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Abstract: Chitosan has potential applications in many fields, due to its biocompatibility, biodegrad-
ability and reproducibility. However, the insolubility in water restricts its wide application. In order
to expand the application of chitosan in the delivery of oil-soluble drugs and improve the efficacy
of oil-soluble drugs, N-Glycidyltrimethyl ammonium chloride-modified chitosan (GTA-m-CS) and
N,N-Dimethyl-N-dodecyl-N-(1,2-epoxy propyl) ammonium chloride (DDEAC), a kind of reactive
surfactant, were synthesized and characterized by FTIR, NMR and XRD methods. The interactions
between GTA-m-CS and DDEAC was studied by surface tension, viscosity, conductivity and fluores-
cence methods. The parameters, including equilibrium surface tension, critical micelle concentrations
of DDEAC with different GTA-m-CS concentration, critical aggregation concentration of DDEAC, the
amount of DDEAC adsorbed on GTA-m-CS, pc20 and πcmc were obtained from the surface tension
curves. The influence of temperature on the above parameters were evaluated. The degree of counte-
rion binding to micelle and the thermodynamic parameters of the system were calculated from the
conductivity curves. According to the change of conductivity with temperature, the thermodynamic
parameters of micellar formation were calculated. The aggregation number of DDEAC molecules in
GTA-m-CS/DDEAC aggregates were calculated from steady-state fluorescence data. Based on the
experimental results, the interaction models between GTA-m-CS and DDEAC were proposed. The
GTA-m-CS/DDEAC aggregates could be used as curcumin carries, and achieved sustained release.

Keywords: N-Glycidyltrimethyl ammonium chloride modified chitosan; N,N-Dimethyl-N-dodecyl-N-
(1,2-epoxy propyl) ammonium chloride; intermolecular interaction; curcumin encapsulation and release

1. Introduction

Chitosan is a deacetylated product of chitin and composed of 2-amino-2-deoxy-D-
glucopyranose and residual 2-acetamido-2-deoxy-Dglucopyranose units, which has po-
tential applications in food, daily chemicals, cosmetics, environmental remediation, drug
delivery and many other fields, due to its excellent properties such as biocompatibility,
reproducibility and biodegradability [1–6].

Chitosan/surfactant systems show complex behavior, and play an important role in
cosmetic, food science and controlled drug delivery for their rich phase behavior at both the
interface and in bulk [7]. The chitosan/surfactant complexes that formed under different
interactions can be applied in different areas. Chitosan and double-chain anionic surfactant
derived from lysine (77KS) could form negatively charged complexes, which could be used
as a drug delivery system for amoxicillin on a model polydimethylsiloxane surface [2].
Chatterjee and Judeh [8] revealed that chitosan/anionic surfactants, including sodium
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dodecyl sluphate, sodium dodecylbenzenesulfonate, sodium cholate and sodium deoxy-
cholate, could stabilize fish oil-in-water emulsions and control the fish oil sustained release.
The chitosan/sodium dodecyl sulfate could also form chitosan-surfactant-core-shell at
sodium dodecyl sulfate concentration much larger than its critical micelle concentration,
which could adsorb malachite green as much as 360 mg/g due to the asdsolubilization
of malachite green on surfactant bilayer [9]. The result is consistent with that obtained
by Bharmoria et al. [10]. Bharmoria et al. revealed that the interaction between chitosan
and surfactant varies with the concentration of surfactant. While surfactant concentra-
tion is lower than critical aggregation concentration, the chitosan/surfactant complexes
were induced by ion dipole, electrostatic and hydrophobic interactions. At a surfactant
concentration higher than the critical micelle concentration, electrostatic and hydrophobic
interactions play a key role in the formation of chitosan/surfactant complexes [10]. The
results are consistent with those obtained from the chitosan/sodium lauryl ether sulfate
system [11]. Both the sodium lauryl ether sulfate and chitosan co-adsorbed on the air/water
interface when the concentration of sodium lauryl ether sulfate was lower than critical
aggregation concentration, and almost all the sodium lauryl ether sulfate occupied the
interface when its concentration was larger than critical micelle concentration. The two
adsorption processes corresponded to different dynamic behaviors as a function of sodium
lauryl ether sulfate concentration [11]. The region of hydrophobic interactions is linearly
dependent on the concentration of chitosan, and the maximum mass ratio of chitosan to
sodium lauryl ether sulfate is 1/3 by the appearance of precipitate [12]. Senra et al. studied
the intermolecular interaction with diffusion DOSY NMR technique, and detected that the
surfactant molecules were not associated with chitosan as soon as the ionic charge ratio
was larger than 1 [13]. Many of the systems were operated under acidic conditions due to
the water insolubility of chitosan, which limits its wide application.

