Application of Nanocomposites from Bees Products and Nano-Selenium in Edible Coating for Catfish Fillets Biopreservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bee Chitosan Extraction
2.2. Propolis Extraction and SeNPs Synthesis
2.3. Products’ Physiognomies Characterization
2.3.1. SPR (Surface Plasmon Resonance) Evaluation
2.3.2. FTIR Analysis
2.3.3. Fourier-Transform Infrared Spectroscopy (FTIR) Analysis
2.3.4. Electron Microscopy Analysis
2.3.5. Determination of Nanoparticles’ Zeta Potential (ζ) and Particle Size (Ps) Distribution
2.4. Antibacterial Potentiality Assessments
2.4.1. Qualitative Disc Diffusion Assay
2.4.2. Quantitative Minimum Inhibitory Concentration (MIC) Assay
2.4.3. SEM Imaging of Antibacterial Action
2.5. Catfish Fillets’ Coating with Fabricated Compounds Edible Coatings
2.5.1. Catfish Fillet Preparation
2.5.2. Preparation of Edible Coating (EC)
2.5.3. Catfish Fillets Treatment
2.6. Analysis of Coated Fillets’ Parameters
2.6.1. Microbiological Examination
2.6.2. Chemical Examinations
2.6.3. Sensory Analysis
2.7. Statistical Analysis
3. Results
3.1. Bee Chitosan
3.2. Selenium Nanoparticles Biosynthesis Using Propolis Extract
3.3. Structural Analysis of Synthesized Molecules
3.3.1. FTIR Analysis
3.3.2. Ultrastructure Analysis of Synthesized Nanoparticles
3.4. Antibacterial Action of Nanocomposites
3.4.1. In Vitro Antibacterial Potentialities
3.4.2. SEM Analysis of Challenged Bacteria with Nanocomposite
3.5. Biopreservation of Catfish Fillets with Natural Compounds
3.6. Sensorial Quality of Coated Catfish Fillets with Natural Compound
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Tayel, A.A. Microbial chitosan as a biopreservative for fish sausages. Int. J. Biol. Macromol. 2016, 93, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, F.; Li, C.; An, H.; Wan, T.; Zhang, P. Application of Chitosan and Its Derivative Polymers in Clinical Medicine and Agriculture. Polymers 2022, 14, 958. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, J.; Piątkowski, M.; Deineka, V.; Janus, Ł.; Korniienko, V.; Husak, E.; Holubnycha, V.; Liubchak, I.; Zhurba, V.; Sierakowska, A.; et al. Chitosan-based bioactive hemostatic agents with antibacterial properties—synthesis and characterization. Molecules 2019, 24, 2629. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Fagioli, L.; Campana, R.; Lam, J.K.; Baffone, W.; Palmieri, G.F.; Casettari, L.; Bonacucina, G. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur. J. Pharm. Sci. 2018, 117, 8–20. [Google Scholar] [CrossRef]
- Papagiannopoulos, A.; Sotiropoulos, K. Current Advances of Polysaccharide-Based Nanogels and Microgels in Food and Biomedical Sciences. Polymers 2022, 14, 813. [Google Scholar] [CrossRef]
- Marei, N.H.; El-Samie, E.A.; Salah, T.; Saad, G.R.; Elwahy, A.H. Isolation and characterization of chitosan from different local insects in Egypt. Int. J. Biol. Macromol. 2016, 82, 871–877. [Google Scholar] [CrossRef]
- Hahn, T.; Roth, A.; Ji, R.; Schmitt, E.; Zibek, S. Chitosan production with larval exoskeletons derived from the insect protein production. J. Biotechnol. 2020, 310, 62–67. [Google Scholar] [CrossRef]
- Rossi, M.; Marrazzo, P. The potential of honeybee products for biomaterial applications. Biomimetics 2021, 6, 6. [Google Scholar] [CrossRef]
