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Abstract: Polylactides (PLAs) are thermoplastic materials known for their wide range of applications.
Moreover, the equimolar mixtures of poly(L-Lactide) (PLLA) and poly(D-Lactide) (PDLA) can form
stereocomplexes (SCs), which leads to the formation of new non-covalent complex macromolecular
architectures. In this work, we report the synthesis and characterization of non-covalent triblock
terpolymers of polystyrene-b-stereocomplex PLA-b-poly(2-vinylpyridine) (PS-b-SC-b-P2VP). Well-
defined ω-hydroxy-PS and P2VP were synthesized by “living” anionic polymerization high-vacuum
techniques with sec-BuLi as initiator, followed by termination with ethylene oxide. The resulting
PS-OH and P2VP-OH were used as macroinitiators for the ring-opening polymerization (ROP) of
DLA and LLA with Sn(Oct)2 as a catalyst to afford PS-b-PDLA and P2VP-b-PLLA, respectively. SC
formation was achieved by mixing PS-b-PDLA and P2VP-b-PLLA chloroform solutions containing
equimolar PLAs segments, followed by precipitation into n-hexane. The molecular characteristics of
the resulting block copolymers (BCPs) were determined by 1H NMR, size exclusion chromatography,
and Fourier-transform infrared spectroscopy. The formation of PS-b-SC-b-P2VP and the effect of
molecular weight variation of PLA blocks on the resulting polymers, were investigated by differential
scanning calorimetry, X-ray powder diffraction, and circular dichroism spectroscopies.

Keywords: polylactides; stereocomplexation; anionic polymerization; ring-opening polymerization;
triblock terpolymers

1. Introduction

Among synthetic aliphatic polyesters, poly(lactic acids)/polylactides (PLAs) have
attracted enormous interest because they are biocompatible and biodegradable [1–3]. PLAs
are derived from natural renewable resources, are non-toxic to the human body, and possess
good thermomechanical properties [4,5]. As a result, PLAs have been widely used in a
broad range of applications, such as packaging materials [6,7] and biomedical materials
(e.g., surgical sutures, implant materials, and controllable drug delivery systems) [8–10],
among many other applications [11–14].

PLAs also possess several inherent defects [15,16], such as long degradation periods
and slow crystallization rates, leading to inferior properties, and low heat distortion
temperature, which increases the difficulty of processing [17,18]. Diverse strategies and
chemical modifications have been employed to overcome such drawbacks, including the
use of blends and additives [19]. Another approach is the use of PLA stereocomplex
(SC)-based copolymers to enhance the properties of PLA.

Lactide (LA) exists in two optically active forms, i.e., stereoisomers, (R,R)L-lactide (LLA)
and (S,S)D-lactide (DLA), and one optically inactive form, (R,S)meso-lactide (mLA) [20,21].
When LA is converted into a polymer, the stereoregularity of the chain has a strong
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influence on the thermomechanical properties. Consequently, PLA derived from different
stereoisomers exhibits various physical and chemical properties. For example, isotactic
PLLA and PDLA with high stereoregularity are semi-crystalline polymers with a melting
temperature (Tm) between 170 and 190 ◦C [22], whereas atactic poly(rac-lactide) (PDLA) is
amorphous due to the absence of stereoregularity. Moreover, the mixture of isotactic PLLA
and PDLA can form superior material called PLA stereocomplex (SC).

The formation of SC crystallites between PLLA and PDLA was first reported by
Ikada et al. in 1986 [23]. They found that an equimolar mixture of isotactic PLLA and PDLA
in dichloromethane undergoes stereoselective physical association through multicenter
hydrogen bonding interaction between the methyl and the carbonyl groups of the opposite
configurations. This interaction was proved later by Ozaki et al. by an ultrasensitive
IR spectroscopy [24,25]. These interactions result in a new arrangement of helicoidal
chains (31) between L- and D-lactyl units interlocked side by side within the same crystal
unit (i.e., racemic crystal), indicating more dense crystal packing compared to that of the
homo-crystallites. Due to the strong interactions, SC exhibits exceptional physical and
chemical stabilities leading to significantly enhanced properties [23]. For example, SC
crystals were found to exhibit higher melting temperatures (ca. 50 ◦C higher than the
corresponding homo-crystals), improved mechanical properties, and stronger hydrolytic
resistance compared to PLA homo-crystals. Thus, stereocomplexation between PLLA and
PDLA has proven to be a powerful tool for the generation of thermally and mechanically
enhanced nanomaterials.