There are amenable functional groups such as primary amine (NH), primary and
secondary hydroxyl group (OH) in chitosan monomer [5]. To expand the application of
chitosan, chemical modification without disturbing its degree of polymerization has been
performed. For example, Piegat and coauthors prepared N,O-acylated chitosan derivatives,
and found that these hydrophobical chitosan derivatives could serve as oil-soluble active
compounds for their stabilization of oil-in-water emulsification [14]. Elsaid et al. prepared
O-octanoyl-chitosan-polyethylene glycol, a kind of amphiphilic chitosan derivate, which
could form micelles with average particle size of 37.41 nm at a concentration of 16.6 µmol/L
at 20 ◦C. The micelles with rapamycin entrapment efficiency of 85.6% and loading efficiency
of 16.3% showed a high scleral retention and successful permeation [15]. O-Hydroxypropyl-
N-alkyl chitosan, with critical micelle concentrations and hydrophile-lipophile balance
values, range from 0.016 g/L to 0.05 g/L and 5.33 to 13.89, depending on the length of alkyl
chains, and displayed good foam characteristics and emulsibility [16]. N-Succinyl-O-(2-
hydroxyl) dodecyl ether chitosan could reduce the equilibrium surface tension of water to
a minimum value of 32 mN m−1, and its critical micelle concentration is 5.72 mmol/L [17].

Burr et al. [18] synthesized cationic alkylated chitosan with glycidyltrimethylammo-
nium chloride and analogue 3-chloro-2-hydroxypropyl-N,N,N-dimethyllaurylammonium
chloride containing C12 alkyl chain successively, which could form viscoelastic gels in
the presence of sodium dodecyl sulphate. These chitosan derivatives could be used in
the range of cosmetics, pharmaceutical and personal care. Hydrophobic interaction be-
tween the hydrocarbon chains of hydrophobic chitosan and non-polar tails of surfactant
dominant the formation of hydrophobic chitosan/surfactant complexes. Pérez-Gramatges
et al. [19] reported that about 45,000 polyoxyethylene (8) nonylphenol ether molecules
were bonded on one molecule of hydrophobic chitosan, and hydrophobic interaction
between hydrophobic chitosan and polyoxyethylene (8) nonylphenol ether was the dom-
inant force in the formation of complexes compared to hydrogen-bonding and dipolar
interactions. The hydrophobic interaction also enhanced the adsorption of hydrophobic
chitosan/surfactant complexes at the air/water interface. Choi and coauthors revealed that
N-[(2-Hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride (HTCC) could stabilize
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and improve encapsulation efficiency of nanostructured lipid carriers for poor water-
soluble indomethacin, and show good sustained release property [20]. In previous work,
N-[(2-Hydroxyl)-propyl-3-trimethyl ammonium] chitosan chloride (HTCC) [21] has been
synthesized by nucleophilic substitution method in ionic liquid, the reaction mechanism
was studied by density functional theory calculations [22]. A first-order reaction and the

reaction kinetics equation of ln
(
− dC−NH2

dt

)
= −0.21 + 1.1 ln C−NH2 , and the relationship

between the rate constant of chemical reaction and temperature, ln k = −4.11/T + 11.06
were revealed [23].

To expand the application of chitosan in oil-soluble drug delivery, in the current
work, N-glycidyltrimethyl ammonium chloride modified chitosan (GTA-m-CS) and N,N-
Dimethyl-N-dodecyl-N-(1,2-epoxy propyl) ammonium chloride (DDEAC), a kind of reac-
tive surfactant, were synthesized and characterized. The interaction between GTA-m-CS
and DDEAC was studied by surface tension, viscosity, conductivity and fluorescence
methods. The parameters such as critical micellar concentration, surface tension, surface
pressure and adsorption capacity of DDEAC on GTA-m-CS molecules, thermodynamic pa-
rameters and composition of micelles were calculated. Based on the results, the interaction
models between GTA-m-CS and DDEAC were proposed. Finally, the GTA-m-CS/DDEAC
aggregates were used to encapsulate curcumin, whose release behaviors were studied.
The combination of the two compounds can endow the drug delivery system with better
properties, especially antibacterial activity. The work will provide insight into the potential
application of GTA-m-CS/DDEAC system in drug delivery.

