A New Cellulose-Based Fluorescent Probe for Specific and Sensitive Detection of Cu2+ and Its Applications in the Analysis of Environmental Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Preparation of Carboxymethyl Cellulose Glycidyl Ether (CMC−GE)
2.2.2. Preparation of Probe (CMC−GE−AQ)
2.2.3. Characterization
2.2.4. Fluorescence Properties Testing of CMC−GE−AQ
2.2.5. Real Water Samples Testing
2.2.6. Preparation of CMC−GE−AQ-based Microspheres
3. Results and Discussion
3.1. Synthesis and Characterization of CMC−GE−AQ
3.2. Effect of Detection Conditions on Fluorescence Intensity of CMC−GE−AQ
3.2.1. Solvents Polarity
3.2.2. Solvents pH Value
3.3. Fluorescence Responses to Various Metal Ions
3.4. Fluorescence and UV–Vis Responses of CMC−GE−AQ for Cu2+
3.5. Detection Mechanism Study
3.6. Application of CMC−GE−AQ
3.6.1. Application in Real Water Samples
3.6.2. Application of CMC−GE−AQ-based Microspheres
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, T.; Yong, B.; Dang, L.; Zhang, Y.; Yao, H.; Lin, Q. A simple water-soluble phenazine dye for colorimetric/fluorogenic dual-mode detection and removal of Cu2+ in natural water and plant samples. Dyes Pigments 2019, 171, 107707. [Google Scholar] [CrossRef]
- Mautner, A.; Maples, H.; Kobkeatthawin, T.; Kokol, V.; Karim, Z.; Li, K.; Bismarck, A.; Mlsna, T. Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. Int. J. Environ. Sci. Technol. 2016, 13, 1861–1872. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; He, H.; Zhu, H.; Hou, X.; Chen, X.; Zhou, S.; Wang, S.; Huang, L.; Lin, J. Preparation and properties of a biomass cellulose-based colorimetric sensor for Ag+ and Cu2+. Ind. Crops Prod. 2019, 137, 410–418. [Google Scholar] [CrossRef]
- Yang, T.; Hodson, M. Investigating the potential of synthetic humic-like acid to remove metal ions from contaminated water. Sci. Total Environ. 2018, 635, 1036–1046. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, Y.; Wang, Y.; Wang, Y.; Li, T.; Song, C.; Wei, N.; Wang, Q. Sensitive and selective detection of Cu2+ ions based on fluorescent Ag nanoparticles synthesized by R-phycoerythrin from marine algae Porphyra yezoensis. Ecotoxicol. Environ. Saf. 2019, 168, 356–362. [Google Scholar] [CrossRef]
- Samaraweera, H.; Pittman, C.; Thirumalai, R.; Hassan, E.; Perez, F.; Mlsna, T. Characterization of graphene/pine wood biochar hybrids: Potential to remove aqueous Cu2+. Environ. Res. 2021, 192, 110283. [Google Scholar] [CrossRef]
- Narukawa, T.; Numata, M.; Kuroiwa, T. Elemental Analysis of Biodiesel by Inductively Coupled Plasma Optical Emission and Flame Atomic Absorption Spectrometries. Anal. Lett. 2017, 50, 1335–1344. [Google Scholar] [CrossRef]
- Lei, Z.; Gao, W.; Zeng, J.; Wang, B.; Xu, J. The mechanism of Cu2+ adsorption onto 2,3-dialdehyde nano-fibrillated celluloses. Carbohydr. Polym. 2020, 230, 115631. [Google Scholar] [CrossRef]