- Marei, N.; Elwahy, A.H.; Salah, T.A.; El Sherif, Y.; El-Samie, E.A. Enhanced antibacterial activity of Egyptian local insects’ chitosan-based nanoparticles loaded with ciprofloxacin-HCl. Int. J. Biol. Macromol. 2019, 126, 262–272. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, Y.; Han, Q.; Ji, L.; Zhang, H.; Fei, Z.; Wang, Y. Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydr. Polym. 2019, 209, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Shubharani, R.; Mahesh, M.; Yogananda Murthy, V. Biosynthesis and characterization, antioxidant and antimicrobial activities of selenium nanoparticles from ethanol extract of Bee Propolis. J. Nanomed. Nanotechnol. 2019, 10, 2. [Google Scholar]
- Šturm, L.; Ulrih, N.P. Advances in the Propolis Chemical Composition between 2013 and 2018. A Review. eFood 2020, 1, 24–37. [Google Scholar] [CrossRef]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef]
- Ristivojevic´, P.; Trifkovic´, J.; Andric´, F.; Milojkovic´-Opsenica, D. Poplar-type propolis: Chemical composition, botanical origin and biological activity. Nat. Prod. Commun. 2015, 10, 1934578X1501001. [Google Scholar] [CrossRef]
- Bouchelaghem, S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and Candida albicans: A review. Saudi J. Biol. Sci. 2022, 29, 1936–1946. [Google Scholar] [CrossRef]
- Botteon, C.E.A.; Silva, L.B.; Ccana-Ccapatinta, G.V.; Silva, T.S.; Ambrosio, S.R.; Veneziani, R.C.S.; Bastos, J.K.; Marcato, P.D. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. Green synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 1–24. [Google Scholar] [CrossRef]
- Husen, A.; Siddiqi, K.S. Plants and microbes assisted selenium nanoparticles: Characterization and application. J. Nanobiotechnol. 2014, 12, 1–10. [Google Scholar] [CrossRef]
- Srivastava, N.; Mukhopadhyay, M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst. Eng. 2015, 38, 1723–1730. [Google Scholar] [CrossRef]
- Menon, S.; Agarwal, H.; Rajeshkumar, S.; Rosy, P.J.; Shanmugam, V.K. Investigating the antimicrobial activities of the biosynthesized selenium nanoparticles and its statistical analysis. Bionanoscience 2020, 10, 122–135. [Google Scholar] [CrossRef]
- Skalickova, S.; Milosavljevic, V.; Cihalova, K.; Horky, P.; Richtera, L.; Adam, V. Selenium nanoparticles as a nutritional supplement. Nutr. J. 2017, 33, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Dash, K.K.; Deka, P.; Bangar, S.P.; Chaudhary, V.; Trif, M.; Rusu, A. Applications of inorganic nanoparticles in food packaging: A Comprehensive Review. Polymers 2022, 14, 521. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Chen, X.; Chen, Q.; Yu, Q.; Sun, D.; Liu, J. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs. Acta Biomater. 2016, 30, 397–407. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, X.; Chen, P.; Zhang, L.; Yang, C.S.; Zhang, J. Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radic. Biol. Med. 2018, 126, 55–66. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Bastu, A.; Bhattacharya, S. Selenium nanoparticles are less toxic than inorganic and organic selenium in mice in vivo. Nucleus 2019, 62, 259–268. [Google Scholar] [CrossRef]
- Zhai, X.; Zhang, C.; Zhao, G.; Stoll, S.; Ren, F.; Leng, X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J. Nanobiotechnol. 2017, 15, 4. [Google Scholar] [CrossRef]
- Navarro-Segura, L.; Ros-Chumillas, M.; Martínez-Hernández, G.B.; López-Gómez, A. A new advanced packaging system for extending the shelf life of refrigerated farmed fish fillets. J. Sci. Food Agric. 2020, 100, 4601–4611. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W.; Zeng, X.A.; Liu, D. Recent advances in methods and techniques for freshness quality determination and evaluation of fish and fish fillets: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1012–1225. [Google Scholar] [CrossRef]
