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Abstract: Reed charcoal/polypropylene (RC/PP) composites were prepared by melt-blending and
molding processes. The effects of RC addition (by mass fraction) on its mechanical properties were
investigated and the mechanism characterized. The results showed that RC and PP were physically
bonded and formed a mechanical interlocking matrix. The water absorption rate of these composites
was <1% at 168 h. As the RC mass fraction increased, the tensile modulus, crystallinity, and energy
storage modulus of the composites increased and then decreased, with the tensile modulus reaching
a maximum of 679.4 MPa. The thermal decomposition rate peak and starting melt temperature
increased by 14.8 and 2.5 ◦C, respectively, compared to pure PP, and the energy storage modulus
reached a maximum of 3752.8 MPa at 40 wt% RC. The addition of RC in appropriate amounts
improved the rigidity and thermal stability of these composites.

Keywords: polypropylene; compound material; reed charcoal; mechanical properties; thermal properties

1. Introduction

More than one-third of the cities in China are deep in the dilemma of a garbage
siege [1,2]. The proportion of waste plastic products in solid waste has reached 15–20%.
The fatal drawback of plastic products is that they are difficult to degrade or even non-
degradable. Waste plastic treatment currently involves three main methods, including in
landfill, incineration, and recycling. In landfill treatment, plastic decay in soil is not only
long-term, with some plastics unable to decay, it also affects soil permeability and damages
soil quality, thus affecting plant growth. Incineration treatment is easy, but can release
toxic chemicals, such as dioxins and other harmful gases, as well as a large amount of
greenhouse gases. Thus, from the perspective of resource conservation, the recycling of
waste plastics is the direction for development now and in the future. Compounding waste
plastics with other materials to prepare composite materials is one of the important means
for recycling and reusing waste plastics.

Biomass char is a porous material with strong adsorption properties [3,4]. The main
raw material for the preparation of biomass char is wood. However, with the shortage
of wood resources in the world, researchers are increasingly seeking other environment-
friendly, renewable, and low-cost alternative resources. Biochar prepared from low-density
resources, such as reeds, straws, fruit shells, and sugarcane, by pyrolysis under anaerobic
or anoxic conditions at certain temperatures (<700 ◦C) have been found to have well-
developed pore structures and high specific surface areas [5–8]. Among these, activated
reed biochar is mainly composed of aromatic hydrocarbons and elemental carbon (C) or C
with a graphite structure. In addition to C, char also includes hydrogen, oxygen, nitrogen,
and sulfur, as well as small amounts of trace elements. Its specific surface area can reach
1395 m2/g [9], which is higher than the average specific surface area of biomass char. Reed
is widely distributed throughout the world, but its short growth cycle and large annual
production have led to a large amount of reeds not being used effectively and rotting in
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the ground, as well as causing ecological damage. The use of reed pyrolysis into biomass
carbon to produce carbon plastic composites can broaden the scope of application of reed
resources and solve the ecological problems caused by reeds. Such chars can be used
as adsorbent materials, fuels, and char-based composites, and its high dispersibility and
well-developed pore structures yield them easily compounded with polymers, such as
plastics, to prepare char/plastic composites [10–12].