- Liu, C.; Lei, X.; Liang, X.; Jia, J.; Wang, L. Visible sequestration of Cu2+ ions using amino-functionalized cotton fiber. RSC Adv. 2017, 7, 9744. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, N.; Zhang, Y.; Subhani, Q.; Intisar, A.; Mingli, Y.; Cui, H.; Zhu, Y. Comparative steam distillation-based digestion of complex inorganic copper concentrates samples followed by ion chromatographic determination of halogens. Microchem. J. 2020, 158, 105176. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Wu, N.; Xu, M.; Wang, M.; Zhang, L.; Yang, W. One-pot synthesis of a carbon dots@zeolitic imidazolate framework-8 composite for enhanced Cu2+ sensing. Anal. Methods 2020, 12, 4058–4063. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Fan, M.; Xu, J.; Guo, Y.; Ma, Y.; Zhou, M.; Bai, J.; Wang, J.; Fang, Y. Dual-emission ratio fluorescent probes based on carbon dots and gold nanoclusters for visual and fluorescent detection of copper ions. Microchim. Acta 2020, 187, 660. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zheng, W.; Yao, Y.; Wang, D.; Lv, G.; Li, C. Phenoxazine-based Near-infrared Fluorescent Probes for the Specific Detection of Cu2+ Ions in Living Cells. Chem. Asian J. 2020, 15, 2864–2867. [Google Scholar] [CrossRef] [PubMed]
- Sivaraman, G.; Iniya, M.; Anand, T.; Kotla, N.; Sunnapu, O.; Singaravadivel, S.; Gulyani, A.; Chellappa, D. Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord. Chem. Rev. 2018, 357, 50–104. [Google Scholar] [CrossRef]
- Makowska, J.; Żamojć, K.; Wyrzykowski, D.; Wiczk, W.; Chmurzyński, L. Cu2+ complexation by fragment of central part of FBP28 protein from Mus musculus. Biophys. Chem. 2018, 241, 55–60. [Google Scholar] [CrossRef]
- Warrier, S.; Kharkar, P. A coumarin based chemosensor for selective determination of Cu2+ ions based on fluorescence quenching. J. Lumin. 2018, 199, 407–415. [Google Scholar] [CrossRef]
- Baslak, C.; Kursunlu, A. A naked-eye fluorescent sensor for Cu2+ ions based on a naphthalene conjugate Bodipy dye. Photochem. Photobiol. Sci. 2018, 17, 1091–1097. [Google Scholar] [CrossRef]
- Żamojć, K.; Kamrowski, D.; Zdrowowicz, M.; Wyrzykowski, D.; Wiczk, W.; Chmurzyński, L.; Makowska, J. A Pentapeptide with Tyrosine Moiety as Fluorescent Chemosensor for Selective Nanomolar-Level Detection of Cu2+ Ions. Int. J. Mol. Sci. 2020, 21, 743. [Google Scholar] [CrossRef] [Green Version]
- Makowska, J.; Żamojć, K.; Wyrzykowski, D.; Żmudzińska, W.; Uber, D.; Wierzbicka, M.; Wiczk, W.; Chmurzyński, L. Probing the binding of Cu2+ ions to a fragment of the Aβ(1–42) polypeptide using fluorescence spectroscopy, isothermal titration calorimetry and molecular dynamics simulations. Biophys. Chem. 2016, 216, 44–50. [Google Scholar] [CrossRef]
- Rahman, S.; Hasan, S.; Nitai, A.; Nam, S.; Karmakar, A.; Ahsan, S.; Shiddiky, M.; Ahmed, M. Recent Developments of Carboxymethyl Cellulose. Polymers 2021, 13, 1345. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Yang, G. A Facile Strategy for the Preparation of Carboxymethyl cellulose-Derived Polymer Dots and Their Application to Detect Tetracyclines. Macromol. Chem. Phys. 2021, 222, 2100267. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Z.; Wang, Y.; Meng, Z.; Zhao, Z. A self-healing carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel with fluorescent bioprobes for glucose detection. Carbohydr. Polym. 2021, 274, 118642. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Du, J.; Kou, J.; Zhang, Z.; Liu, F. Hierarchical porous cellulose/lanthanide hybrid materials as luminescent sensor. J. Rare Earths 2018, 36, 1036–1043. