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Abstract: An essential problem of current construction engineering is the search for ways to obtain
lightweight building structures with improved characteristics. The relevant way is the use of polymer
composite reinforcement and concrete with high classes and prime characteristics. The purpose of this
work is the theoretical and experimental substantiation of the effectiveness of combined-reinforced
glass fiber polymer composite concrete (GFPCC) bending elements, and new recipe, technological
and design solutions. We theoretically and experimentally substantiated the effectiveness of GFPCC
bending elements from the point of view of three aspects: prescription, technological and constructive.
An improvement in the structure and characteristics of glass fiber-reinforced concrete and GFPCC
bending elements of a new type has been proven: the compressive strength of glass fiber-reinforced
concrete has been increased up to 20%, and the efficiency of GFPCC bending elements is comparable to
the concrete bending elements with steel reinforcement of class A1000 and higher. An improvement in
the performance of the design due to the synergistic effect of fiber reinforcement of bending elements
in combination with polymer composite reinforcement with rods was revealed. The synergistic
effect with optimal recipe and technological parameters is due to the combined effect of dispersed
fiber, which strengthens concrete at the micro level, and polymer composite reinforcement, which
significantly increases the bearing capacity of the element at the macro level. Analytical dependences
of the type of functions of the characteristics of bent concrete structures on the arguments—the
parameters of the combined reinforcement with fiber and polymer composite reinforcement—are
proposed. The synergistic effect of such a development is described, a new controlled significant
coefficient of synergistic efficiency of combined reinforcement is proposed. From an economic point
of view, the cost of the developed elements has been reduced and is economically more profitable (up
to 300%).

Keywords: combined reinforcement; glass fiber polymer composite concrete bending elements;
polymer composite reinforcement; ultimate bending moment; compressed zone of concrete

1. Introduction

Currently, one of the most relevant areas in construction science and technologies is the
search for rational combinations of building materials used, new technologies, and design
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solutions. The industry of polymer building materials and products is actively developing.
An important issue is the search for ways to obtain lightweight building structures as
thin as possible and have the smallest sections, while having improved characteristics and
structure of the materials used. Considering all the above, the use of polymer composite
reinforcement concrete of high class and prime characteristics is relevant and in demand
from the point of view of science and practice.

The improvement of reinforced concrete bending elements is the most relevant at the
present time and has already been considered in many studies, for example, in [1–15]. In
this case, various improvement methods are used: reinforcement with polymer composite
materials [2,5,8,10–13,15,16], various fibrous materials [6,9,14], Fe-SMA activation [3], and
cathode-ray tubes made of glass waste [7]. The economic aspect was also considered—the
cost of reinforced concrete beams largely depends on the brand of reinforcing steel [1].

Using various types of fibers in concrete, the parameters of the distribution of fibers
in the body of concrete and the recipe factors for obtaining fiber-reinforced concretes
with improved characteristics have been studied in many works [9,17–27]. The effect of
fiber on the structure and characteristics of concrete products and structures was studied
under the influence of high temperatures [17,21]. In addition, the influence on performing
fiber-reinforced concrete of various dosages of fiber [20,25], types of fiber (glass, basalt,
polypropylene, steel) [21,22,26], and fiber diameter [24] was also studied in detail. An
important technological parameter is the orientation of the fibers and its control in the
composite matrix [18].

Research on improving the characteristics and operation parameters of compressed
[18,19,28–33] and bending elements [6,9,14,17,18,27,33–38] because of fiber reinforcement
continues to expand and open new possibilities for their application. At the same time,
researchers have studied the behavior of columns and beams made of steel fiber con-
crete [6,30], ultrahigh strength fiber concrete [36], glass geopolymer concrete with hybrid
fibers [29], steel fibers [34,35], basalt fibers [34], hybrid epoxy resin, reinforced with flax or
fiberglass [28], and steel fibers from scrap tires [31].

Finally, the works of the authors involved in the study of polymer composite concrete
bending elements (beams) [2,5,8,11–13,15,16,35,37–50] were of particular interest for the
development of this study. To improve the performance of bending elements, researchers
studied the following for their reinforcement: fiber-reinforced polymers (FRP), glass-
reinforced polymers (GFRP), composite polymers, reinforcement with jute–polyester fiber
(JPFRP), polymers, reinforcement with basalt fiber (BFRP), carbon (CFRP) and aramid
(AFRP) fibers. In this case, polymers were used in the form of rods, sheets, and fibers.
The most effective bending elements, both in terms of various properties and in terms of
material consumption and economic efficiency, contained complex reinforcement in the
form of polymer composite rods and fiber [37,38] as well as steel rods [37]. Such complex
reinforcement allows obtaining a greater effect than reinforcement with one of the types
of reinforcement.

