Polymer Composite with Enhanced Thermal Conductivity and Insulation Properties through Aligned Al2O3 Fiber
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the Nanocomposites
2.3. Characterization
3. Results
3.1. Microstructures
3.2. Dielectric Breakdown Strength
3.3. DC Conductivity
3.4. Space Charge
3.5. Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Szymczak, B. Halloysite Nanotubes and Silane-Treated Alumina Trihydrate Hybrid Flame Retardant System for High-Performance Cable Insulation. Polymers 2021, 13, 2134. [Google Scholar]
- Mazzanti, G. Issues and Challenges for HVDC Extruded Cable Systems. Energies 2021, 14, 4504. [Google Scholar] [CrossRef]
- Tammaro, D.; Ballesteros, A.; Walker, C.; Reichelt, N.; Trommsdorff, U. Expanded Beads of High Melt Strength Polypropylene Moldable at Low Steam Pressure by Foam Extrusion. Polymers 2022, 14, 205. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Huang, X.; Min, D.; Li, S.; Jiang, P. Recyclable dielectric polymer nanocomposites with voltage stabilizer interface: Toward new generation of high voltage direct current cable insulation. ACS Sustain. Chem. Eng. 2019, 7, 513–525. [Google Scholar] [CrossRef]
- Andersson, M.G.; Hynynen, J.; Andersson, M.R.; Englund, V.; Hagstrand, P.O.; Gkourmpis, T.; Mueller, C. Highly insulating polyethylene blends for high-voltage direct-current power cables. ACS Macro Lett. 2017, 6, 78–82. [Google Scholar] [CrossRef]
- Su, Z.L.; Du, B.X.; Hou, Z.; Han, C. Inhibition Effect of Graphene on Space Charge Injection and Accumulation in Low-Density Polyethylene. Nanomaterials 2018, 11, 956–971. [Google Scholar]
- Pourrahimi, M.A.; Olsson, R.T.; Hedenqvist, M.S. The role of interfaces in polyethylene/metal-oxide nanocomposites for ultrahigh-voltage insulating materials. Adv. Mater. 2018, 30, 1703624. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, G.J.; Tu, D.M.; Zhang, Y. Space charge and electroluminescence characteristics of thermally aged LDPE films. Appl. Surf. Sci. 2008, 5, 735–2739. [Google Scholar] [CrossRef]
- Khalil, M.S.; Gastli, A. Investigation of the dependence of DC insulation resistivity of ultra-clean polyethylene on temperature and electric field. IEEE Trans. Power Deliv. 1999, 3, 699–704. [Google Scholar] [CrossRef]
- Liu, F.; Li, Q.; Cui, J.; Li, Z.; Yang, G.; Liu, Y.; Dong, L.; Xiong, C.; Wang, H.; Wang, Q. High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 2017, 27, 1606292. [Google Scholar] [CrossRef]
- Jarvid, M.; Johansson, A.; Englund, V.; Lundin, A.; Gubanski, S.; Muller, C.; Andersson, M.R. High electron affinity: A guiding criterion for voltage stabilizer design. J. Mater. Chem. A. 2015, 3, 7273–7286. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.F.; Weng, Y.X.; Wang, J.Q.; Zhou, H.F.; Lin, J.; He, S.J. Silicone rubber composites with high breakdown strength and low dielectric loss based on polydopamine coated mica. Polymers 2019, 11, 2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Kong, X.; Liu, W.; Yang, J.; Zhao, H. Regulation of PANI nanofiber conductivity and its influence on the DC dielectric properties of LDPE. Polym. Test. 2021, 101, 107299. [Google Scholar] [CrossRef]
- Zha, J.W.; Wu, Y.H.; Wang, S.J.; Wu, D.H.; Yan, H.D.; Dang, Z.M. Improvement of space charge suppression of polypropylene for potential application in HVDC cables. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2337–2343. [Google Scholar] [CrossRef]
- Aksimentyeva, O.I.; Savchyn, V.P.; Dyakonov, V.P.; Piechota, S.; Horbenko, Y.Y.; Opainych, I.Y.; Demchenko, P.Y.; Popov, A.; Szymczak, H. Modification of polymer-magnetic nanoparticles by luminescent and conducting substances. Mol. Cryst. Liq. Cryst. 2014, 590, 35–42. [Google Scholar] [CrossRef]
- Ningaraju, S.; Prakash, A.P.G.; Ravikumar, H.B. Studies on free volume controlled electrical properties of PVA/NiO and PVA/TiO2 polymer nanocomposites. Solid State Ion. 2018, 320, 132–147. [Google Scholar] [CrossRef]
- Popov, A.I. Effect of Poly(Titanium Oxide) on the Viscoelastic and Thermophysical Properties of Interpenetrating Polymer Networks. Crystals 2021, 11, 794. [Google Scholar]