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, M.; Xiong, J. Fluorescence probe based carboxymethyl cellulose/Tb3+ nanocomposites for detection of Mn2+ with simpleness, rapidness and high sensitivity. Carbohydr. Polym. 2018, 190, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, H.; Marwani, H.; Soliman, E. Selective solid phase extraction and determination of trace Pd2+ using multi-walled carbon nanotubes modified with 8-aminoquinoline. J. Mol. Liq. 2017, 232, 139–146. [Google Scholar] [CrossRef]
- Mohamad, N.; Zakaria, N.; Daud, N.; Tan, L.; Ta, G.; Heng, L.; Hassan, N. The Role of 8-Amidoquinoline Derivatives as Fluorescent Probes for Zinc Ion Determination. Sensors 2021, 21, 311. [Google Scholar] [CrossRef]
- Liu, Z.; Li, G.; Ma, Q.; Liu, L.; Su, X. A near-infrared turn-on fluorescent nanosensor for Zn2+ based on CuInS2 quantum dots modified with 8-aminoquinoline. Microchim. Acta 2014, 181, 1385–1391. [Google Scholar] [CrossRef]
- Yue, Y.; Dong, Q.; Zhang, Y.; Sun, Y.; Gong, Y. A highly selective “turn-on” fluorescent chemosensor based on 8-aminoquinoline for detection of Zn2+. Anal. Methods 2015, 7, 5661–5666. [Google Scholar] [CrossRef]
- Fu, J.; Chang, Y.; Li, B.; Mei, H.; Xu, K. An aminoquinoline based fluorescent probe for sequential detection of Zn2+ and inorganic phosphate and application in living cell imaging. Appl. Organomet. Chem. 2019, 33, e5162. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, W.; Qiu, S.; Luo, L.; Li, Y.; Guo, L.; Lin, Z.; Chen, G. Colorimetric probe for Cu2+ ion detection based on cost-effective aminoquinoline derivative. Anal. Methods 2017, 9, 1727–1731. [Google Scholar] [CrossRef]
- He, H.; Huang, W.; Gao, F. Comparison of four methods for determining fiber content of carbon fiber/epoxy composites. Int. J. Polym. Anal. Charact. 2016, 21, 251–258. [Google Scholar] [CrossRef]
- Lin, Q.; Gao, M.; Chang, J.; Ma, H. Adsorption properties of crosslinking carboxymethyl cellulose grafting dimethyldiallylammonium chloride for cationic and anionic dyes. Carbohydr. Polym. 2016, 151, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, H.; Zhang, C.; Cheng, M.; He, H. PEI-grafted magnetic cellulose for Cr (VI) removal from aqueous solution. Cellulose 2018, 25, 4757–4769. [Google Scholar] [CrossRef]
- Shi, T.; Lu, Y. Fluorescent cellulose films with pH response and polarized emission. Polymer 2020, 189, 122167. [Google Scholar] [CrossRef]
- Zhou, X.; Wei, Z.; Du, J.; Wang, X.; Zhang, G. Preparation and Properties of Magnetic-fluorescent. Microporous Polymer Microspheres. Chem. Res. Chin. Univ. 2018, 34, 684–690. [Google Scholar] [CrossRef]
- Shankar, S.; Gowthaman, N.; Abraham, S. Synthesis of albumin capped gold nanoparticles and their direct attachment on glassy carbon electrode for the determination of nitrite ion. J. Electroanal. Chem. 2018, 828, 33–40. [Google Scholar] [CrossRef]