We previously studied “the quantitative and qualitative aspects of the joint work
of fiber in concrete in combination with polymer composite reinforcement, which gave
good results in terms of physical and mechanical characteristics”, the most rational design
solutions and showed good compatibility between fiber reinforcement and reinforcement
with polymer composite rods [51,52]. Detailed information about the polymer composites
considered in the study is presented in [53–55].

In the study, a numerical calculation and an experimental test were carried out, in-
cluding an analysis of scanning electron microscopy as well as an economic analysis of the
effectiveness of the proposed solutions.

The scientific novelty of the research is the recipe: technological, microstructural
and constructive substantiation of the existence of a synergistic effect from the combined
reinforcement with dispersed fiber and polymer composite reinforcement of improved
bending elements made of heavy concrete. Qualitative and quantitative compositions
of concrete, constructive solutions are given, and a mathematical apparatus has been
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developed to control the effectiveness of the proposed method. Theoretical prerequisites
are substantiated from the point of view of the economic efficiency of the developed
proposals.

Thus, the purpose of this work is the theoretical and experimental substantiation of
the effectiveness of combined-reinforced GFPCC bending elements as well as prescrip-
tion, technological and design solutions related to the identification of the most rational
parameters.

The objectives of the study are:

(1) Determination of rational parameters in terms of formulation and technology;
(2) Obtaining first, glass fiber-reinforced concrete and second, glass fiber polymer com-

posite concrete bending elements of a new type with improved structure and charac-
teristics;

(3) Study from the point of view of theoretical concepts, as well as practical aspects of the
structure of such materials and structures, as well as the study of their work from the
point of view of experimental test and numerical calculation;

(4) Development of theoretical provisions and substantiation of experimental proposals
for the practical industry;

(5) Identifying the most problematic bottlenecks to fill the scientific gap toward joint
research between building materials science and building structures, tied to the theory
of fiber fibers and polymer composite reinforcing elements.

The results of the study are proposed to be used in the construction of buildings and
structures of increased responsibility in relation to extended bending reinforced concrete
elements. Thus, the study is relevant in the field of design, construction, and production
of building structures, solving the complex problem of the lack of scientific and engineer-
ing solutions.

2. Materials and Methods
2.1. Materials

The study used non-additive Portland cement brand CEM I 52.5N of Novoroscement
(Novorossiysk, Russia) GOST 31108-2020 “Common cements. Specifications”. The chemical
and mineralogical composition, as well as the physic mechanical properties, are given
in [51].

In addition, in the research, granite crushed stone of Pavlovsknerud JSC (Pavlovsk,
Russia) and fine aggregate–quartz sand of Quartz Sands LLC (Semenov, Russia) was used.
The prime properties of aggregates are presented in [51].

Glass fiber Armplast (Nizhny Novgorod, Russia) was used as dispersed reinforcing
fibers, the physical and mechanical characteristics of which are presented in Table 1.

Table 1. Physical and mechanical characteristics of glass fiber.

Density, g/cm3 Tensile Strength, GPa Elastic Modulus, GPa Fiber Length, mm Elongation, %

2.6 1.8 70 12 1.5

Steel reinforcement was from Tyazhpromarmatura (Aleksin, Russia) according to
GOST 34028–2016 “Reinforcing rolled products for reinforced concrete constructions. Spec-
ifications” and polymer–composite reinforcement was produced by the Yaroslavl Plant of
Composites (Yaroslavl, Russia) according to GOST 31938 “Fiber-reinforced polymer bar for
concrete reinforcement. General specifications” [51]. Reinforcement of three diameters was
used: 6, 8 and 10 mm. The properties and classes of reinforcement are presented in Table 2.
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Table 2. Properties of the applied reinforcement.

Characteristics Steel A400 Steel A600 Steel A800 Steel A1000 GCR BCR

Estimated value of tensile strength Rs, MPa 340 520 695 870 800 800

Design compressive strength Rsc, MPa 340 470 500 500 300 300

Modulus of elasticity Es, MPa 200 50 50

Area of longitudinal tensile reinforcement
in section As, mm2

Ø6 113.0

Ø8 201.0

Ø10 314.0

Relative deformation of tensile reinforcement at
stresses equal to Rs, εS,el × 10−3 1.7 2.6 3.48 4.35 16 16

Note: Steel A400—steel reinforcement class A400; Steel A600—steel reinforcement class A600; Steel A800—steel
reinforcement class A800; Steel A1000—steel reinforcement class A1000 [56]; GCR—glass composite reinforcement;
BCR—basalt composite reinforcement [57].