2. Experimental
2.1. Reagents

Chitosan, with numerically average molecular weight of 5.2 × 105, purity higher than
95% and degree of deacetylation of 91.2%, was purchased from Chengdu Xiya Reagent
Co., Ltd., (Chengdu, China). Glycidyl trimethyl ammonium chloride (GTA) was purchased
from Adamas Reagent Co., Ltd., (Shanghai, China). N,N-dimethyl-N-dodecylamine (A.R.)
was purchased from Chengdu Xiya Reagent Co., Ltd., (Chengdu, China). 1-Amino-3-
methylimidazolium chloride (AmimCl, with purity higher than 99%) was supplied by
Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (Lanzhou, China).
Anhydrous ethanol (A.R.) and hydrochloric acid (A.R.) were purchased from Tianjin Fuyu
Fine Chemicals Co., Ltd., and acetone (A.R.) was purchased from the Fine Chemical Plant
of Laiyang Economic and Technological Development Zone.

N-Glycidyltrimethyl ammonium chloride-modified chitosan (GTA-m-CS) was syn-
thesized according to the method reported in previous works [21,24]. N,N-dimethyl-
N-dodecyl-N-(2,3-epoxy propyl) ammonium chloride (DDEAC) was synthesized in our
laboratory. The synthesizing method is the same as that reported in the previous work,
using epichlorohydrin as both a solvent and reactant [25]. The reaction equations are shown
in Scheme 1.
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2.2. Characterization of GTA-m-CS and DDEAC

The chemical structure of GTA-m-CS was characterized on Shimadzu Prestige-21
FTIR spectrometer (Shimadzu, Japan) from 4000 to 400 cm−1 and Bruker Advance II 400
spectrometer (Bruker, Switzerland), respectively. The microstructure of GTA-m-CS was
also characterized on an AXS D8-ADVANCE X-ray diffractometer (Bruker, Germany). The
degree of substitution (DS) of GTA-m-CS was also calculated according to Equation (1)

DS =
ICH3 /9

IH1

×100 (1)

where ICH3 and IH1 were the integrals of –CH3 and C1-H in GTA-m-CS, respectively.
The molecular structure of DDEAC was characterized by 1H NMR, and the content of

epoxy value was measured by perchlorate-tetraethyl ammonium bromide method.

2.3. Solution Froperties of GTA-m-CS/DDEAC

The aggregation behavior and intermolecular interactions between GTA-m-CS and
DDEAC were studied by equilibrium surface tension, Ubbelohde viscosity, conductivity,
steady state fluorescence and fluorescence quenching methods.

The equilibrium surface tensions were obtained on a K12 processor tensiometer (Krüss
Co., Sable, Germany) using the ring method.

The viscosities were measured by an Ubbelohde viscosity with a capillary radius of
0.46 mm. The reduced viscosity was calculated.

The conductivities were performed on a low-frequency conductivity analyzer (DDS-
307, Shanghai Precision and Scientific Instrument Co., Ltd., Shanghai).

The steady-state fluorescence was determined on a Hitachi F-4600 fluorescence spec-
trophotometer. A 1.0 cm quartz cell was used. Pyrene was used as the fluorescence probe,
and its concentration was 1.0 × 10−6 mol/L in all determined systems. An excitation
of 335 nm was used, and an emission spectra were collected from 355 to 500 nm. The
fluorescence intensity ratio of the peak at 373 nm (signed as I1) to that of 383 nm (signed as
I3) was calculated.

The micelle aggregation number (Nagg) was calculated according to Equation (2) [26]

ln(
I0

I
) =

NaggCQ

Cs − cmc
(2)

where I0 and I are pyrene fluorescence intensities at a wavelength of 373 nm with and
without a quencher (benzophenone), and CQ and Cs are the molar concentrations of the
quencher and surfactant, respectively.
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The concentrations of GTA-m-CS were 400, 800, 1200, 1600 and 2000 mg/L, and those
of DDEAC were ranged from 0.005 to 5 mmol/L. The temperature was fixed at 20 ◦C,
unless there is specification.

2.4. Curcumin Encapsulation and In Vitro Releasing

The GTA-m-CS/DDEAC solution with concentrations of GTA-m-CS 1200 mg/L and
DDEAC 3 mmol/L was used to load curcumin at room temperature. The method is similar
to our previous work [27] under the assistance of ultrasonic vibration. The curcumin
encapsulation efficiency (CEE) was calculated according to Equation (3)

CEE =
w1

w2
× 100% (3)

where w1 and w2 are the weight of curcumin encapsulated in aggregates and initial weight
of curcumin, respectively.

The hydrodynamic diameter and zeta potential of GTA-m-CS/DDEAC aggregates
were measured on a Zetasizer Nano ZS90 particle size analyzer (Malvern, England) at
25 ◦C. Each sample was repeated three times.

The morphologies of GTA-m-CS/DDEAC aggregates with and without curcumin and
DDEAC micelles with curcumin were observed on a transmission electron microscope
(Tecnai-12) at 100 kV. The micelles were negatively stained with phosphotungstic acid
and dried with an infrared lamp. The fluorescence confocal microscope (Axio Scope.
A1, Germany Carl Zeiss Company, Germany) was used to observe the curcumin-loaded
micelles after the curcumin-loaded GTA-m-CS/DDEAC solution was being dropped on a
glass sheet.