- Bernardo, Y.A.; Rosario, D.K.; Delgado, I.F.; Conte-Junior, C.A. Fish Quality Index Method: Principles, weaknesses, validation, and alternatives—A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2657–2676. [Google Scholar] [CrossRef]
- Tayel, A.A.; Elzahy, A.F.; Moussa, S.H.; Al-Saggaf, M.S.; Diab, A.M. Biopreservation of shrimps using composed edible coatings from chitosan nanoparticles and cloves extract. J. Food Qual. 2020, 2020, 8878452. [Google Scholar] [CrossRef]
- Alsaggaf, M.S.; Moussa, S.H.; Tayel, A.A. Application of fungal chitosan incorporated with pomegranate peel extract as edible coating for microbiological, chemical and sensorial quality enhancement of Nile tilapia fillets. Int. J. Biol. Macromol. 2017, 99, 499–505. [Google Scholar] [CrossRef]
- Gad, H.A.; Tayel, A.A.; Al-Saggaf, M.S.; Moussa, S.H.; Diab, A.M. Phyto-fabrication of selenium nanorods using extract of pomegranate rind wastes and their potentialities for inhibiting fish-borne pathogens. Green Process Synth. 2021, 10, 529–537. [Google Scholar] [CrossRef]
- Alghuthaymi, M.; Diab, A.; Elzahy, A.; Mazrou, K.; Tayel, A.A.; Moussa, S.H. Green biosynthesized selenium nanoparticles by cinnamon extract and their antimicrobial activity and application as edible coatings with nano-chitosan. J. Food Qual. 2021, 2021, 6670709. [Google Scholar] [CrossRef]
- Elnakady, Y.; Rushdi, A.; Franke, R.; Abutaha, N.; Ebaid, H.; Baabbad, M.; Omar, M.O.M.; Al Ghamdi, A.A. Characteristics, chemical compositions and biological activities of propolis from Al-Bahah. Saudi Arabia. Sci. Rep. 2017, 7, 41453. [Google Scholar] [CrossRef] [PubMed]
- Tayel, A.A.; El-Tras, W.F. Plant extracts as potent biopreservatives for Salmonella typhimurium control and quality enhancement in ground beef. J. Food Saf. 2012, 32, 115–121. [Google Scholar] [CrossRef]
- Tayel, A.A.; Moussa, S.H.; Opwis, K.; Knittel, D.; Schollmeyer, E.; Nickisch- Hartfiel, A. Inhibition of microbial pathogens by fungal chitosan. Int J Biol Macromol. 2010, 47, 10–14. [Google Scholar] [CrossRef] [PubMed]
- ISO 4833-1: 2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. BSI: London, UK, 2013.
- ISO 17410:2019; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Psychrotrophic Microorganisms. BSI: London, UK, 2019.
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. BSI: London, UK, 2008.
- Official Journal of the European Communities. Commission Decision of 8 March 1995. Fixing the Total Volatile Basic Nitrogen (TVB-N) Limit Values for Certain Categories of Fishery Products and Specifying the Analysis Methods to be Used. No L 97/84. (95/149/EC). 1995. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31995D0149&from=fr. (accessed on 8 March 2022).
- Ke, P.J.; Cervantes, E.; Robles-Martinez, C. Determination of thiobarbituric acid reactive substances (TBARS) in fish tissue by an improved distillation spectrophotometric method. J Sci. Food Agric. 1984, 35, 1248–1254. [Google Scholar] [CrossRef]
- Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014, 12, 5. [Google Scholar] [CrossRef]
- Menon, S.; Shrudhi Devi, K.S.; Agarwal, H.; Shanmugam, V.K. Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloids Interface Sci. Commun. 2019, 29, 1–8. [Google Scholar] [CrossRef]
- Al-Saggaf, M.S.; Tayel, A.A.; Ghobashy, M.O.; Alotaibi, M.A.; Alghuthaymi, M.A.; Moussa, S.H. Phytosynthesis of selenium nanoparticles using the costus extract for bactericidal application against foodborne pathogens. Green Process Synth. 2020, 9, 477–487. [Google Scholar] [CrossRef]
- ElSaied, B.E.; Diab, A.M.; Tayel, A.A.; Alghuthaymi, M.A.; Moussa, S.H. Potent antibacterial action of phycosynthesized selenium nanoparticles using Spirulina platensis extract. Green Process Synth. 2021, 10, 49–60. [Google Scholar] [CrossRef]