- Mataga, N.; Kaifu, Y.; Koizumi, M. Solvent Effects upon Fluorescence Spectra and the Dipolemoments of Excited Molecules. Bull. Chem. Soc. Jpn. 1956, 29, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Song, R.; Xu, Z.; Jing, Y.; Dai, H.; Fang, G. Fluorescent cellulose nanocrystals with responsiveness to solvent polarity and ionic strength. Sens. Actuators B Chem. 2018, 275, 490–498. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J.; Yang, Y.; Fang, H.; Xu, X.; Rui, J.; Su, F.; Xu, H.; Wang, S. A novel hexahydroquinazolin-2-amine-based fluorescence sensor for Cu2+ from isolongifolanone and its biological applications. RSC Adv. 2017, 7, 33263–33272. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Deng, M.; Tang, X.; Zhu, T. Luminescent AIZS−GO nanocomposites as fluorescent probe for detecting Cu2+ ion. Sens. Actuators B Chem. 2016, 233, 25–30. [Google Scholar] [CrossRef]
- Liao, S.; Huang, X.; Yang, H.; Chen, X. Nitrogen-doped carbon quantum dots as a fluorescent probe to detect copper ions, glutathione, and intracellular pH. Anal. Bioanal. Chem. 2018, 410, 7701–7710. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ai, Y.; Zhang, Y.; Ren, Y.; Wang, J.; Yao, F.; Li, W.; Zhou, Y.; Sun, Y.; Liu, J.; et al. A new probe with high selectivity and sensitivity for detecting copper ions in traditional Chinese medicine and water sample. Inorg. Chem. Commun. 2021, 128, 108563. [Google Scholar] [CrossRef]
- Pan, J.; Yu, J.; Qiu, S.; Zhu, A.; Liu, Y.; Ban, X.; Li, W.; Yu, H.; Li, L. A novel dibenzimidazole-based fluorescent probe with high sensitivity and selectivity for copper ions. J. Photochem. Photobiol. A Chem. 2021, 406, 113018. [Google Scholar] [CrossRef]
- Sun, R.; Wang, L.; Jiang, C.; Du, Z.; Chen, S.; Wu, W. A Highly Efficient BODIPY Based Turn-off Fluorescent Probe for Detecting Cu2+. J. Fluoresc. 2020, 30, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Pei, M.; Kong, H.; Tian, A.; Liu, X.; Zheng, K.; Ren, Z.; Wang, L. Novel benzotriazole-based probes for the selective detection of Cu2+. J. Mol. Struct. 2022, 1250, 131806. [Google Scholar] [CrossRef]
- Roy, S.; Prodhan, C.; Chaudhuri, K.; Rajak, K. A benzimidazole-based chemodosimeter for the fluorometric detection of Zn and Cu via 1,5 proton shifts and C−N bond cleavage. Photochem. Photobiol. Sci. 2017, 16, 1103–1116. [Google Scholar]
- Guo, S.; Liu, G.; Fan, C.; Pu, S. A new diarylethene-derived probe for colorimetric sensing of Cu2+ and fluorometric sensing of Cu2+ and Zn2+: Photochromism and High Selectivity. Sens. Actuators B Chem. 2018, 266, 603–613. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, N.; Hu, X.; Tian, J. Interaction of alpinetin with bovine serum albumin: Probing of the mechanism and binding site by spectroscopic methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 76, 410–417. [Google Scholar] [CrossRef]
- Rao, H.; Ge, H.; Lu, Z.; Liu, W.; Chen, Z.; Zhang, Z.; Wang, X.; Zou, P.; Wang, Y.; He, H.; et al. Copper nanoclusters as an on-off-on fluorescent probe for ascorbic acid. Microchim. Acta 2016, 183, 1651–1657. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Z.; Tan, H.; Li, X.; Yan, J.; Dong, C.; Zhang, L. Two novel rhodamine-based fluorescent probes for the rapid and sensitive detection of Fe3+: Experimental and DFT calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 213, 167–175. [Google Scholar] [CrossRef]