- Roy, M.; Nelson, J.K.; MacCrone, R.K.; Schadler, L.S. Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J. Mater. Sci. 2007, 42, 3789–3799. [Google Scholar] [CrossRef]
- Fleming, R.J.; Ammala, A.; Casey, P.S. Conductivity and space charge in LDPE containing nano- and micro-sized ZnO particles. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 118–126. [Google Scholar] [CrossRef]
- Song, W.; Sun, Y.; Yu, T.J.; Fan, Y.Z. B HanInvestigation of Electrical Properties of BiFeO3/LDPE Nanocomposite Dielectrics with Magnetization Treatments. Polymers 2021, 13, 2622. [Google Scholar] [CrossRef]
- Pallon, L.K.H.; Hoang, A.T.; Pourrahimi, A.M.; Hedenqvist, M.S.; Nilsson, F.; Gubanski, S.; Gedde, U.W.; Olsson, R.T. The impact of MgO nanoparticle interface in ultra-insulating polyethylene nanocomposites for high voltage DC cables. J. Mater. Chem. A. 2016, 4, 8590–8601. [Google Scholar] [CrossRef]
- Ju, S.; Chen, M.; Zhang, H.; Zhang, Z. Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles. Polym. Lett. 2014, 8, 682–691. [Google Scholar] [CrossRef] [Green Version]
- Dang, B.; He, J.; Hu, J.; Zhou, Y. Large improvement in trap level and space charge distribution of polypropylene by enhancing the crystalline—Amorphous interface effect in blends. Polym. Int. 2016, 65, 371–379. [Google Scholar] [CrossRef]
- Dissado, L.A.; Fothergill, J.C. Electrical Degradation and Breakdown in Polymers; Peter Peregrinus: London, UK, 1992. [Google Scholar]
- Lampert, M.A.; Mark, P. Current Injection in Solids; Academic Press Inc.: New York, NY, USA, 1970. [Google Scholar]
- Wang, X.; Wu, P. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation. ACS Appl. Mater. Interfaces 2018, 10, 34311–34321. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xidas, P.I.; Manias, E. High breakdown strength polymer nanocomposites based on the synergy of nanofiller orientation and crystal orientation for insulation and dielectric applications. ACS Appl. Nano Mater. 2018, 1, 3520–3530. [Google Scholar] [CrossRef]
- Tomer, V.; Polizos, G.; Randall, C.A.; Manias, E. Polyethylene nanocomposite dielectrics: Implications of nanofiller orientation on high field properties and energy storage. J. Appl. Phys. 2011, 109, 074113. [Google Scholar] [CrossRef]
- Kotomin, E.A.; Kuzovkov, V.N.; Popov, A.I.; Vila, V.R. Kinetics of F center annealing and colloid formation in Al2O3. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2016, 374, 107–110. [Google Scholar] [CrossRef]
- Averback, R.S.; Ehrhart, P.; Popov, A.I.; Sambeek, A.V. Defects in ion implanted and electron irradiated MgO and Al2O3. Radiat. Eff. Defects Solids 1995, 136, 169–173. [Google Scholar] [CrossRef]
- Wang, S.J.; Zha, J.W.; Wu, Y.H.; Ren, L.; Dang, Z.M. Preparation, microstructure and properties of polyethylene/alumina nanocomposites for HVDC insulation. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 3350–3356. [Google Scholar] [CrossRef]
- Zha, J.; Zhu, T.; Wu, Y.; Wang, S.J.; Li, R.K.Y.; Dang, Z.M. Tuning of thermal and dielectric properties for epoxy composites filled with electrospun alumina fibers and graphene nanoplatelets through hybridization. J. Mater. Chem. C 2015, 3, 7195. [Google Scholar] [CrossRef]
- Zhong, S.L.; Yin, L.J.; Pei, J.Y.; Li, X.Y.; Wang, S.J.; Dang, Z.M. Effect of fiber alignment on dielectric response in the 1–3 connectivity fiber/polymer composites by quantitative evaluation. Appl. Phys. Lett. 2018, 113, 122904. [Google Scholar] [CrossRef]
- Rogti, F.; Ferhat, M. Effect of temperature on trap depth formation in multi-layer insulation: Low density polyethylene and fluorinated ethylene propylene. Appl. Phys. Lett. 2014, 104, 031605. [Google Scholar] [CrossRef]
- Cao, W.; Li, Z.; Sheng, G.; Jiang, X. Insulating property of polypropylene nanocomposites filled with nano-MgO of different concentration. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1430–1437. [Google Scholar] [CrossRef]
- IEEE Std 930-2004; IEEE Guide for the Statistical Analysis of Electrical Insulation Breakdown Data. Institute of Electrical and Electronics Engineers: New York, NY, USA, 2005.