Detailed information about the polymer composites considered in the study is pre-
sented in [53–55].

2.2. Methods
2.2.1. Numerical Calculation Method

“The calculation was carried out based on SP 63.13330.2018 [58], the manual for the
design of concrete and reinforced concrete structures made of heavy concrete without
prestressing reinforcement (to SP 52-101-2003)” [59] and the LIRA-SAPR 2016 R5 software
(Lira service, Moscow, Russia) [51].

The beam was designed as hinged for concrete classes B30 and B40, steel and composite
reinforcement. The length of the beam remained constant, 3000 mm, and was not considered
in the calculation of the maximum perceived moment. The calculation of the limiting
value of the bending moment was calculated relative to the compressed zone of concrete
according to SP 63.13330.2018 p.8.1.8 [58] and the Manual to SP 52.101.2003 p. 3.18 [59].
Four rods were taken for the tensioned bottom reinforcement: the reinforcement of the
same material as the bottom one, only with a diameter of 6 mm (smallest diameter) was
taken for the compressed reinforcement in the upper zone of the beam.

The numerical calculation program is shown in Figure 1.
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The ultimate value of the bending moment was calculated relative to the compressed
zone of concrete following SP 63.13330.2018 p. 8.1.8.

M ≤ Mult, (1)
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where M is the ultimate bending moment.
The value of Mult for bent elements of the rectangular section at ξ = x

h0
≤ ξR is

determined by the formula:

Mult = Rb · b · x · (h0 − 0.5x) + Rsc · A′S ·
(
h0 − a′

)
(2)

where Rb is the calculated value of the resistance of concrete to compression, MPa; b is
beam width, m; x is the height of the compressed zone, m; h0 is the design section of the
beam, m; RSC is the design resistance of reinforcement to compression, MPa; A′S is the area
of longitudinal compression reinforcement in the cross-section, m2; a′ is the distance from
the resultant forces in the longitudinal compression reinforcement to the nearest edge of
the section (0.02 m).

Here, the height of the compressed zone x is determined by the formula:

x =
RS · AS − RSC · A′S

Rb · b
(3)

where AS is the area of longitudinal tensile reinforcement in cross-section, m2; RS is the
design value of the tensile strength of the reinforcement, MPa.

The boundary height of the compressed zone is determined by the formula:

ξR =
xR
h0

=
0.8

1 + εs,el
εb2

(4)

where εs,el is the relative deformation of the tensile reinforcement under stresses; εb2 is
relative deformation of concrete.

εs,el =
RS
ES

(5)

The values of relative deformations εb2 for heavy, fine-grained and tension concrete
are taken with a short-term load for concrete of compressive strength class B60 and below
of εb2 = 0.0035.

The calculation of rectangular sections was carried out depending on the height of the
compressed zone according to Formula (3):

(a) For ξ = x
h0
≤ ξR—from the condition M < Rb · b · x · (h0 − 0.5x) + Rsc · A′S · (h0 − a′),

where ξ is the relative height of the compressed zone of concrete;
(b) For ξ > ξR—from the condition M < αR · Rb · b · h2

0 + RSC · A′S · (h0 − a′), where
αR = ξR(1− 0.5ξR).

2.2.2. Experimental Test Method

The laboratory research program is shown in Figure 2.
The concrete mixture was made in a laboratory concrete mixer BL-10 (OOO “ZZBO”,

Zlatoust, Russia). First, the dry components were mixed for 60 s; then, the mixture was
mixed with water and mixed until a homogeneous consistency was obtained. The fiber-
reinforced concrete mixture was prepared according to the method described in [52].
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Compressive strength tests of specimens “were carried out in accordance with GOST
10180 Concretes. Methods for strength determination using reference specimens” [60] on
an “IP-1000 hydraulic press (OOO NPK TEHMASH, Neftekamsk, Russia)”. “All samples
of one series were tested at the age of 28 days for no more than 1 h. Loading of the samples
was carried out continuously with a constant rate of load increase until its destruction.
In this case, the loading time of the sample until its destruction was at least 30 s. The
maximum force achieved during the test was taken as the breaking load. Cube specimens
were installed with one of the selected faces on the lower support plate of the press centrally
relative to its longitudinal axis, using the marks made on the press plate. The sample was
loaded to fracture at a constant rate of load increase (0.6 ± 0.2) MPa/s”. The compressive
strength of concrete was determined with an accuracy of 0.1 MPa using the formula:

R = α
F
A

(6)

where F is the breaking load, N; A is the area of the working section of the sample, mm2; α
is a scale factor for converting the strength of concrete to the strength of concrete in samples
of basic size and shape (for cubes with an edge size of 100 mm, it is 0.95).