The release behavior of curcumin from GTA-m-CS/DDEAC aqueous solution was
determined at 25 ◦C. Typically, GTA-m-CS/DDEAC freeze-dried powder of 120 mg was
weighed and dissolved in 100 g distilled water. Thus, the concentration of GTA-m-CS is
1200 mg/L, which is the same as that of curcumin being encapsulated. At different time
intervals, 2.0 mL of release solution was taken out, while an equal volume of deionized
distilled water was added to the mother solution. Equal volume of DMSO was added into
the release solution of 2.0 mL, which UV absorption spectrum was measured.

Before the determination of the released curcumin concentration, the standard working
curve was plotted.

3. Results and Dissolution
3.1. Molecular Structures of GTA-m-CS and DDEAC

Figure 1A shows that the spectrum of GTA-m-CS is similar to that of chitosan. There
are two strong peaks at 1656 cm−1 and 1483 cm−1 in spectrum ii, and a strong peak at
1592 cm−1 in spectrum i. The peak at 1656 cm−1 in spectrum i is very weak. According to
previous result [24], the peaks at 1656 cm−1 and 1592 cm−1 belong to vN−H of tertiary amine
and primary amine, respectively. The weakening of the peak intensity at 1592 cm−1 and
the strengthening of peak intensity at 1656 cm−1 indicate that the nucleophilic substitution
reaction occurred at the –NH2 group. The appearance of the peak at 1483 cm−1 is evidence
of nucleophilic substitution, as it belongs to vC−H of −N(CH 3)

+
3 .

The 1H NMR spectra of chitosan and GTA-m-CS was shown in Figure 1B. The charac-
teristic 1H NMR peaks of chitosan skeleton are observed at 4.6 (H1), 3.8–3.3 (H3, H4, H5,
H6, H6

′) and 2.9 ppm (H2). The chemical shift of GTA-m-CS are similar to those of chitosan,
except the peaks at 2.8, 4.4, 3.2 and 3.02 ppm, which belong to methylene protons (Ha),
methane protons (Hb), methylene protons (Hc) and N,N,N-trimethyl protons (Hd) [28],
respectively. This confirms the formation of GTA-m-CS. The DS of GTA-m-CS calculated
from Equation (1) is 36.6%.
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1H NMR spectra of DDEAC (D).

The XRD pattern (Figure 1C) shows two diffraction peaks for chitosan: one at 2θ = 9◦,
belonging to the synergistic effect of (001) and (100) planes; and the other at 2θ = 20◦,
belonging to the synergistic effect of (101) and (002) planes. For GTA-m-CS, the diffraction
peak at 2θ = 9◦ almost disappears, and the peak at 2θ = 20◦ becomes lower and broader.
This means the decrease of crystalline degree after the introduction of GTA on chitosan [29].

For DDEAC (Figure 1D), the chemical shifts at 0.807, 1.193, 1.541, 3.212 and 3.358 ppm
are assigned to –CH3, –CH2–, CH3CH2–, –N(CH2)– and –N(CH3), respectively. The area
ratio of the peak at 3.212 to that of 3.358 ppm is 0.89, approximately equal to the ratio (0.67)
of hydrogen atom numbers in –N(CH2)– and –N(CH3), demonstrating the synthesis of
DDEAC. The epoxy value measured by the perchlorate-tetraethyl ammonium bromide
method was 30.06%.

3.2. Surface Tension

DDEAC is a kind of cationic surfactant with reactivity, and its surface activity is
higher than that of dodecyltrimethyl ammonium chloride [25]. Surface tension is one of the
important methods in studying the interaction between macromolecules and surfactants.
The relationship between GTA-m-CS solution and DDEAC with different concentration
at 20 ◦C is shown in Figure 2A. The concentrations of GTA-m-CS are 0, 400, 800, 1200,
1600 and 2000 mg/L. The surface tension of GTA-m-CS decreases from 63 to 50 mN/m
with concentration increasing from 400 to 2000 mg/L, meaning GTA-m-CS has certain
surface activity. For GTA-m-CS/DDEAC systems, the surface tension decreases quickly
with increasing DDEAC concentration until the surface tension keeps almost constant. The
significantly decrease of the surface tension is caused by the adsorption of DDEAC on
the surface. When the surface adsorption is saturated, the surface tension keeps constant
and the DDEAC molecules begin to form micelles in the bulk phase. The concentration
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corresponding to the initial constant surface tension is called critical micelle concentration
(cmc) [30]. The surface tension at cmc is recorded as γcmc in mN/m.
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GTA-m-CS at 20 ◦C (A), with GTA-m-CS concentration of 1200 mg/L with different temperature (B)
vs. DDEAC concentration, and linear relationship between cmc-cmcDDEAC and cGTA-m-CS (C).

