Susceptibility to Degradation in Soil of Branched Polyesterurethane Blends with Polylactide and Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. The Weight Loss
3.2. ATR-FTIR
3.3. 1HNMR
3.4. Molecular Weight Changes
3.5. Changes of Thermal Properties
3.6. Surface Morphology Changes
3.7. Contact Angle Changes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Available online: https://plasticseurope.org/pl/wp-content/uploads/sites/7/2021/11/Plastics_the_facts-WEB-2020_versionJun21_final-1.pdf (accessed on 30 March 2022).
- Kanchanapiya, P.; Intaranon, N.; Tantisattayakul, T. Assessment of the economic recycling potential of a glycolysis treatment of rigid polyurethane foam waste: A case study from Thailand. J. Environ. Manag. 2021, 280, 111638. [Google Scholar] [CrossRef] [PubMed]
- Brzeska, J.; Heimowska, A.; Janeczek, H.; Kowalczuk, M.; Rutkowska, M. Polyurethanes Based on Atactic Poly[(R,S)-3-hydroxybutyrate]: Preliminary Degradation Studies in Simulated Body fluids. J. Polym. Environ. 2014, 22, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Hong, Y. Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioact. Mater. 2022, 15, 250–271. [Google Scholar] [CrossRef] [PubMed]
- Serrano, L.; Rincón, E.; García, A.; Rodríguez, J.; Briones, R. Bio-Degradable Polyurethane Foams Produced by Liquefied Polyol from Wheat Straw Biomass. Polymers 2020, 12, 2646. [Google Scholar] [CrossRef]
- Yao, J.; Dai, Z.; Yi, J.; Yu, H.; Wu, B.; Dai, L. Degradable polyurethane based on triblock polyols composed of polypropylene glycol and e-caprolactone for marine antifouling applications. J. Coat. Technol. Res. 2020, 17, 865–874. [Google Scholar] [CrossRef]
- Brzeska, J.; Morawska, M.; Heimowska, A.; Sikorska, W.; Tercjak, A.; Kowalczuk, M.; Rutkowska, M. Degradability of cross-linked polyurethanes/chitosan composites. Polimery 2017, 62, 771–779. [Google Scholar] [CrossRef]
- Trhlíková, O.; Vlčková, V.; Abbrent, S.; Valešová, K.; Kanizsová, L.; Skleničková, K.; Paruzel, A.; Bujok, S.; Walterová, Z.; Innemanová, P.; et al. Microbial and abiotic degradation of fully aliphatic polyurethane foam suitable for biotechnologies. Polym. Degrad. Stab. 2021, 194, 109764. [Google Scholar] [CrossRef]
- Rizzarelli, P.; Rapisarda, M.; Valenti, G. Mass spectrometry in bioresorbable polymer development, degradation and drug-release tracking. Rapid Commun. Mass Spectrom. 2020, 34, e8697. [Google Scholar] [CrossRef]
- Stępień, A.E. Microbiological degradation of polyurethanes. Polimery 2011, 56, 716–720. (In Polish) [Google Scholar] [CrossRef]
- Cosgrove, L.; Mc Geechan, P.L.; Robson, G.D.; Handley, P.S. Fungal Communities Associated with Degradation of Polyester Polyurethane in Soil. Appl. Environ. Microbiol. 2007, 73, 5817–5824. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Satti, S.M.; Luqman, A.; Hasan, F.; Shah, Z.; Shah, A.A. Degradation of Polyester Polyurethane by Aspergillus sp. StrainS45 Isolated from Soil. J. Polym. Environ. 2018, 26, 301–310. [Google Scholar] [CrossRef]
- Roy, R.; Mukherjee, G.; Das Gupta, A.; Tribedi, P.; Sil, A.K. Isolation of a soil bacterium for remediation of polyurethane and low-density polyethylene: A promising tool towards sustainable cleanup of the environment. 3 Biotech 2021, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Acik, G. Synthesis, properties and enzymatic biodegradation behavior of fluorinated poly(ε-caprolactone)s. Express Polym. Lett. 2020, 14, 272–280. [Google Scholar] [CrossRef]