The strength of concrete in a series of samples was determined as the arithmetic mean
of the strength of the tested samples in a series of six samples, of which four samples had
the highest strength.

In total, 4 series of concrete samples were made and tested. Two series are control
samples without fiber, and the rest are samples reinforced with glass fiber (in one series,
there are 6 cube samples). That is, in total, 24 sample cubes of two types of concrete were
destroyed (12 of each type).

The microstructure of samples with fibers was studied using a ZEISS CrossBeam 340
“microscope equipped with an Oxford Instruments X-Max 80 X-ray microanalyzer (Carl
Zeiss Microscopy GmbH (Factory), Jena, Germany)” [52,61].

In addition, the study used testing and auxiliary equipment as well as measuring
instruments used earlier in [51,52,61–68].

3. Results
3.1. Numerical Calculation Results

The results of a numerical calculation of the height of the compressed zone of concrete
of classes B30 and B40 and the limiting value of the bending moment of reinforced concrete
beams with a cross-section of 400 mm × 400 mm and 400 mm × 600 mm with a diameter of
reinforcement bars of 6 mm, 8 mm, 10 mm are presented in Tables 3 and 4 and in Figures 3–6.
In the experiment, the size of the beam section, the class of concrete, and the type, class,
and diameter of the reinforcement were varied.
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Table 3. Results of a numerical calculation of the design characteristics of bending elements with a
section size of 400 × 400 mm.

Product
Section

Size, mm

Concrete
Class

Product
Length,

mm

Reinforcement
Boundary
Relative

Height of
the Com-
pressed
Zone, εR

Height of
Com-

pressed
Zone x, m

Relative
Height of
the Com-
pressed
Zone ε

Ultimate
Bending
Moment

M,
kN ×mType Class Diameter,

mm

400 × 400 B30

3000

steel A400

6

0.5385

0 0 13.836

8 0.0044 0.0116 25.13

10 0.01 0.0264 39.457

steel A600

6

0.459

0.0008 0.0022 21.272

8 0.0076 0.0199 38.453

10 0.0162 0.0426 60.092

steel A800

6

0.4014

0.0032 0.0085 28.688

8 0.0122 0.0322 51.435

10 0.0238 0.0626 79.874

steel A1000

6

0.3567

0.0062 0.0162 36.112

8 0.0174 0.0458 64.278

10 0.0319 0.0838 99.226

GCR 800 × 50

6

0.1436

0.0083 0.0219 33.451

8 0.0187 0.0491 59.23

10 0.0319 0.0841 91.306

BCR 800 × 50

6

0.1436

0.0083 0.0219 33.451

8 0.0187 0.0491 59.23

10 0.0319 0.0841 91.306

B40

steel A400

6

0.5385

0 0 13.836

8 0.0034 0.0089 25.145

10 0.0078 0.0204 39.535

steel A600

6

0.459

0.0006 0.0017 21.272

8 0.0058 0.0154 38.497

10 0.0125 0.0329 60.294

steel A800

6

0.4014

0.0025 0.0066 28.696

8 0.0094 0.0249 51.55

10 0.0184 0.0484 80.311

steel A1000

6

0.3567

0.0048 0.0125 36.141

8 0.0134 0.0354 64.512

10 0.0246 0.0648 100.011

GCR 800 × 50

6

0.1436

0.0064 0.0169 33.504

8 0.0144 0.0379 59.499

10 0.0247 0.065 92.095

BCR 800 × 50

6

0.1436

0.0064 0.0169 33.504

8 0.0144 0.0379 59.499

10 0.0247 0.065 92.095
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Table 4. Results of a numerical calculation of the design characteristics of bending elements with a
section size of 400 × 600 mm.