Charcoal/plastic composites have excellent properties, such as high strength, water
resistance, no formaldehyde release, and formaldehyde absorption from the environment,
and can be widely used in furniture manufacturing, interior decoration, vehicle interiors,
and other fields. Researchers have performed many studies on biomass charcoal-plastic
composites [13–17]. Zhao et al. [18] used bamboo charcoal and a polypropylene composite
to prepare charcoal-plastic composites and, when the content of bamboo charcoal was
10%, the tensile strength of charcoal/plastic composites reached a maximum of 20.51 MPa,
which is 12.6% higher than the tensile strength of pure polypropylene (PP). Das et al. [19]
used pine biochar and PP composites to prepare charcoal/plastic composites, and their
results showed that the addition of the appropriate amount of charcoal to PP improved
the tensile and flexural moduli and thermal stability of these composites. Peterson [20]
prepared composites with good tensile strength, elongation, and toughness using corn
starch and corn stover biochar compounded with styrene-butadiene rubber. Das et al. [21]
prepared biocomposites by adding pine biochar and PP to four biomass wastes, including
rice husk, coffee husk, coarse wool, and landfill wood, and found that the resulting com-
posites exhibited high tensile/bending properties along with good thermal stability. The
aforementioned studies have shown that good-performance RC/plastic composites can be
prepared by compounding biomass char with polymers, but there have been few studies
regarding the preparation of RC/plastic composites by compounding reed biochar with
polymers. In this study, reed char and PP were used as the main raw materials for preparing
reed char/plastic composites by melt-blending and molding. The effects of the reed char
mass fraction on the physical and mechanical properties of reed char/plastic composites
were investigated, with the aim to provide theoretical support for the development of reed
char-plastic composites.

2. Experimental Materials and Methods
2.1. Experimental Materials
2.1.1. Raw Materials

RC, particle diameter 75 µm, was collected from Dongting Lake (Hunan, China); and
PP, T30S, molecular weight of 80,000–150,000 daltons, melt flow rate of 2.5–4.5 g/10 min,
and density of 0.90–0.91 g/cm3, was purchased from China National Petroleum Corp.
(Beijing, China).

2.1.2. Experimental Apparatus

A 101A series electric blast dryer (Shanghai General Factory of Experimental In-
struments, Shanghai, China), Sigma 300 scanning electron microscope (Carl Zeiss AG,
Oberkochen, Germany), RAffinity-1 Fourier infrared spectrometer (Shimadzu Corp., Ky-
oto, Japan), XK-1608 double-roller refiner (Shanghai Rubber Machinery Factory, Shanghai,
China), QD86107 hot press (Suzhou Xinxiexiang Machine Manufacturing Co. Ltd., Suzhou,
China), DCS-R-100 Universal Mechanical Experiment Machine (Shimadzu Corp.), 200F3
Scanning Calorimeter (Netzsch-Gerätebau GmbH, Selb, Germany), PerkinElmer STA 8000
(PerkinElmer, Inc., Waltham, MA, USA), 8411 electric vibrating sieve machine (Anhui
Changhao High Pressure Pipe Fittings Co., Anhui, China), and JP-1500B High-speed
universal crusher, (Jiangyin Manda Machinery Co. Ltd., Jiangyin, China) were used in
this study.
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2.2. Experimental Methods
2.2.1. Raw Material Handling

RC powder was placed in the 8411 electric vibrating sieve machine to obtain 200 mesh
to fine RC. The powder was then placed in a blast drying oven at 105 ◦C for 16 h until there
was no further change in quality and then removed and placed in a self-sealing bag and
set aside. PP was placed in a drying oven and dried continuously at 80 ◦C for 16 h, then
removed and placed in a self-sealing bag and set aside.

2.2.2. Preparation of RC/PP Composites

PP/RC mixes with RC mass fractions of 0, 20, 30, 40, and 50 wt% were weighed and
mixed, each with a total mass of 450 g.

Mixing was carried out on the open double-roller machine at a mixing temperature of
185 ◦C for 10 min. After 4 h of cooling, the material was crushed to granular form by a high-
speed universal crusher, poured into a hot pressing mold (200 mm × 200 mm × 5 mm),
and the surface made even and flat, with a stacking height of ~1 mm above the mold. Two
layers of tin foil were attached to the top and bottom surfaces to prevent the material from
adhering to the hot pressing iron plate, and the mold was slowly put into the hot pressing
machine for 5 min, at 185 ◦C and a hot pressing pressure range from 4 to 6 MPa. The
hot-pressed composites were finally placed in corresponding sealed bags for subsequent
testing and examination.