There are two platforms on GTA-m-CS/DDEAC curves, as shown in the insert of
Figure 2A (green circle), which is different from that of DDEAC. The initial concentration
of the first platform is critical aggregation concentration (cac), indicating the beginning of
the interaction between GTA-m-CS and DDEAC and the formation of GTA-m-CS/DDEAC
complexes [31–33]. At this platform, the DDEAC molecules adsorb on GTA-m-CS, keep-
ing the surface tension almost constant. The value of cac is related to the properties of
macromolecule and surfactant. The cac values of GTA-m-CS/DDEAC systems are all ca.
0.088 mmol/L. The formation of polymer/surfactant complexes has been confirmed by
transmission electron microscopy and steady shear rheological methods [34].

After the saturated adsorption of DDEAC on GTA-m-CS molecules, the DDEAC
molecules continue to adsorb on the solution surface, reducing surface tension until their
adsorption on solution surface is saturated. The concentration corresponding to the satu-
rated adsorption on surface is critical micelle concentration (cmc), and the corresponding
surface tension is equilibrium surface tension (γcmc). With a further increase of DDEAC
concentration, the micelles are formed. The cmc and γcmc values of GTA-m-CS/DDEAC
system are listed in Table 1, both of which increase with GTA-m-CS concentration. It
is ascribed to the hydrophobic interaction between GTA-m-CS and DDEAC [33]. At a
high concentration of GTA-m-CS, the GTA-m-CS molecules affect the adsorption and
close arrangement of DDEAC molecules on the surface, inhibiting the further reduction of
equilibrium surface tension (γcmc).
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Table 1. Parameters of GTA-m-CS/DDEAC Systems with Different Concentration of GTA-m-CS at
20 ◦C.

cGTA-m-CS (mg/L) cmc (mmol/L) γcmc (mN/m) pc20 (mmol/L) πcmc (mN/m)

0 1.13 27.26 0.20 45.02
400 1.32 26.87 0.012 45.41
800 1.41 29.42 0.078 42.86

1200 1.51 27.78 0.056 44.50
1600 1.58 28.77 0.020 43.51
2000 1.64 30.64 0.047 41.64

The amount of DDEAC absorbed on GTA-m-CS could be calculated from the linear
relationship of cmc(GTA-m-CS)-cmc(DDEAC) vs. cGTA-m-CS (Figure 2C), and the slope is the
amount of absorbed DDEAC [24]. The fitted linear equation is as Equation (4), from which
the absorbed amount at 20 ◦C is calculated as 2.45 × 10−4 mmol/mg.

y = 2.45× 10−4x + 0.07
(

R2 = 0.9975
)

(4)

Two parameters of pc20 and πcmc could be obtained from surface tension curves. The
means of c20 is that the concentration of surfactant needed to decrease the surface tension by
20 mN/m, pc20 = −logc20. This concentration is the minimum one that surfactant reaches
a saturation adsorption on the air/water interface. That is, pc20 reflects the efficiency of
surfactant reducing surface tension. The values of pc20 are listed in Table 1, which show
that GTA-m-CS/DDEAC systems are more effective in reducing surface tension. It ascribes
to the interaction between GTA-m-CS and DDEAC, and the adsorption of GTA-m-CS on
the air/water interface.

The parameter of πcmc is the difference between the surface tension of solvent (γ0)
and surfactant solution at cmc (γcmc), reflecting the ability of reducing surface tension.
The values of πcmc in Table 1 show that the surface tension reducing ability of GTA-m-
CS/DDEAC systems is almost equal to that of DDEAC system.

With the temperature increasing from 20 ◦C to 60 ◦C, the cmc values of GTA-m-
CS (1200 mg/L)/DDEAC system decrease from 1.51 mmol/L to 0.83 mmol/L, and the
surface tensions decrease from 27.78 mN/m to 24.63 mN/m as shown in Figure 2B and
Table 2. This is attributed to the improved molecular thermal motion of both GTA-m-CS
and DDEAC molecules [35]. Meanwhile, a high temperature promotes the adsorption of
DDEAC molecules on the solution surface and decrease of surface tension [36]. The result
is consistent with that of GMAC-m-CS/C14mimBr [24].