Product
Section

Size, mm

Concrete
Class

Product
Length,

mm

Reinforcement

Boundary
Relative

Height of
the Com-
pressed
Zone, εR

Height of
Com-

pressed
Zone x, m

Relative
Height of
the Com-
pressed
Zone ε

Ultimate
Bending
Moment

M,
kN ×mType Class Diameter,

mm

400 × 400 B30

3000

steel A400

6

0.5385

0 0 21.523

8 0.0044 0.0076 38.795

10 0.01 0.0173 60.809

steel A600

6

0.459

0.0008 0.0014 33.028

8 0.0076 0.0130 59.353

10 0.0162 0.0279 92.748

steel A800

6

0.4014

0.0032 0.0056 44.4

8 0.0122 0.0211 79.368

10 0.0238 0.041 123.52

steel A1000

6

0.3567

0.0062 0.0106 55.781

8 0.0174 0.03 99.245

10 0.0319 0.0549 153.862

GCR 800 × 50

6

0.1436

0.0083 0.0143 51.537

8 0.0187 0.0322 91.384

10 0.0319 0.0551 141.546

BCR 800 × 50

6

0.1436

0.0083 0.0143 51.537

8 0.0187 0.0322 91.384

10 0.0319 0.0551 141.546

B40

steel A400

6

0.5385

0 0 21.523

8 0.0034 0.0059 38.81

10 0.0078 0.0134 60.887

steel A600

6

0.459

0.0006 0.0011 33.028

8 0.0058 0.0101 59.397

10 0.0125 0.0216 92.95

steel A800

6

0.4014

0.0025 0.0043 44.408

8 0.0094 0.0163 79.484

10 0.0184 0.0317 123.957

steel A1000

6

0.3567

0.0048 0.0082 55.810

8 0.0134 0.0232 99.479

10 0.0246 0.0424 154.647

GCR 800 × 50

6

0.1436

0.0064 0.0111 51.591

8 0.0144 0.0249 91.653

10 0.0247 0.0426 142.335

BCR 800 × 50

6

0.1436

0.0064 0.0111 51.591

8 0.0144 0.0249 91.653

10 0.0247 0.0426 142.335
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As a result of a numerical calculation of the limiting value of the bending moment of
reinforced concrete beams, as presented in Tables 3 and 4 and in Figures 3 and 4, it can be
seen that:

(1) The values of the bending moment of beams reinforced with polymer composite rebar
are between the values of the moment of beams with steel reinforcement of class A800
and class A1000, slightly closer to A1000 reinforcement; this applies to each rebar
diameter applied (6, 8 and 10 mm);
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(2) The values of the bending moment of beams reinforced with glass-composite and
basalt-composite reinforcement do not differ;

(3) The values of the limiting bending moment do not change for different classes of
concrete but depend on the dimensions of the section of the elements;

(4) The ultimate bending moment of 400 mm × 600 mm beams is approximately 50%
greater than that of 400 mm× 400 mm beams for each applied reinforcement diameter;

(5) When replacing 6 mm reinforcement with 8 mm reinforcement, the ultimate bending
moment of the beam increases by 77–82%, while an increase in the diameter of the
rods from 8 to 10 mm leads to an increase in the bending moment by 54–58%;

(6) An increase in the class of steel reinforcement from A400 to A600 leads to an increase
in the ultimate bending moment of beams by 51–55%, from A600 to A800 by 32–35%,
from A800 to A1000 by 24–26%;

(7) The ultimate bending moment of members reinforced with GCR 800 × 50 and BCR
800 × 50 polymer composite rebar is 130–160% greater than that of members rein-
forced with A400 class steel rebar, 50–58% greater than with rebar A600, 14–17% more
than with A800 rebar and 7–9% less than with A1000 rebar; this difference depends
on the diameter of the reinforcement and the dimensions of the section of the element
and is about 50%.

Thus, the efficiency of bending elements with polymer composite reinforcement is practi-
cally comparable to the efficiency of bending elements with A1000 class steel reinforcement.

As a result of a numerical calculation of the height of the compressed zone of concrete
of bending elements, as presented in Tables 3 and 4 and in Figures 5 and 6, it can be
noted that:

(1) The height of the concrete compression zone of beams reinforced with polymer
composite reinforcement exceeds the height of the concrete compression zone of
beams with class A1000 steel reinforcement for bar diameters of 6 and 8 mm and is
practically comparable to the values of the concrete compression zone of beams with
class A1000 steel reinforcement for a diameter of 10 mm;

(2) The values of the height of the compressed zone of concrete beams reinforced with
glass–composite and basalt–composite reinforcement do not differ;

(3) The values of the height of the compressed zone of concrete do not change with
different sizes of the section of the elements but depend on the class of concrete used;

(4) The compression zone height of B40 concrete is 28–32% less than the compression
zone height of B30 concrete for each applied reinforcement diameter;

(5) When replacing reinforcement with a diameter of 6 mm for reinforcement of 8 mm,
the height of the compressed zone of the beam concrete increases by 125% for polymer
composite reinforcement and up to 850% for A600 steel reinforcement, while an
increase in the diameter of the rods from 8 to 10 mm leads to an increase in height
compressed zone by 70% for PCR and 130% for A400;