- Zięba, M.; Włodarczyk, J.; Gupta, A.; Pastusiak, M.; Chaber, P.; Janeczek, H.; Musioł, M.; Sikorska, W.; Kaczmarczyk, B.; Radecka, I.; et al. Bioresorbable electrospun mats of poly(D,L)-lactide/poly[(R,S)-3-hydroxybutyrate] blends for potential use in the treatment of difficult-to-heal skin wounds. Eur. Polym. J. 2021, 147, 110334. [Google Scholar] [CrossRef]
- Tai, N.L.; Ghasemlou, M.; Adhikari, R.; Adhikari, B. Starch-based isocyanate- and non-isocyanate polyurethane hybrids: A review on synthesis, performance and biodegradation. Carbohydr. Polym. 2021, 265, 118029. [Google Scholar] [CrossRef]
- Brzeska, J.; Tercjak, A.; Sikorska, W.; Mendrek, B.; Kowalczuk, M.; Rutkowska, M. Degradability of Polyurethanes and Their Blends with Polylactide, Chitosan and Starch. Polymers 2021, 13, 1202. [Google Scholar] [CrossRef]
- Arslan, H.; Adamus, G.; Hazer, B.; Kowalczuk, M. Electrospray ionisation tandem mass spectrometry of poly[(R,S)-3-hydroxybutanoic acid] telechelics containing primary hydroxyl end groups. Rapid Commun. Mass Spectrom. 1999, 13, 2433–2438. [Google Scholar] [CrossRef]
- Brzeska, J.; Tercjak, A.; Sikorska, W.; Kowalczuk, M.; Rutkowska, M. Morphology and Physicochemical Properties of Branched Polyurethane/Biopolymer Blends. Polymers 2020, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Skłodowski, P. Roczniki Gleboznawcze; Tom LX Nr 2; Wyd. Polskiego Towarzystwa Gleboznawczego: Warszawa, Poland, 2009; pp. 5–16. (In Polish) [Google Scholar]
- Calleros, E.L.; Simonovsky, F.I.; Garty, S.; Ratner, B.D. Crosslinked, biodegradable polyurethanes for precision-porous biomaterials: Synthesis and properties. J. Appl. Polym. Sci. 2020, 137, 48943. [Google Scholar] [CrossRef]
- Wojturska, J. Enzymatic degradation of polyurethanes. Part ii. Influence of the chemical Structure of the polyurethanes and enzymatic hydrolysis conditions. Polimery 2011, 56, 177–184. (In Polish) [Google Scholar] [CrossRef]
- Gorna, K.; Gogolewski, S. In vitro degradation of novel medical biodegradable aliphatic polyurethanes based on E-caprolactone and Pluronics with various hydrophilicities. Polym. Degrad. Stab. 2002, 75, 113–122. [Google Scholar] [CrossRef]
- Rutkowska, M.; Krasowska, K.; Heimowska, A.; Steinka, I.; Janik, H. Degradation of polyurethanes in sea water. Polym. Degrad. Stab. 2002, 76, 233–239. [Google Scholar] [CrossRef]
- Kucharczyk, P.; Pavelková, A.; Stloukal, P.; Sedlarík, V. Degradation behaviour of PLA-based polyesterurethanes under abiotic and biotic environments . Polym. Degrad. Stab. 2016, 129, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; She, P.; He, J.; Xiang, Z.; Li, Z.; Cao, Y.; Zhang, X. Full-biodegradable polylactide-based thermoresponsive copolymer with a wide temperature range: Synthesis, characterization and thermoresponsive properties. React. Funct. Polym. 2019, 142, 128–133. [Google Scholar] [CrossRef]
- Li, P.; Zhu, Z.; Kong, M.; Lv, Y.; Huang, Y.; Yang, Q.; Li, G. Fully biodegradable polylactide foams with ultrahigh expansion ratio and heat resistance for green packaging. Int. J. Biol. Macromol. 2021, 183, 222–234. [Google Scholar] [CrossRef]
- Ferreira, R.R.; Souza, A.G.; Quispe, Y.M.; DeRosa, D.S. Essential oils loaded-chitosan nanocapsules incorporation in biodegradable starch films: A strategy to improve fruits shelf life. Int. J. Biol. Macromol. 2021, 188, 628–638. [Google Scholar] [CrossRef]