Table 2. Critical Micelle Concentration and Surface Tension of GTA-m-CS/DDEAC Systems with
GTA-m-CS Concentration of 1200 mg/L and Different Temperature.

t (◦C) cmc (mmol/L) γcmc (mN/m)

20 1.51 27.78
30 1.39 27.70
40 1.16 26.14
50 0.96 25.61
60 0.83 24.63

3.3. Viscosity

To determine the intermolecular interaction between GTA-m-CS and DDEAC, the
viscosity of GTA-m-CS (800 mg/L)/DDEAC system is measured at 20 ◦C, as shown in
Figure 3. The reduced viscosity decreases quickly from 0.33 to 0.01 L/mg when the DDEAC
concentration is increased from 0 to 8.0 mmol/L, and then with further increasing DDEAC
concentration to 90 mmol/L, the reduced viscosity reduces slightly. The phenomenon
is typical for polyelectrolyte solutions [37]. It is known that the reduced viscosity of
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pure polyelectrolyte solution decreases while its concentration is increased, because the
macromolecular chains are expanded at a low concentration, and are overlapped at a high
concentration [37]. For GTA-m-CS/DDEAC system, the decrease of reduced viscosity is
ascribed to the adsorption of DDEAC on GTA-m-CS, and the decrease of intermolecular
repulsion. The schematic diagram of GTA-m-CS/DDEAC interaction is shown in the insert
of Figure 3.
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Figure 3. The relationship between reduced viscosity of GTA-m-CS/DDEAC and DDEAC concen-
tration and schematic diagram of GTA-m-CS/DDEAC interaction (the insert). i—absorption of
DDEAC molecules on GTA-m-CS molecule, ii—the formation of GTA-m-CS/DDEAC complexes, and
iii-interaction between GTA-m-CS/DDEAC complexes.

3.4. Conductivity

Conductivity is one of the mostly used method in studying the aggregation behavior
of surfactant [38]. The plots of conductivity vs. concentration of DDEAC in GTA-m-
CS/DDEAC solutions are shown in Figure 4. The concentrations of GTA-m-CS are 400,
800, 1200, 1600 and 2000 mg/L, and the temperature ranges from 20 to 60 ◦C. All the
conductivity curves are divided into two parts by one breakpoint. The breakpoint is the
cmc. Before the cmc, the conductivity is from the contribution of the free ions of GTA-m-CS
and DDEAC, and that of after the cmc is from the GTA-m-CS/DDEAC micelles. The charge
transporting capability of the micelles decrease, and counter-ions bounded to the micelles
reduce the conductivity [39]. The cmc values obtained from conductivity are listed in
Table 3, which are different from those obtained from surface tension curves. It is due
to the different testing principles and the fact that charged GTA-m-CS contributes to the
conductivity of the system.

The variation of cmc values of GTA-m-CS/DDEAC systems with temperature at dif-
ferent GTA-m-CS concentration is shown in Figure 4B. At a constant temperature, the cmc
values of GTA-m-CS/DDEAC decrease with increasing GTA-m-CS concentration. While
the cmc values decrease with increasing temperature. Temperature shows two effects on
the aggregation behavior of surfactant. On one hand, the hydration layer around surfactant
molecules is destroyed while increasing temperature, which is beneficial to the aggregation
of surfactants. On the other hand, the molecular movement is strengthened at high temper-
ature, hindering the aggregation of surfactants [40]. The aggregation behavior of DDEAC
is more influenced by the second factor. At a high temperature, the electrostatic repulsion
between polyelectrolyte molecules is increased and the molecules are stretched [41], increas-
ing the opportunities for hydrophobic interactions with surfactants. Therefore, the cmc
values of GTA-m-CS decrease with increasing temperature. The higher the concentration of
GTA-m-CS, the more functional groups involved in the hydrophobic interaction, resulting
in lower cmc values.
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Table 3. Parameters of GTA-m-CS/DDEAC Systems with Different Concentration of GTA-m-CS and
Temperature Obtained from Conductivity Curves.

cGTA-m-CS
(mg/L) T (◦C) cmc

(mmol/L) β
∆G0

m
(kJ/mol)

∆H0
m

(kJ/mol)
T∆S0

m
(kJ/mol)

400 20 2.67 0.62 −40.94 4.63 45.57
30 2.52 - −42.59 4.03 46.62
40 2.43 - −44.15 5.58 49.73
50 2.23 - −45.95 5.95 51.90
60 2.15 - −47.54 3.77 51.32

800 20 2.36 0.61 −41.45 3.46 44.92
30 2.26 - −43.05 10.41 53.46
40 1.85 - −45.35 14.92 60.27
50 1.63 - −47.37 7.06 54.43
60 1.60 - −48.93 1.92 50.85

1200 20 1.89 0.69 −42.37 12.34 54.71
30 1.62 - −44.47 13.45 57.92
40 1.38 - −46.64 11.48 58.12
50 1.26 - −48.54 8.44 56.98
60 1.16 - −50.43 8.55 58.98

