) were 88.7, 9.7 and 40.5 µg L−1 in DW1, DW2
and RW, respectively. These results were compared with independent ICP-MS analysis,
whereby the samples were analysed directly. The ICP-MS results and the ones obtained
using the proposed method agreed at 95% confidence level. Therefore, it can be concluded
that the use of Sb(III)-IIP-Fe3O4@SiO2@CNFs as an adsorbent in UA-MSPE resulted in the
sensitivity and selectivity determination of Sb(III) in water samples. The concentrations
of Sb(III) obtained in our study were compared with global concentrations of antimony
in different water samples (Table 6). As seen, the levels of Sb(III) obtained in this study
were comparable with those reported elsewhere [50,54,55]. However, they were found to
be higher than those reported in Algeria, Mexico and Brazil (Table 6). High levels of Sb in
surface water and ground water samples have been reported in China and Turkey (Table 6).

Table 6. Global concentration of Sb in water samples.

Country Matrix Concentration of Sb (µg L−1) Refs

Mexico Drinking water 0.28–2.30 [12]
China Ground water 6–30,000 [59]

Algeria Drinking water 0.50–1.12 [60]
Pakistan Drinking water 28 [61]

Brazil Mineral and surface water 0.26–0.30 and 0.41–1.23 [62]
Brazil Mineral water 0.54–1.04 [53]

Turkey Wastewater 300–2000 [63]
China Surface water 30–150 [64]
Greece Tap water 10–100 [65]
China Wastewater 330–11,400 [66]

South Africa Dam and river water 9.7–88.7 This work

4. Conclusions

In this work, a simple, sensitive and highly selective method based on UA-MSPE/ICP-
OES was developed for the analysis of trace amounts of Sb in surface water samples. Sb(III)-
IIP-Fe3O4@SiO2@CNFs was used as an adsorbent in UA-MSPE. The SEM, XRD, TEM and
EDS confirmed the successful synthesis of the nanocomposite. Parameters affecting the
extraction and preconcentration of Sb(III) were optimised using RSM based on CCD. Under
optimised conditions, the developed method displayed good analytical performance for
extraction, preconcentration and determination of Sb(III) ions in environmental samples.
The adsorbent displayed high adsorption capacity (47.8 mg g−1), low LOD (0.13 µg L−1)
and high precision (2.4%) when compared to the previous study. Finally, the method was
applied for analysis of Sb(III) in real surface water samples and the results agreed with the
reference method. These results proved that Sb(III)-IIP-Fe3O4@SiO2@CNFs nanocomposite
is the suitable adsorbent for trace analysis of Sb(III).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym14010021/s1, Table S1: Operating parameters of an ICP-OES Table S2: Fractional
factorial design matrix and analytical response, Table S3: Central composite design matrix and
analytical response, Figure S1: Linearised Langmuir isotherm model for IIP, Figure S2: Linearised
Freundlich isotherm model for IIP, Figure S3: Linearised Langmuir isotherm model for NIP, Figure S4:
Linearised Freundlich isotherm model for NIP.
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