- El Rabey, H.A.; Almutairi, F.M.; Alalawy, A.I.; Al-Duais, M.A.; Sakran, M.I.; Zidan, N.S.; Tayel, A.A. Augmented control of drug-resistant Candida spp. via fluconazole loading into fungal chitosan nanoparticles. Int. J. Biol. Macromol. 2019, 141, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Gargouri, W.; Osés, S.M.; Fernández-Muiño, M.A.; Sancho, M.T.; Kechaou, N. Evaluation of bioactive compounds and biological activities of Tunisian propolis. LWT. 2019, 111, 328–336. [Google Scholar] [CrossRef]
- Al-saggaf, M.S. Formulation of Insect Chitosan Stabilized Silver Nanoparticles with Propolis Extract as Potent Antimicrobial and Wound Healing Composites. Int. J. Polym. Sci. 2021, 2021, 5578032. [Google Scholar] [CrossRef]
- Salem, M.F.; Abd-Elraoof, W.A.; Tayel, A.A.; Alzuaibr, F.M.; Abonama, O.M. Antifungal application of biosynthesized selenium nanoparticles with pomegranate peels and nanochitosan as edible coatings for citrus green mold protection. J. Nanobiotechnol. 2022, 20, 182. [Google Scholar] [CrossRef]
- Sonkusre, P.; Cameotra, S.S. Biogenic selenium nanoparticles induce ROS-mediated necroptosis in PC-3 cancer cells through TNF activation. J. Nanobiotechnol. 2017, 15, 43. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef]
- Bekhit, A.E.; Holman, B.W.; Giteru, S.G.; Hopkins, D.L. Total volatile basic nitrogen (TVB-N) and its role in meat spoilage: A review. Trends Food Sci. Technol. 2021, 109, 280–302. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A sustainable material for food and medical applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef]
- Inoue, T.; Ando, K.; Kikugawa, K. Specific determination of malonaldehyde by N-methyl-2- phenylindole or thiobarbituric acid. J. Am. Oil Chem. Soc. 1998, 75, 597–600. [Google Scholar] [CrossRef]
- Gounot, A.M. Psychrophilic and psychrotrophic microorganisms. Experientia 1986, 42, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.R.; Kumazawa, S.; Usui, Y.; Nakamura, J.; Matsuka, M.; Zhu, F.; Nakayama, T. Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem. 2007, 101, 1383–1392. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. Propolis volatile compounds: Chemical diversity and biological activity: A review. Chem. Cent. J. 2014, 8, 28–35. [Google Scholar] [CrossRef]
- Celińska-Janowicz, K.; Zaręba, I.; Lazarek, U.; Teul, J.; Tomczyk, M.; Pałka, J.; Miltyk, W. Constituents of propolis: Chrysin, caffeic acid, p-coumaric acid, and ferulic acid induce PRODH/POX-dependent apoptosis in human tongue squamous cell carcinoma cell (CAL-27). Front. Pharmacol. 2018, 9, 336. [Google Scholar] [CrossRef]
- Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochem. Lett. 2018, 145, 187–196. [Google Scholar] [CrossRef]
- Neto, M.R.; Tintino, S.R.; da Silva, A.R.; do Socorro Costa, M.; Boligon, A.A.; Matias, E.F.; de Queiroz Balbino, V.; Menezes, I.R.; Coutinho, H.D. Seasonal variation of Brazilian red propolis: Antibacterial activity, synergistic effect and phytochemical screening. Food Chem. Toxicol. 2017, 107, 572–580. [Google Scholar]
- Choi, H.; Park, J.S.; Kim, K.M.; Kim, M.; Ko, K.W.; Hyun, C.G.; Ahn, J.W.; Seo, J.H.; Kim, S.Y. Enhancing the antimicrobial effect of genistein by biotransformation in microbial system. Ind. Eng. Chem. Res. 2018, 63, 255–261. [Google Scholar] [CrossRef]
- Rasul, A.; Millimouno, F.M.; Ali Eltayb, W.; Ali, M.; Li, J.; Li, X. Pinocembrin: A novel natural compound with versatile pharmacological and biological activities. Biomed. Res. Int. 2013, 2013, 1379850. [Google Scholar] [CrossRef]