1600 20 1.47 0.61 −43.40 4.48 47.88
30 1.39 - −45.12 7.98 53.10
40 1.22 - −47.18 6.71 53.89
50 1.20 - −48.76 3.30 52.06
60 1.14 - −50.51 5.30 55.82

2000 20 1.28 0.61 −43.97 15.85 59.82
30 1.05 - −46.32 11.87 58.18
40 0.97 - −48.19 4.57 52.76
50 0.95 - −49.83 2.05 51.88
60 0.93 - −51.47 2.20 53.67

Note: β-degree of counterion binding to micelle; “-” –not determined.

The cmc values of DDEAC obtained by surface tension were different from those
obtained by electrical conductivity, which was caused by different working principles of
the two methods. The cac values of these systems are absent in the plots of conductivities,
which ascribed to the large concentration gradient.

The degree of counterion binding to micelle (β) is one of the important parameters
during micellization processes, which could be calculated from the degree of counterion
dissociation (α). The values of α could be obtained from the ratio of the slopes above and
below cmc, and β = 1− α. The value of β is dependent on the size of micelle. A large
micelle is prone to attract more counterions, corresponding to a large β value. Table 3
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shows that the β value of DDEAC is much lower than those of GTA-m-CS/DDEAC sys-
tems, indicating that the GTA-m-CS/DDEAC micelles are larger than that of DDEAC,
and the micelle size of GTA-m-CS/DDEAC is almost unaffected by GTA-m-CS concentra-
tion. This is ascribed to the hydrophobic interaction between DDEAC and methyl groups
in –N(CH 3)

+
3 , and the electrostatic repulsion between the –N(CH 3)

+
3 groups [24]. The

result is consistent with that glycidyl trimethyl ammonium chloride-modified chitosan/1-
tetradecyl-3-methylimidazolium bromide system [24].

Thermodynamic parameters of micelle processes, such as standard Gibbs free energy
(∆G0

m), standard enthalpy change (∆H0
m) and standard entropy change (T∆S0

m), could be
obtained based on the phase separation model

∆G0
m = (1 + β)RTlnXcmc (5)

∆H0
m = −RT2(0.5 + β)

lnXcmc

dT
(6)

T∆S0
m = ∆H0

m − ∆G0
m (7)

where Xcmc =
cmc
55.4 , 55.4 is the number of moles in 1 L water, the unit of cmc is mol/L.

All the Gibbs free energy (∆G0
m) are negative (Table 3), indicating that the formation

of DDEAC micelles is spontaneous. The Gibbs free energy decreases with increasing
temperature and GTA-m-CS concentration, suggesting a high temperature and GTA-m-CS
concentration are beneficial to the formation of DDEAC micelles. On one hand, this ascribes
to a high temperature promoting the movement of DDEAC molecules, which is conducive
to its hydrophobic interaction with neighboring molecules. On the other hand, however,
GTA-m-CS with a high concentration can provide more hydrophobic groups to interact
with DDEAC molecules [42,43].

The values of standard enthalpy change are positive, indicating the micellar formation
process is endothermic [25]. The values first increase with rising temperature and then
decrease, suggesting the main intermolecular force between GTA-m-CS and DDEAC
changes from hydrophobic interaction to electrostatic interaction. The temperature that
corresponds to the maximum ∆H0

m decreases with the increase of GTA-m-CS concentration.
The result is consistent with that of the degree of counterion binding to micelle. By
comparing the values of ∆H0

m and T∆S0
m, it can be concluded that the micelle formation is

an entropy-driven process, which is different from the micellar formation process of pure
DDEAC [25].