- Boontom, S.; Boonkitpatarakul, K.; Sukwattanasinitt, M.; Niamnont, N. Highly selective detection of Cu2+ based on a thiosemicarbazone triphenylacetylene fluorophore. Tetrahedron 2017, 73, 2483–2487. [Google Scholar] [CrossRef]
Samples | C 1s % | O 1s % | N 1s % |
---|---|---|---|
CMC−GE | 56.51 | 43.49 | 0 |
CMC−GE−AQ | 57.39 | 41.17 | 1.44 |
Cu2+ Probes | Detection Limits (mol L−1) | References |
---|---|---|
Coumarin-based probe | 6.4 × 10−7 | [16] |
Naphthalene conjugate BODIPY dye-based probe | 1.28 × 10−6 | [17] |
Luminescent AIZS−GO nanocomposites | 1.8 × 10−7 | [40] |
Nitrogen-doped carbon quantum dots (N−CQDs) | 9 × 10−8 | [41] |
Chromoxanthin-based probe (TR−V) | 8.4 × 10−8 | [42] |
Dibenzimidazole-based probe | 9.4 × 10−8 | [43] |
BODIPY-based Turn-off probe (HHPBA−BODIPY) | 3.5 × 10−7 | [44] |
Benzotriazole-based probe | 8 × 10−6 | [45] |
Benzimidazole-based chemodosimeter (APBHN) | 1.48 × 10−7 | [46] |
Diarylethene-derived colorimetric probe | 5.47 × 10−7 | [47] |
CMC−GE−AQ | 6.4 × 10−8 | This work |
Real Water Samples | Standard Added Cu2+ Concentrations (×10−6 mol L−1) | Standard Detected by Fluorescence Spectroscopy (×10−6 mol L−1) | Recovery by Fluorescence Spectroscopy (%) | Standard Detected by Atomic Absorption Spectrometry (×10−6 mol L−1) | Recovery by Atomic Absorption Spectrometry (%) |
---|---|---|---|---|---|
Xuanwu Lake water | 0 | Not detected | − | Not detected | − |
1 | 0.84 ± 0.16 | 84.0 | 1.48 ± 0.11 | 148.0 | |
3 | 3.56 ± 0.41 | 118.7 | 4.59 ± 0.26 | 153.0 | |
5 | 5.11 ± 0.10 | 102.2 | 7.36 ± 0.07 | 147.2 | |
7 | 6.91 ± 0.08 | 98.7 | 10.38 ± 0.04 | 148.3 | |
Yangtze River water | 0 | Not detected | − | Not detected | − |
1 | 0.82 ± 0.13 | 82.0 | 1.83 ± 0.03 | 183.0 | |
3 | 3.52 ± 0.38 | 117.3 | 4.93 ± 0.12 | 164.0 | |
5 | 5.28 ± 0.21 | 105.6 | 7.59 ± 0.23 | 151.8 | |
7 | 6.83 ± 0.13 | 97.6 | 10.58 ± 0.04 | 151.1 | |
Tap water | 0 | Not detected | − | Not detected | − |
1 | 0.87 ± 0.10 | 87.0 | 1.12 ± 0.04 | 112.0 | |
3 | 3.06 ± 0.05 | 102.0 | 4.35 ± 0.11 | 145.0 | |
5 | 4.98 ± 0.01 | 99.6 | 7.57 ± 0.08 | 151.1 | |
7 | 7.03 ± 0.06 | 100.4 | 10.26 ± 0.06 | 146.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Meng, Z.; Wang, Z.; Yang, Y. A New Cellulose-Based Fluorescent Probe for Specific and Sensitive Detection of Cu2+ and Its Applications in the Analysis of Environmental Water. Polymers 2022, 14, 2146. https://doi.org/10.3390/polym14112146
Zhao F, Meng Z, Wang Z, Yang Y. A New Cellulose-Based Fluorescent Probe for Specific and Sensitive Detection of Cu2+ and Its Applications in the Analysis of Environmental Water. Polymers. 2022; 14(11):2146. https://doi.org/10.3390/polym14112146
Chicago/Turabian StyleZhao, Fei, Zhiyuan Meng, Zhonglong Wang, and Yiqin Yang. 2022. "A New Cellulose-Based Fluorescent Probe for Specific and Sensitive Detection of Cu2+ and Its Applications in the Analysis of Environmental Water" Polymers 14, no. 11: 2146. https://doi.org/10.3390/polym14112146
APA StyleZhao, F., Meng, Z., Wang, Z., & Yang, Y. (2022). A New Cellulose-Based Fluorescent Probe for Specific and Sensitive Detection of Cu2+ and Its Applications in the Analysis of Environmental Water. Polymers, 14(11), 2146. https://doi.org/10.3390/polym14112146