- Dugast, G.; Settar, A.; Chetehouna, K.; Gascoin, N.; Bats, M.D. Experimental and numerical analysis on the thermal degradation of reinforced silicone-based composites: Effect of carbon fibres and silicon carbide powder contents. Thermochim. Acta 2020, 686, 178563. [Google Scholar] [CrossRef]
- Somani, P.; Kale, B.B.; Amalnerkar, D.P. Charge transport mechanism and the effect of poling on the current-voltage characteristics of conducting polyaniline–BaTiO3 composites. Synth. Metals 1999, 106, 53–58. [Google Scholar] [CrossRef]
- Manv, A. Theory of transient space charge limited current in solids in the presence of trapping. Phys. Rev. 1962, 126, 1980–1988. [Google Scholar]
- Fleming, R.; Pawlowski, T.; Ammala, A. Electrical Conductivity and Space Charge in LDPE containing TiO2 Nanoparticles. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 745–753. [Google Scholar] [CrossRef]
Samlpe | m (kg) | ΔQ (J) | C (J/kg·K) | ρ (g/cm3) | α (mm2/s) |
---|---|---|---|---|---|
0.1A | 4.07 × 10−6 | 3.71 × 10−3 | 903.9 | 1.21 | 0.32 |
0.2A | 4.11 × 10−6 | 3.65 × 10−3 | 890.4 | 1.24 | 0.48 |
0.5A | 4.15 × 10−6 | 3.35 × 10−3 | 818.3 | 1.25 | 0.87 |
LDPE | 4.01 × 10−6 | 4.39 × 10−3 | 1071.4 | 1.12 | 0.15 |
0.1R | 4.14 × 10−6 | 3.59 × 10−3 | 875.1 | 1.2 | 0.2 |
0.2R | 4.01 × 10−6 | 3.67 × 10−3 | 894.1 | 1.22 | 0.22 |
0.5R | 4.06 × 10−6 | 3.59 × 10−3 | 875.8 | 1.26 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, M.; Cao, K. Polymer Composite with Enhanced Thermal Conductivity and Insulation Properties through Aligned Al2O3 Fiber. Polymers 2022, 14, 2374. https://doi.org/10.3390/polym14122374
Wang S, Chen M, Cao K. Polymer Composite with Enhanced Thermal Conductivity and Insulation Properties through Aligned Al2O3 Fiber. Polymers. 2022; 14(12):2374. https://doi.org/10.3390/polym14122374
Chicago/Turabian StyleWang, Sijiao, Mengmeng Chen, and Kaiming Cao. 2022. "Polymer Composite with Enhanced Thermal Conductivity and Insulation Properties through Aligned Al2O3 Fiber" Polymers 14, no. 12: 2374. https://doi.org/10.3390/polym14122374
APA StyleWang, S., Chen, M., & Cao, K. (2022). Polymer Composite with Enhanced Thermal Conductivity and Insulation Properties through Aligned Al2O3 Fiber. Polymers, 14(12), 2374. https://doi.org/10.3390/polym14122374