3.5. Steady-State Fluorescence

The steady-state fluorescence of GTA-m-CS/DDEAC system could also reflect the
formation of micelles while pyrene is used as a probe. There are five characteristic emission
bands in pyrene fluorescence spectrum within 370 to 400 nm (Figure 5A). The intensity
of peak 3 is significantly affected by the environment where the pyrene molecules reside.
It increases while the environment is transferred from polarity to non-polarity. With the
increase of DDEAC concentration, the micelles begin to form, and pyrene molecules were
solubilized. The intensity of peak 3 increases (sample ii in Figure 5A). From the plot of I1/I3
ratio against DDEAC concentration (Figure 5B), the critical micellar concentrations of 2.99
(cGTA−m−CS = 400 mg/L), 2.51 (800 mg/L), 1.99 (1200 mg/L), 1.49 (1600 mg/L) and 1.00
(2000 mg/L) mmol/L are obtained. The values are consistent with those obtained from the
conductivity method, and are slightly different from those obtained by the surface tension
method, which is attributed to the surface activity of GTA-m-CS.
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The aggregation number (Nagg) of DDEAC in micelles could be calculated from the
relationship between the concentration of benzophenone (quenching agent) and the inten-
sity of peak 3. To maintain the stability of the micelles, the concentrations of DDEAC were
10 times its cmc. The linear equations of ln(I0/I) against quenching agent (cQ) concentra-
tion for different GTA-m-CS/DDEAC system are as follows. The aggregation numbers
are calculated as 6.26 (cGTA−m−CS = 400 mg/L), 5.91 (800 mg/L), 7.11 (1200 mg/L),
6.68 (1600 mg/L) and 6.75 (2000 mg/L), which are much less than pure DDEAC micelle
(ca. 49) [25]. This is ascribed to the amphiphilic properties of GTA-m-CS, hydrophobic and
electrostatic interactions between GTA-m-CS and DDEAC.
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3.6. Curcumin Encapsulation and Releasing

At fixed concentrations of DDEAC (3 mmol/L) and GTA-m-CS (1200 g/L), the hy-
drodynamic radius of curcumin loaded micelles increase from 5 nm [25] and 234 nm
(dash line in Figure 6) to 15 nm and 420 nm (solid red line in Figure 6A), indicating the
residence of curcumin in micelles. The TEM images of curcumin loaded GTA-m-CS mi-
celles confirm the formation of micelles (Figure 6B), which diameter ranges from 42.86 nm
to 83.04 nm with an average diameter of 61.89 nm. The diameter is much smaller than
that measured by DLS, which is attributed to the different working principles of the two
methods. Fluorescence confocal microscopic (Figure 6C) shows that the curcumin-loaded
micelles are monodispersed. The zeta potential of GTA-m-CS/DDEAC complex decreases
slightly from 28.32 ± 3.57 mV to 20.13 ± 2.69 mV after the encapsulation of curcumin. This
is attributed to the hydrophobic interactions between curcumin and DDEAC and –CH3,
shielding the positive electricity of –N(CH3)

+
3 . The curcumin encapsulation efficiency

(CEE) is 31.63 ± 2.37%, which is lower than that encapsulated in Tween 85 [44], Pluronic
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F127 [45] and other nanoemulsion systems [46]. This is due to the competitive interaction
between curcumin, DDEAC and GTA-m-CS.
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Figure 6D shows that the encapsulated curcumin shows a rapid release rate for the first
60 min, and the releasing efficiency reaches 16.13%. The curcumin is then released slowly
until the end of the experiment, and the maximum releasing efficiency is 20.59%. Curcumin
is a natural compound with good anti-inflammatory and anti-cancer properties with low
toxicity and small adverse reactions. It has a wide range of pharmacological activities,
including anti-inflammatory, antioxidant, lipid-regulating, anti-viral, anti-infection, anti-
tumor, anticoagulant, anti-liver fibrosis and anti-atherosclerosis. However, curcumin is
insoluble in water, which makes it difficult to play a pharmacological role in daily life.
The encapsulation and sustained release of curcumin via GTA-m-CS/DDEAC system will
expand the application of curcumin in medicine and functional food. Research in these
areas will be continued.

4. Conclusions

GTA-m-CS and DDEAC were successfully synthesized through the nucleophilic sub-
stitution method. The DDEAC began to interact with GTA-m-CS through hydrophobic
interaction at its concentration of ca. 0.088 mmol/L at room temperature, which was
almost unaffected by GTA-m-CS concentration. Both the cmc and γcmc values of DDEAC
increased with the increase of GTA-m-CS concentration, and decreased with raising tem-
perature. The efficiency of GTA-m-CS/DDEAC in reducing surface tension was much
higher ( pc20 = 0.012 ∼ 0.078 mmol L) than that of DDEAC (pc20 = 0.20 mmol L) for the
good synergistic effect. The ability to reduce surface tension ( πcmc = 41 ∼ 45 mN/m)
was only slightly affected by the synergistic effect. The formation of GTA-m-CS/DDEAC
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aggregates was spontaneous and an endothermic process, and the number of DDEAC in
one GTA-m-CS/DDEAC aggregate ranged from 6 to 10, depending on the concentration
of GTA-m-CS. With the increase of DDEAC concentration, the hydrophobic interaction
between DDEAC and GTA-m-CS induces the crimp of GTA-m-CS molecules, and reduces
the viscosity of the system. The curcumin encapsulating efficiency of GTA-m-CS/DDEAC
aggregates reaches 31.63 ± 2.37%, and could sustain release 20.59% in 180 min. The results
mean that GTA-m-CS/DDEAC system will expand the application of curcumin in medicine
and functional food.
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