2.3. Testing and Characterization Methods
2.3.1. Mechanical Properties Characterization

Tensile and bending tests and impacts of RC/PP composites with different mass
fractions were carried out on the universal mechanical testing machine, with the reference
standards for tensile and impact tests, including GB/T1040-2006 [22] and GB/T1043-
2008 [23]. The speed was 20 mm/min, and in sample testing, at least 5 parallel samples
were examined and averaged. Bending test reference standards were GB/T9341-2000 [24],
with the speed at 5 mm/min, and 5 samples tested and averaged.

2.3.2. Characterization of Moisture Resistance

The Reference Standard GB/T1034-2008 Method [25] for the determination of water
absorption in plastics was used here. A specimen was dried in an oven at 50 ◦C for 24
h, cooled to room temperature in a desiccator, weighed (M1), and placed into a constant-
temperature and -humidity chamber with 50% relative humidity (RH) and 23 ◦C. After
24 h, the specimen was reweighed (M2) within 1 min of removal from the chamber. The
specimen was then placed in a 50 ◦C oven to dry for 24 h, after which it was cooled to room
temperature in a desiccator and weighed again (M3). The water absorption mass fraction
(C) was calculated using

C =
M2 −M3

M1
× 100% (1)

2.3.3. Thermogravimetric Analysis (TG)

A sample was hand-sawed at the two ends (20 cm from the end) and the middle of
the 100 mm long charcoal-plastic composite material. The resulting sawing particles were
collected, the 50–80 mesh composite material sawdust sieved, and the resulting powder
placed in the oven at 105 ◦C until the moisture content was <2%. Dried samples of 4–5 mg
were placed in a platinum tray and the temperature increased from 3 to 850 ◦C at a rate
of 20 ◦C/min. The test atmosphere was nitrogen and the mass loss of the composite
and its primary differential curve were recorded, with 3 samples measured and averaged
per group.
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2.3.4. Differential Scanning Calorimetry (DSC)

About 10 mg of RC/PP composite samples was weighed and their thermal properties
measured using differential scanning calorimetry (200F3), from room temperature to 260 ◦C
at a rate of 5 ◦C/min, then a constant temperature of 5 min with a nitrogen purge of
50 mL/min. The crystallinity XC was calculated using

XC(%) =
∆Hm

∆H0 × XPP
× 100% (2)

where ∆Hm is the melt enthalpy of the RC/PP composite, ∆H0 is the melt enthalpy of
209 J/g at 100% crystallization of PP [26], and XPP is the mass fraction of PP in the
RC/PP composite.

2.3.5. Micromorphological Analysis (SEM)

The surface micromorphology of RC and the tensile fracture surface of RC/PP com-
posites were observed using field emission scanning electron microscopy (SEM, Sigma 300,
Oberkochen, Germany) with a gold-sputtered surface and emission voltage of 3.0 kV.

2.3.6. Dynamic Thermomechanical Analysis (DMA)

Dynamic thermomechanical analysis (DMA) characterizes the dynamic modulus and
mechanical loss of a material as a function of temperature or frequency under sinusoidal
periodic vibratory loading. In this study, the dynamic mechanical properties of RC/PP
composite specimens were tested using a dynamic mechanical properties tester (TADMA
850, TA Instruments Ltd., New Castle, DE, USA) with a length, width, and thickness of 60,
10, and 5 mm, respectively, at 100–200 ◦C, a vibration frequency of 1 Hz, and a temperature
rise rate of 3 ◦C/min.

3. Results and Discussion
3.1. Analysis of the Effects of RC Content on the Elastic Modulus and Impact Strength of
RC/PP Composites

The RC/plastic ratio had a large influence on the properties of these composites during
the hot compression molding process. The impact, tensile, and bending strengths of RC/PP
composites made with different charcoal/plastic ratios were tested (Figures 1 and 2).
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Figure 2. Impact properties of RC/PP Composites.