(6) An increase in the class of steel reinforcement depending on the diameter of the rods
from A400 to A600 leads to an increase in the height of the compressed zone from 62%
to 73%, from A600 to A800 leads to an increase from 47% to 300%, and from A800 to
A1000 leads to an increase from 34% to 94%;

(7) The height of the concrete compression zone of elements reinforced with GCR 800
× 50 and BCR 800 × 50 polymer composite rebar is 220–325% greater than that of
elements reinforced with A400 class steel rebar, 97–967% greater than with fittings
A600, 34–160% more than with fittings A800, and 0–34% more than with fittings
A1000; this difference depends on the diameter of the reinforcement and the class of
concrete and is about 28–32%.

3.2. Experiment Test Results

The results of the laboratory experiment are presented in Table 5 and in Figures 7 and 8.



Polymers 2022, 14, 2324 12 of 22

Table 5. Values of compressive strength of the studied types of concrete.

Type of Concrete Compressive Strength, MPa

Concrete B30 41.9 ± 2.3
Glass fiber-reinforced concrete B30 50.3 ± 1.8
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Table 5 shows that due to the rationally selected glass fiber concrete mixture [51,52,61],
it is possible to increase the class of concrete from B30 to B40, while the compressive
strength of concrete increases up to 20%. The nature of the destruction of the sample in the
form of a symmetrical pyramid demonstrates the optimality of the applied formulation and
technology with a uniform distribution of properties in the body of the sample (Figure 7a).
Fiber gives the concrete a more ductile fracture behavior (Figure 7b) and also improves the
uniformity characteristics of the concrete. For example, as can be seen from Table 5, the
standard deviation of the compressive strength values for glass fiber-reinforced concrete is
almost two times less than for the same concrete but without fiber.

According to the results of experimental data, a synergistic effect was revealed, which
manifests itself in an increase in the characteristics of the resulting bent reinforced elements
due to the combined reinforcement with dispersed fiber and polymer composite reinforcing
bars. Thus, we studied the parameters, some of which did not reveal specific dependencies
and, thus, did not give grounds to consider them as an opportunity to obtain a synergistic
effect. These are such characteristics as the relative height of the compressed zone and
the boundary relative height of the compressed zone. Let us dwell in more detail on
the height of the compressed zone x and the limiting value of the bending moment M.
Thus, according to the results of numerical calculation of improved combined-reinforced
elements, a synergistic effect was revealed, which was found during the calculations and
was subject to interpretation in the form of universal dependencies, which are given below.

So, knowing that for standard-reinforced elements without improving the characteris-
tics of concrete, whether it be polymer composite reinforcement or other reinforcement, for
example, steel, we have a simple dependence of the form:

x = f (B) + f (A) (7)

where x is the height of the compressed zone, B is the class of concrete, and A is the class
of reinforcement.

The indicated dependence is canonical and is applied under the existing norms and
rules for the calculation and design of building structures. However, in the bending
elements proposed by us with an improved microstructure and improved characteristics,
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we are dealing with a new type of elements obtained based on the same technological and
design templates.
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However, as revealed as a result of a numerical calculation and physical experiments,
the height of the compressed zone, like other characteristics, varies, and, depending on
various factors, from an insignificant degree to a significant one. Thus, we believe that now
we are dealing with an indicator of not the height of the compressed zone x but the height
of the reduced zone, that is, x,red. Thus, in this dependence, the coefficient k derived by
us arises—a controlled significant coefficient of the synergistic efficiency of the combined
reinforcement, and the dependence takes the form:

x,red = f1(B) + f2(A) + k(B · A) (8)

where k is a controlled significant coefficient of synergistic efficiency of combined reinforcement.
Similarly, the dependence for determining the moments of bending reinforced concrete

elements changes; that is, the indicator by which its bearing capacity and operational
reliability are evaluated. In addition, in standard calculations and technological processes,
designers put M and its dependence in the form:

M = f3(B) + f4(A) (9)

We introduce again our assumptions, which were confirmed by numerical and physical
experiments; then, M is transformed into M,red, and the formula becomes:

M,red = f3(B) + f4(A) + k(B · A) (10)

where k is a controlled, significant coefficient of synergistic efficiency of combined reinforcement.
In this case, it is necessary to distinguish between the coefficients k, assigning to them

the indices of those indicators, the function of which we find. Thus, k for the height of the
compressed zone will look like kx, and the coefficient k for the ultimate bending moment
will look like kM.