- Brzeska, J.; Dacko, P.; Gębarowska, K.; Janik, H.; Kaczmarczyk, B.; Kasperczyk, J.; Kowalczuk, M.; Rutkowska, M. The structure of novel polyurethanes containing synthetic poly[(R,S)-3-hydroxybutyrate]. J. Appl. Polym. Sci. 2012, 12, 4285–4291. [Google Scholar] [CrossRef]
- Gubanska, I.; Kucinska-Lipka, J.; Janik, H. The influence of amorphous macrodiol, diisocyanate type and L-ascorbic acid modifier on chemical structure, morphology and degradation behaviour of polyurethanes for tissue scaffolds fabrication. Polym. Degrad. Stab. 2019, 163, 52–67. [Google Scholar] [CrossRef]
- Oprea, S.; Potolinca, V.O.; Gradinariu, P.; Joga, A.; Oprea, V. Synthesis, properties, and fungal degradation of castor-oil based polyurethane composites with different cellulose contents. Cellulose 2016, 23, 2515–2526. [Google Scholar] [CrossRef]
- Suchkova, G.G.; Maklakov, L.I. Amide bands in the IR spectra of urethanes. Vib. Spectrosc. 2009, 51, 333–339. [Google Scholar] [CrossRef]
- Pilch-Pitera, B.; Wojturska, J. Biodegradation of poly(ester urethanes) under simulated composting conditions. Polimery 2012, 57, 852–860. (In Polish) [Google Scholar] [CrossRef]
- Saha, P.; Khomlaem, C.; Aloui, H.; Kim, B.S. Biodegradable Polyurethanes Based on Castor Oil and Poly(3-hydroxybutyrate). Polymers 2021, 13, 1387. [Google Scholar] [CrossRef] [PubMed]
- Wojturska, J. Enzymatic degradation of polyurethanes. Part I. Decomposition products Evaluation and mathematical modeling of process. Polimery 2011, 56, 91–98. (In Polish) [Google Scholar] [CrossRef]
- Tatai, L.; Moore, T.G.; Adhikari, R.; Malherbe, F.; Jayasekara, R.; Griffiths, I.; Gunatillake, P.A. Thermoplastic biodegradable polyurethanes: The effect of chain extender structure on properties and in-vitro degradation. Biomaterials 2007, 28, 5407–5417. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, W.; Musiol, M.; Nowak, B.; Pająk, J.; Labuzek, S.; Kowalczuk, M.; Adamus, G. Degradability of polylactide and its blend with poly[(R,S)-3-hydroxybutyrate] in industrial composting and compost extract. Int. Biodeterior. Biodegrad. 2015, 101, 32–41. [Google Scholar] [CrossRef]
- Sahoo, S.; Kalita, H.; Mohanty, S.; Nayak, S.K. Degradation Study of Biobased Polyester–Polyurethane and its Nanocomposite under Natural Soil Burial, UV Radiation and Hydrolytic-Salt Water Circumstances. J. Polym. Environ. 2018, 26, 1528–1539. [Google Scholar] [CrossRef]
- Podzorova, M.V.; Tertyshnaya, Y.V. Degradation of Polylactide–Polyethylene Binary Blends in Soil. J. App. Chem. 2019, 92, 767–774. [Google Scholar] [CrossRef]
- Oprea, S.; Oprea, V. Biodegradation of crosslinked polyurethane acrylates/guar gum composites under natural soil burial conditions. e-Polymers 2016, 16, 277–286. [Google Scholar] [CrossRef]
- Liber-Kneć, A.; Łagan, S. The Use of Contact Angle and the Surface Free Energy as the Surface Characteristics of the Polymers Used in Medicine. Polim. Med. 2014, 44, 29–37. (In Polish) [Google Scholar]
- Liu, C.H.; Lee, H.-T.; Tsou, X.-H.; Wang, C.-C.; Gu, J.-H.; Suen, M.-C. Preparation and characterization of biodegradable polyurethane composites containing oyster shell powder. Polym. Bullet. 2020, 77, 3325–3347. [Google Scholar] [CrossRef]