Changes in the bending and tensile properties of composites with different RC contents
showed that, with increased RC addition, the bending modulus gradually rose and the
tensile modulus first rose and then declined. When the mass fraction of RC was 40 wt%,
the bending and tensile elastic moduli of RC/PP composites reached higher values, at
1862.8 and 679.4 MPa, respectively. This increase in elastic modulus was attributed to
intermolecular forces between the RC particles and PP molecules, as RC particles restricted
the mobility of PP polymer chains and led to increased composite stiffness [27–29]. Thus, the
appropriate amount of RC acted as a nucleus during PP crystallization, enabling more PP
molecular chains to be arranged in a regular manner during the crystallization process. This
increased PP crystallinity was manifested macroscopically by the increased stress required
for the material to yield. Das et al. [30] obtained similar results, i.e., the tensile modulus of
polymer/biochar composites increased with increased C content in the polymer matrix,
but excess RC lacked an homogeneous dispersion due to the formation of agglomerates in
the PP matrix [31]. This leads to a weakening of the mechanical interlocking effect between
the RC filler and PP. As a result, the RC content in the PP matrix, which played a crystalline
nucleation role, was reduced. During the crystallization process here, PP molecular chains
were not arranged in a regular manner, such that the crystallinity of PP/RC composites
decreased, which ultimately led to a reduction in the tensile modulus of the material.

The impact strength of these composites decreased with RC content (Figure 2). The
impact strength of the composite was 10.88 kJ/m2 at 40 wt% RC content, which was 49%
lower than that at 20 wt% RC content, mainly due to three reasons. First, RC addition
destroyed the continuity of the resin matrix, which was not conducive to energy transfer
and diffusion. Second, the RC rigid particles, as a dispersed phase, produced stress
concentrations and were susceptible to the silver craze phenomenon when subjected to
external forces, which led to defects within the composite. Third, due to RC’s low density,
as the RC content increased, the proportion of volume occupied by RC increased and
agglomeration increased, weakening bonding at the carbon/plastic interfaces.

3.2. Analysis of the Moisture Resistance of RC/PP Composites

The exposure of RC/plastic composite materials to moisture changes their dimen-
sional stability properties, which also affects their antibacterial properties and mechanical
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properties. This study analyzed this aspect to provide a basis for the future production and
application of RC/plastic composites.

The relationship between water absorption of these composites over time for different
RC contents showed that RC introduction slightly increased the moisture absorption of
RC/PP composites (Figure 3). The moisture resistance of the composites slightly decreased,
which was due to higher moisture absorption by RC. Because the RC exposed at the surface
absorbed water and swelled, weak interfacial bonds between RC particles and the PP
matrix led to an increased number of micropores, both of which were responsible for water
absorption by the material [32,33]. However, the increased moisture absorption of RC/PP
composites was not significant. Murayama et al. [34] studied the preparation of wood-
plastic composites by adding wood flour to polypropylene, and the results showed that
the composite reached a water absorption rate of 3.5% at 168 h. Yet, the RC/PP composite
material had a low moisture absorption rate, all < 1%, as RC was well dispersed in the PP
matrix. Meanwhile, the surface was better covered by the PP matrix, with the two forming
a tighter structure and RC less likely to come into contact with moisture in the air, such
that the RC/PP composite maintained better moisture resistance. The low water content
of these RC/PP composites did not have the necessary substrate and environment for
microorganisms to survive, thus achieving an antimicrobial effect, so RC/PP composites
can be widely used in interior decoration, craft making, furniture, and other fields.
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3.3. Thermal Weight Loss Analysis of RC/PP Composites

The results of thermogravimetric and differential thermogravimetric analyses (TGA
and DTG, respectively) of these composites showed that these RC/plastic composites had
no weight loss peaks between 0 and 200 ◦C, indicating that the composites had low water
content (Figure 4 and Table 1). The starting decomposition temperature of PP was 416.5 ◦C,
the fastest decomposition rate was 458.8 ◦C, the residual C rate at 550 ◦C was 0.73%, and it
had almost no solid carbide generation [35] and no C formation.
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Table 1. Thermal weightlessness of PP and RC/PP composites.