Let us present a practical example based on experimental data, in particular, for one of
the cases shown in the tables above.

kx = X,red−X
X · 100% = 0.0064−0.0008

0.0008 · 100% = 700

kM = M,red−M
M · 100% = 33.504−21.272

21.272 · 100% = 57

Thus, we have proved numerically and experimentally the synergistic effect arising
from the combined reinforcement of glass fiber polymer composite concrete bending
elements and also presented universal dependencies for their determination. The ranges of
the coefficients k lie in the region of the gains obtained for the height of the compressed
zone and moments and range from 7 to 967. Of course, the controllability of this coefficient
is ensured by the set of factors and recipe–technological parameters that are set during
the design.

For a deeper analysis of the effectiveness of the effect of fiber on the structure of the
composite, SEM analysis of samples with fiber was carried out. The microstructure of the
sample reinforced with glass fiber is shown in Figure 8.

Analysis of photographs of the microstructure of fiber-reinforced composite samples
revealed different types of destruction. In particular, in Figure 8a area 1, there are no
microcracks in the region of the fiber; the structure looks homogeneous and defect-free.
This is confirmed by the larger increase in area 1 in Figure 8b. However, in some areas,
where the fiber reinforcement is thicker, cracks appear, propagating from the points of
contact between the fiber and the cement composite (Figure 8a,b, region 2). Therefore, an
important factor is the rational uniform distribution of the fiber dosage carefully selected
for each type of concrete, which reduces cracking at the points of contact of the fiber
with the cement composite and, accordingly, improves the structure and characteristics of
fiber-reinforced concrete.



Polymers 2022, 14, 2324 15 of 22

Thus, in addition to the formulation and design aspects of obtaining fiber-reinforced
concrete composites with improved characteristics, the technological aspect is also im-
portant, which consists in carefully selected modes of preparation of the fiber-reinforced
concrete mixture and, in particular, the rational distribution of fiber in the volume of the
concrete matrix [51,52,61].

3.3. Economic Analysis Results

In addition, an analysis of the cost of the types and classes of reinforcement considered
in the study was carried out using the example of a diameter of 8 mm. Data taken from
various catalogs of rebar sellers in Russia made it possible to compile the average cost per
unit of production. The results of the analysis are presented in Table 6 and Figure 9.

Table 6. The average cost of a unit of reinforcement with a diameter of 8 mm.

Num. Type and Class of
Reinforcement Amount Cost in Conventional Units

1 Steel A400 1 m 32.0
2 Steel A600 1 m 35.2
3 Steel A800 1 m 37.5
4 Steel A1000 1 m 42.0
5 GCR 800 × 50 1 m 28.7
6 BCR 800 × 50 1 m 16.6
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Table 6 and Figure 9 show that the cost of basalt-composite reinforcement (green
column in Figure 9) is two to three times less than the cost of steel reinforcement of classes
A400, A600, A800 and A1000 (blue columns in Figure 9). At the same time, glass–composite
reinforcement (red column in Figure 9) is 70% more expensive than basalt–composite, but
it is cheaper than steel from 11 to 50%, depending on the reinforcement class. This confirms
the economic efficiency in terms of the market value of polymer composite reinforcement
compared to steel.

4. Discussion

It is known that the most traditional type of reinforcement for reinforced concrete
elements operating in bending is reinforcing steel of various grades. However, with all
the demand for traditional reinforced concrete, it has several disadvantages, the main
of which should be highlighted: the high cost of steel rods and the heavy weight of the
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resulting structures. In addition, at present, there are effective types of polymer composite
reinforcement, such as glass composite reinforcement and basalt composite reinforcement,
which make it possible to obtain bendable reinforced elements from heavy concrete with
even more efficient work in structures.

In this regard, we made a market analysis, which revealed that the cost parameters of
basalt–composite reinforcement are the most preferable. At the same time, the cost of basalt–
composite reinforcement, ceteris paribus, is almost two times less than glass-composite
reinforcement, and their bearing capacities practically do not differ from each other. Thus,
in our opinion, the best way to obtain the most efficient and rational building structures
from heavy concrete, working in bending, should be made from GFPCC.

Fiber reinforcement, as we have proved earlier [51,52,61–63], allows us to increase the
class of concrete, other things being equal, on a significant scale. Despite the fact that the
class of concrete is not the main characteristic that increases the operational reliability of
bending elements made of heavy concrete, it still plays its role in achieving the quality
and reliability of such a design. Thus, considering the results obtained by us earlier, we
expect to obtain such complex structures while achieving a synergistic effect in terms
of improving the efficiency of work, reducing the cost, and reducing the weight of the
resulting structures.