- Johnston, P.; Freischmidt, G.; Easton, C.D.; Greaves, M.; Casey, P.S.; Bristow, K.L.; Gunatillake, P.A.; Adhikari, R. Hydrophobic-hydrophilic surface switching properties of nonchain extended poly(urethane)s for use in agriculture to minimize soil water evaporation and permit water infiltration. J. Appl. Polym. Sci. 2017, 134, 44756. [Google Scholar] [CrossRef] [Green Version]
- Wojturska, J. The effect of chain extender structure on the enzymatic degradation of carbohydrate based polyurethane elastomers. Polimery 2020, 65, 125–135. [Google Scholar] [CrossRef]
- Wojturska, J. Resistance of high solid polyurethane coatings to biotic and abiotic factors. Polimery 2018, 63, 708–715. (In Polish) [Google Scholar] [CrossRef]
Sample | Composition of the Soft Segments | PLA [wt.% in PUR Blend] | St [wt.% in PUR Blend] | ||
---|---|---|---|---|---|
R,S-PHB: | PCLtriol: | PCLdiol [wt.%] | |||
PUR 10/5 | 10: | 5: | 85 | 0 | 0 |
PUR 10/5 + PLA | 10: | 5: | 85 | 5.0 | 0 |
PUR 20/5 | 20: | 5: | 75 | 0 | 0 |
PUR 20/5 + PLA | 20: | 5: | 75 | 5.0 | 0 |
PUR 20/5 + St | 20: | 5: | 75 | 0 | 2.5 |
Comonomeric Units | Structure | Group | Designation of Protons in 1HNMR Spectra |
---|---|---|---|
Diisocyanate H12MDI | NH | 1 | |
CH | 2 | ||
CH2 | 3 | ||
CH2 | 4 | ||
CH | 5 | ||
CH2 | 6 | ||
Polyester PCLdiol and PCLtriol | CH2 | 7 | |
CH2 | 8 | ||
CH2 | 9 | ||
CH2 | 10 | ||
CH2 | 11 | ||
Polyester R,S-PHB | CH | 12 | |
CH3 | 13 | ||
CH2 | 14 | ||
Chain extender 1,4-BD | CH2 | 15 | |
CH2 | 16 | ||
Polyester PLA | CH | 17 | |
CH3 | 18 |
Sample | Mn [Da] | Mw [Da] | Mw/Mn |
---|---|---|---|
PUR 20/5 | 2.5 × 104 | 4.7 × 104 | 1.86 |
PUR 20/5 S | 2.5 × 104 | 6.5 × 104 | 2.62 |
PUR 20/5 + PLA | 2.4 × 104 | 5.9 × 104 | 2.45 |
PUR 20/5 + PLA S | 2.3 × 104 | 4.9 × 104 | 2.10 |
PUR 20/5 + St | 2.3 × 104 | 3.7 × 104 | 2.09 |
PUR 20/5 + St S | 2.3 × 104 | 4.4 × 104 | 1.94 |
Sample | Before Incubation | After Incubation |
---|---|---|
PUR 10/5 | ||
PUR 10/5 + PLA | ||
PUR 20/5 | ||
PUR 20/5 + PLA | ||
PUR 20/5 + St |
Sample | Tm [°C] | ΔH [J/g] |
---|---|---|
PUR10/5 | 47.2 | 29.2 |
PUR10/5 S | 49.4 | 25.1 |
PUR10/5 + PLA | 45.9 | 22.5 |
PUR10/5 + PLA S | 46.4 | 23.0 |
PUR20/5 | 42.6 | 19.9 |
PUR20/5 S | 44.8 | 18.6 |
PUR20/5 + PLA | 43.9 | 18.9 |
PUR20/5 + PLA S | 46.2 | 20.5 |
PUR20/5 + St | 43.2 | 21.7 |
PUR20/5 + St S | 45.9 | 21.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzeska, J.; Jasik, G.; Sikorska, W.; Mendrek, B.; Karczewski, J.; Kowalczuk, M.; Rutkowska, M. Susceptibility to Degradation in Soil of Branched Polyesterurethane Blends with Polylactide and Starch. Polymers 2022, 14, 2086. https://doi.org/10.3390/polym14102086
Brzeska J, Jasik G, Sikorska W, Mendrek B, Karczewski J, Kowalczuk M, Rutkowska M. Susceptibility to Degradation in Soil of Branched Polyesterurethane Blends with Polylactide and Starch. Polymers. 2022; 14(10):2086. https://doi.org/10.3390/polym14102086
Chicago/Turabian StyleBrzeska, Joanna, Grzegorz Jasik, Wanda Sikorska, Barbara Mendrek, Jakub Karczewski, Marek Kowalczuk, and Maria Rutkowska. 2022. "Susceptibility to Degradation in Soil of Branched Polyesterurethane Blends with Polylactide and Starch" Polymers 14, no. 10: 2086. https://doi.org/10.3390/polym14102086
APA StyleBrzeska, J., Jasik, G., Sikorska, W., Mendrek, B., Karczewski, J., Kowalczuk, M., & Rutkowska, M. (2022). Susceptibility to Degradation in Soil of Branched Polyesterurethane Blends with Polylactide and Starch. Polymers, 14(10), 2086. https://doi.org/10.3390/polym14102086