Sample

Starting Decomposition
Temperature Peak 850 ◦C Carbon

Residue Rate

T1 T2 Ash at 850 ◦C

(◦C) (◦C) (%)

PP 416.5 458.8 0.73
20% RC 384.8 462.3 9.34
30% RC 390.6 469.0 19.80
40% RC 415.7 473.6 26.88
50% RC 363.9 471.3 32.03

Note: T1 is the temperature at which the material loses 5% of its weight and is defined as the onset of decomposi-
tion; T2 is the peak temperature of the DTG curve for the carbon plastic composite.

Increased RC proportions reduced the onset of composite decomposition, resulting
in increased decomposition temperatures, probably due to decomposition of volatile RC
components. The results showed that there was only one decomposition temperature band
for these RC/plastic composites (Figure 4). The initial decomposition temperature com-
posites tended to increase and then decrease with increased RC content. The lowest onset
decomposition temperature for RC/PP composites containing 50 wt% RC was 363.9 ◦C.
The 40 wt% RC/PP composite exhibited better thermal stability, probably because, with RC
powder addition, the migration of internal PP molecular chains was weakened and there
was greater resistance to flow with heating, such that more thermal energy was consumed,
thus enhancing composite thermal stability. As the RC content increased, the T2 value
of RC/PP composites shifted to the right, indicating that the composite thermal stability
increased, resulting in the ranking of the composites in terms of the residual RC content
at 850 ◦C to the order of 50% > 40% > 30% > 20% > PP, which indicated that the residual
RC rate of the composite increased with the RC content and was a result that has also been
reported in other literature [36,37]. These composites were seen to be thermally stable with
an appropriate RC content reinforced with PP, which had a certain retarding effect on the
burning of the material.

3.4. Analysis of the Thermal Properties of RC/PP Composites (DSC)

The thermodynamic and thermal histories of these materials during processing were
examined by the first temperature rise of the DSC. In experiments, analysis of the first
temperature rise curve allowed the influence of the processing on the thermodynamic
history of the material to be examined and discussed. Thus, the thermal history and
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influence of the thermodynamic history on the intrinsic structure of RC/PP composites
were deduced from these experiments.

Formula for calculating the crystallinity of composite materials [26]:

Xc = (∆Hm/∆Hm0) × 100% (3)

where Xc is the composite crystallinity, %; ∆Hm is the composite melt enthalpy, J/g; and
∆Hm0 is the standard enthalpy of dissolution of pure PP at 100% crystallization, J/g; A
review of the literature reveals that [26] ∆Hm0 = 209 J/g.

The Tonset (initial melting temperature) of pure PP was 152.26 ◦C and Xc% (sample
crystallinity) was 38.25%. When RC was added, the melt peak temperature of RC/PP
composites did not significantly change compared to pure PP, while the starting melt
temperature increased with RC content (Table 2). When 50 wt% RC was added, the starting
melting temperature reached 155.76 ◦C, indicating that RC addition increased the heat
resistance of these composites. Composite crystallinity data showed a curve that first
increased and then decreased with RC. Although increased crystallinity can enhance the
rigidity and hardness of the material [38], the heterogeneous nucleation of RC in the
polymer should make the mechanical properties and heat resistance of the material more
desirable. The mechanical properties of RC/PP composites with 40% RC content did
not decrease with decreased composite crystallinity and the reasons for these analytical
results might have been due to interfacial interactions between RC and PP. The mechanical
properties of RC raw material, being an inherently brittle material, had a greater effect (as
can be also seen in SEM). When 50 wt% RC was added, the RC/PP composite crystallinity
was only 20.75%, which might have been due to the fact that RC addition restricted
the movement of PP molecular chains and reduced their regularity and proportion of
heterogeneous nucleation, thus reducing composite crystallinity [39].

Table 2. Thermal behaviors of PP and RC/PP composites.