Let us consider and analyze the results we have achieved from three points of view.
First, it is necessary to identify the effect that we achieved in the study in the prescription
aspect. In particular, we have proved that fiber reinforcement increases the characteristics
of concrete by 10–20% percent and improves its microstructure in accordance with [51,52],
while the microstructure receives a denser packing of particles and, due to a more rational
distribution of fiber fibers, microcrack formation near concentration of fibers in the body of
the concrete matrix. In this regard, in comparison with the works of the authors [9,17–27],
we obtained higher results in terms of strength and also achieved an improved microstruc-
ture of the material. All this is proposed for use not only in compressed elements, as
in [18,19,28–33], but, of course, in tensioned bending elements, which emphasizes the
more rational operation of fiber-reinforced elements, since fiber reinforcement is primarily
directed for bending and tensile loads. In this regard, our result surpasses the results
of [6,9,14,17,18,27,33–38].

As for microstructural studies of fiber reinforcement, the obtained results of SEM anal-
ysis are in good agreement with the results obtained by us earlier in [61]. On the surface
of the cement matrix of polydisperse-reinforced samples, a smaller number of microc-
racks formed during the destruction of prototypes is observed. In addition, polydisperse-
reinforced ones are characterized by a smaller opening width of microcracks. The average
width of their opening in polydisperse-reinforced samples is significantly lower than in
monodisperse-reinforced samples (Figure 10) [61].

The analysis of photographs of the microstructure carried out also continues and
develops the results already obtained by us earlier in [51]. The nature of the development
of cracks directly depends on the rational distribution of fiber fibers in the body of the
cement matrix. In areas that allow us to evaluate the usefulness of the rational distribution
of fibers, there are no microcracks in the region of the fibers. However, with improper
homogenization and distribution of the fiber-reinforcing fiber, around the formed fiber
bundles, defects appear at the same time, expressed in microcracks, which in principle
correlates with the analogue of this phenomenon at the macro level—excessive density of
reinforcement of complex structures. Thus, microscopic studies confirm the thesis not only
about the initial characteristics and quality of the fibers used but also about the importance
of their distribution and homogenization in the body of the matrix, since microcracking
occurs already at this stage and can develop at the macro level (Figure 11) [51].
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Next, consider the constructive effect we have achieved, it consists of improving the
performance of an improved design due to the synergistic effect of fiber reinforcement
of bending elements and in combination of such dispersed reinforcement with polymer
composite reinforcement with rods. In this regard, our results seem to be effective in
comparison with the results of the authors [1–15]. Our results showed a higher bearing
capacity and especially in combination with the fact that the mass of our elements is less
than similar reinforced concrete elements.

Finally, from a price point of view, the cost of our elements is reduced and is more
economical, as confirmed by our economic analysis. This is in good agreement with the
results of the authors [1–16,35,37–50].

Thus, focusing on the comparison of experimental data and calculated data with
the results of other authors, we note the advantages of our proposals, which are justified
by the proven synergistic effect. In addition, the analysis of the results revealed the
relationship between the initial parameters and components and technological, constructive
and economic indicators of the structures being created.

5. Conclusions

(1) Theoretically and experimentally substantiated the effectiveness of combined-reinforced
glass fiber polymer composite concrete bending elements from the point of view of
three aspects: prescription, technological and constructive.

(2) The improvement of the structure and characteristics of glass fiber-reinforced concrete
and glass fiber polymer composite concrete bending elements of a new type has
been proven; the compressive strength of glass fiber-reinforced concrete with careful
observance of rational parameters in terms of formulation and technology has been
increased to 20%, the efficiency of glass fiber polymer composite concrete bending
elements is comparable to the work of reinforced concrete bending elements with
steel reinforcement class A1000 and higher.

(3) Analytical dependences of the type of functions of the characteristics of bent concrete
structures on the arguments are proposed—the parameters of combined reinforcement
with fiber and polymer composite reinforcement; the synergistic effect of such devel-
opment is described, and a new coefficient k is proposed—a controlled significant
coefficient of the synergistic efficiency of the combined reinforcement.

(4) From a price point of view, the cost of the developed elements is reduced and is
economically more profitable (up to 300%), which is confirmed by the economic
analysis.

The prospects and direction of development of the research are planned in terms of
bending elements made of heavy concrete with a differentiation of characteristics over
the section as well as with the use of differentiated fiber reinforcement with fibers from
various materials.
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