- Tundis, R.; Frattaruolo, L.; Carullo, G.; Armentano, B.; Badolato, M.; Loizzo, M.R.; Aiello, F.; Cappello, A.R. An ancient remedial repurposing: Synthesis of new pinocembrin fatty acid acyl derivatives as potential antimicrobial/anti-inflammatory agents. Nat. Prod. Res. 2019, 33, 162–168. [Google Scholar] [CrossRef]
- Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi Sci. J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Przybyłek, I.; Karpin´ski, T.M. Antibacterial properties of propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [PubMed]
Nanoparticles | Particle Size Range (nm) | Particle Size Mean (nm) | Zeta Potential (mV) |
---|---|---|---|
BNCt | 43.19–242.56 | 151.85 | +37.6 |
Pro-SeNPs | 4.72–31.73 | 11.21 | −23.4 |
BNCt/Pro/SeNPs | 59.51–304.63 | 169.28 | +32.2 |
Antimicrobial Agents | Antimicrobial Assay * | |||||
---|---|---|---|---|---|---|
Escherichia coli | Staphylococcus aureus | Salmonella typhimurium | ||||
ZOI ** | MIC *** | ZOI | MIC | ZOI | MIC | |
BCht | 18.3 ± 1.3 a | 50.0 | 16.4 ± 0.8 a | 57.5 | 17.6 ± 1.2 a | 52.5 |
Pro | 23.1 ± 1.6 b | 35.0 | 19.1 ± 1.3 b | 45.0 | 22.4 ± 1.8 b | 35.0 |
Pro/SeNPs | 26.6 ± 1.9 b | 32.5 | 24.2 ± 1.8 c | 37.5 | 27.1 ± 2.2 c | 30.0 |
BCht/Pro/SeNPs | 33.4 ± 2.4 c | 27.5 | 28.9 ± 2.1 d | 30.0 | 32.9 ± 2.6 d | 25.0 |
Ampicillin | 25.8 ± 1.7 b | 37.5 | 23.5 ± 3.7 c | 47.5 | 24.4 ± 2.1 b | 40.0 |
Coating Material * | Assessment Attributes ** | ||||
---|---|---|---|---|---|
Microbial Quality (log CFU/g) | Chemical Quality (mg/kg) | ||||
Total Count | Psychrophilic Bacterial | Yeast and Molds | TVB-N | TBARS | |
Control (zero day) | 4.72 ± 0.65 a | 3.24 ± 0.62 a | 2.26 ± 0.63 a | 110.07 ± 2.17 a | 0.41 ± 0.04 a |
BCht | 2.89 ± 0.37 b | 1.95 ± 0.48 b | 1.38 ± 0.44 b | 169.94 ± 2.81 b | 0.95 ± 0.13 b |
Pro | 2.07 ± 0.43 bc | 1.62 ± 0.53 b | 1.16 ± 0.55 b | 173.26 ± 3.54 b | 1.21 ± 0.10 b |
Pro/SeNPs | 1.51 ± 0.29 c | 1.08 ± 0.46 b | ND *** | 164.51 ± 1.68 b | 0.86 ± 0.09 bc |
Pro/BCht | 1.86 ± 0.42 c | 1.29 ± 0.61 b | ND | 132.15 ± 3.21 c | 0.78 ± 0.08 c |
BCht/Pro/SeNPs | 1.05 ± 0.19 c | ND | ND | 118.47 ± 2.43 d | 0.65 ± 0.07 c |
Control | 8.68 ± 1.34 d | 6.06 ± 1.03 c | 4.94 ± 0.94 c | 258.51 ± 4.37 e | 2.18 ± 0.16 d |
Agents | Appearance | Odor | Color | Overall Quality |
---|---|---|---|---|
Control | 3.6 | 2.4 | 3.9 | 3.3 |
BCht | 6.3 | 6.9 | 6.4 | 6.5 |
Pro | 6.6 | 7.9 | 7.1 | 7.3 |
Pro/SeNPs | 7.5 | 8.2 | 8.1 | 7.8 |
Pro/BCht | 7.1 | 7.4 | 8.3 | 7.9 |
BCht/Pro/SeNPs | 8.7 | 8.5 | 8.3 | 8.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, D.M.; Alshubaily, F.A.; Tayel, A.A.; Alghuthaymi, M.A.; Al-Saman, M.A. Application of Nanocomposites from Bees Products and Nano-Selenium in Edible Coating for Catfish Fillets Biopreservation. Polymers 2022, 14, 2378. https://doi.org/10.3390/polym14122378
Youssef DM, Alshubaily FA, Tayel AA, Alghuthaymi MA, Al-Saman MA. Application of Nanocomposites from Bees Products and Nano-Selenium in Edible Coating for Catfish Fillets Biopreservation. Polymers. 2022; 14(12):2378. https://doi.org/10.3390/polym14122378
Chicago/Turabian StyleYoussef, Dareen M., Fawzia A. Alshubaily, Ahmed A. Tayel, Mousa A. Alghuthaymi, and Mahmoud A. Al-Saman. 2022. "Application of Nanocomposites from Bees Products and Nano-Selenium in Edible Coating for Catfish Fillets Biopreservation" Polymers 14, no. 12: 2378. https://doi.org/10.3390/polym14122378
APA StyleYoussef, D. M., Alshubaily, F. A., Tayel, A. A., Alghuthaymi, M. A., & Al-Saman, M. A. (2022). Application of Nanocomposites from Bees Products and Nano-Selenium in Edible Coating for Catfish Fillets Biopreservation. Polymers, 14(12), 2378. https://doi.org/10.3390/polym14122378