Sample

Sample Melting Parameters

Starting Melting
Temperature Melt Peak Enthalpy of Melt Crystallinity

Tonset Tm 4Hm Xc%

(◦C) (◦C) (J/g)

PP 152.26 164.63 79.96 38.25
20% RC 153.77 163.98 56.65 27.10
30% RC 153.96 163.88 70.04 33.51
40% RC 154.72 163.75 56.83 27.19
50% RC 155.76 163.73 43.37 20.75

3.5. Micromorphological Analysis of RC/PP Composites (SEM)

After tensile fracture, a sample was dried, sprayed with gold, and the section mor-
phologies observed, which revealed the morphology of RC/PP composites with different
RC/plastic ratios (Figure 5). When the RC content was 20 wt%, large areas of PP were
observed after stretching. When external stress was applied, the PP matrix played a domi-
nant role due to the low RC content. However, the PP macromolecular chains had become
shorter, interaction forces between the molecular chains weakened, and composite mechan-
ical strength decreased. When the RC content was 30 and 40 wt%, PP and RC were seen
to be more evenly distributed and more tightly bonded. This indicated that PP molecules
were well diffused into the RC surface pores before stretching, thus forming a strong
physical interlock and stronger bonds between the two. When the RC content was 50 wt%,
the matrix surface had RC particles exposed in brittle fractures, indicating that, at this
time, when external stress was applied, RC played a dominant role. The structure did not
immediately realize stress transfer within the body, resulting in stress concentration [40],
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and causing reduced composite tensile properties, such that excessive RC addition led to
the reduction in the material’s two-phase compatibility.
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3.6. Analysis of Dynamic Thermomechanical Properties of RC/PP Composites (DMA)

As a composite material consisting of polymeric materials, the properties of RC/PP
composites are supposed to lie between those of an ideal solid and ideal liquid, i.e., they
exhibit viscoelasticity. Therefore, the thermomechanical properties of RC/PP composites
were characterized and analyzed using DMA. The test mode was set to a single cantilever
mode with a temperature range from −15 to 180 ◦C, temperature rise rate of 3 ◦C/min,
and frequency of 1 Hz. Energy storage modulus (E′), loss modulus (E”), and loss factor (δ)
curves were obtained for the different RC/PP composites, using the relationship between
the three, expressed as

Tanδ =
E′′

E′
(4)

where E′′ is the loss modulus, which characterizes energy transformation into heat when a
material is deformed, with a smaller value indicating a greater material stiffness; E′ is the
energy storage modulus, also known as elastic modulus, which reflects material stiffness;
and tanδ is a description of the material’s internal friction characteristics.

(1) Modulus of loss (E′′): This loss modulus can represent the energy loss in a material’s
deformation or indicate its viscous behavior. The temperature spectrum of the mate-
rial’s loss modulus showed that the loss modulus was greatest at 20 wt% RC in the
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composite (Figure 6a). According to ASTM E1640, the peak of the loss modulus tem-
perature spectrum or the peak temperature of the loss factor temperature spectrum in
the DMA data can be used to determine the glass transition temperature (Tg) of the
material. The addition of charcoal powder was seen to reduce the composite glass
transition temperature, such that the specimen glass transition temperature decreased
with the charcoal content [41]. The observed decrease in glass transition temperature
might have been related to the presence of pores in the composites.

(2) Loss factor (tanδ): The loss factor is the tangent of the angle between the strain and
stress phase difference. Its value is equal to the ratio of the loss modulus to the energy
storage modulus and reflects the viscous properties of the material. The higher the
tanδ is, the greater the material’s internal energy dissipation, which corresponds to
poor internal bond strength of the material and vice versa. In a certain temperature
range, the tanδ of these composite materials increased with temperature, because
thermal movement in the material was more intense at higher temperatures. The
sliding ability of polymer chains thus increased, which was manifested as an increase
in material flexibility. The loss factor curve of RC/PP composite specimens was exam-
ined as a function of temperature (Figure 6b). Below the glass transition temperature,
the molecular chains in a polymer structure were frozen, such that all small groups
and molecular chains hardly moved and, therefore, the polymer had a small damping
factor and small loss factor. Thus, the loss factor of RC/PP composite specimens was
very close to that of PP. However, when the test temperature was above the glass
transition temperature, the loss factor of pure PP specimens increased more rapidly
and was greater than that of RC/PP composite specimens. Above the glass transition
of 100 ◦C, as the temperature increased, the molecular movement of PP intensified,
thus increasing damping, while the movement of the PP molecular chains in RC/PP
composite specimens was hindered by RC [42]. Comparing the five curves, as the RC
content increased, composite tanδ values decreased, indicating that the corresponding
composite had less internal energy consumption and that the internal bond strength
of the material was higher than that of pure PP specimens.

(3) Energy storage modulus E′: The modulus of energy storage is used to describe the
elastic aspect of a viscoelastic material, similar to the elastic modulus, which shows
the ability of a material to resist deformation and store energy. The higher the energy
storage modulus is, the greater the stiffness and greater the resistance to deformation.
The temperature versus energy storage modulus for RC/PP composite specimens
showed that, for specimens with different RC contents, the energy storage modulus
increased with the RC mass fraction and then decreased (Figure 7). A maximum value
in the glassy region was reached when the RC mass fraction reached 40 wt%. Within a
certain range, the higher the RC mass fraction was, the higher the modulus of elasticity
of composite specimens, which was consistent with the trend of increasing energy
storage modulus with increased RC. Apparently, RC filled in the PP matrix to produce
a good, rigid material and, when the composite was subjected to external forces, the
RC and PP matrix shared the external load during material deformation and played
good supporting roles before the glass transition. In contrast, RC occupied the space
between PP molecular chains, restricting the movement of PP matrix molecular chains
and hindering deformation of the PP matrix, thus increasing composite stiffness. The
results obtained under DMA test conditions were that, below Tg, the E′ value did
not change much and only slightly decreased. Then, around Tg, the E′ value sharply
dropped, which indicated that the amorphous part of the material was in a transition
between the glass and rubber states (i.e., the glass-transition region).
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4. Conclusions

In this study, RC/plastic composites were prepared by melt-mixing and molding
with carbonized reed as the main raw RC source. The effects of RC mass fraction on the
physical and mechanical properties of these composites were examined. RC introduction
had a good enhancing effect on the elastic modulus of these RC/PP composites, increasing
composite stiffness, thereby reducing the impact properties of the PP matrix. The tensile
and flexural elastic moduli of these composites were relatively good with 40 wt% RC, at
679.4 and 1862.8 MPa, respectively, which were 20.1 and 74.5% improved compared to those
of composites with 20 wt% RC, respectively. In contrast, excess RC caused a continuous
decrease in composite strength. These composites had good moisture resistance, with
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moisture absorption rates all below 1%. The starting decomposition temperature of RC/PP
composites increased with the RC content and then decreased, with the highest starting
decomposition temperature at 415.7 ◦C with 40 wt% RC, which was slightly lower than that
of pure PP, and with the highest T2 value at 473.6 ◦C. The thermal stability of the 40 wt%
RC/PP composite was the best. RC addition increased the starting melt temperature of
these composites, with no significant change in the melt peak. At 50 wt% RC, the composite
starting melting temperature reached 155.76 ◦C. The composite crystallinities showed a
curve of increasing and then decreasing crystallinity with increased RC material and, with
50 wt% RC, the crystallinity was only 20.75%. By comparing the composite mechanical
properties, the variation in thermal stability was observed, which showed more than the
interactions between RC and PP. Crystallinity was also one of the main factors affecting the
above-mentioned properties. A suitable RC/plastic ratio enabled PP molecules to diffuse
well into RC surface pores, which resulted in a tighter bond between PP and RC, thus
forming a strong physical interlock and stronger bonds between the two, while excessive
RC proportions resulted in agglomeration when RC was not evenly dispersed in the PP
matrix. Analysis of the dynamic thermo-mechanical properties showed that the material
had the highest energy storage modulus at 40% RC, with a maximum of 3752.8 MPa, and
showing a high degree of rigidity. At ~175 ◦C material, all composites melted, with the
temperature of the tanδ gradually increased and material flexibility increased. The addition
of RC powder reduced the composite glass transition temperature and, with increased RC
content, the glass transition temperature of composite specimens decreased.
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