The stereocomplexation of block copolymers containing PLLA and PDLA blocks
has been applied to synthesize non-covalent ABA-type triblock copolymers for various
applications (A can be crystalline or amorphous block, B is PLA stereocomplex). Several
examples of the A block used in such copolymers are polyethylene glycol (PEG) [26–29],
poly(ε-caprolactone) (PCL) [30], polymenthide (PM) [31], poly(N,N-(dimethylamino)ethyl
methacrylate) (PDMAEMA) [32], polyacrylic acid (PAA) [33], polystyrene (PS) [34], and
polyisoprene (PI) [35,36]. To the best of our knowledge, P2VP-b-PLA systems have not been
used in stereocomplex systems, even though the synthesis of such diblock copolymer has
been reported via the combination of ring-opening polymerization (ROP) and reversible
addition–fragmentation chain-transfer (RAFT) polymerization [37,38].

While much research has been conducted on non-covalent triblock copolymers using
PLA SC, little information is known about PLA SC systems containing different block
copolymers, i.e., non-covalent triblock terpolymer (ABC-type triblock terpolymer). This
approach provides new insights into polymer design strategies for high-performance PLA-
based materials. Therefore, a fundamental study of the synthesis and properties of such
materials is required to establish the structure-property relationships.

Recently, our group reported the synthesis and characterization of non-covalent PS-b-
SC-b-PI triblock terpolymers by the stereocomplex formation between well-defined PI-b-
PLLA and PS-b-PDLA [39]. The synthesis of these block copolymers was accomplished by
combining anionic polymerization high-vacuum techniques (HVTs) and ROP. Hydroxy-
terminated PI and PS were synthesized via anionic polymerization and were used as
macroinitiators for the ROP of LLA and DLA in the presence of Sn(Oct)2 catalyst. The
molecular characteristics, as well as the thermal properties of the precursors and the triblock
terpolymers, were studied.

This study focuses on the synthesis and characterization of well-defined PS-b-SC-
b-P2VP via the stereocomplex formation between P2VP-b-PLLA and PS-b-PDLA. Both
BCPs were synthesized by combining anionic polymerization and ROP. First, hydroxy-
functionalized P2VP and PS were synthesized by anionic polymerization HVTs, followed
by termination with ethylene oxide and neutralization with methanol. The resulting
polymers were then used as macroinitiators for the ROP of the corresponding LA using
Sn(Oct)2 as a catalyst. The synthesized BCPs were characterized by 1H nuclear magnetic
resonance (NMR) spectroscopy and size exclusion chromatography (SEC). Stereocomplex
formation was accomplished by mixing PS-b-PDLA and P2VP-b-PLLA in chloroform,
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followed by precipitation in hexane. Both BCPs and their corresponding stereocomplexes
were characterized by differential scanning calorimetry (DSC), Fourier-tranform infrared
(FT-IR), powder X-ray diffraction (XRD), and circular dichroism (CD) spectroscopies to
study the formation of PS-b-SC-b-P2VP and to evaluate the effect of the molecular weight
of PLA on the resulting PS-b-SC-b-P2VP non-covalent triblock terpolymer properties.

2. Materials and Methods
2.1. For Anionic Polymerization

Benzene (VWR, Pris, France, 99%) and tetrahydrofuran (THF, VWR, Gliwice, Poland,
≥99.0%) were dried over calcium hydride (CaH2, 95%) followed by distillation into a
glass cylinder containing polystyrilithium (PS(−)Li(+)) for benzene, and sodium/potassium
alloy for THF, under high vacuum. Styrene (Sigma-Aldrich, 99%) was dried over CaH2
followed by distillation over di-n-butylmagnesium (Bu2Mg) and stored at −20 ◦C in pre-
calibrated ampoules. 2-Vinylpyridine (2VP,) was dried twice over CaH2 and subsequently
purified using a sodium mirror and triethylaluminum (TEA), followed by distillation into
pre-calibrated ampoules. sec-Butyllithium (1.4 M in cyclohexane, Sigma-Aldrich) was
diluted to the appropriate concentration in benzene for the polymerization of styrene, or in
n-hexane (Sigma-Aldrich, 95%) for the polymerization of 2VP, and stored under vacuum
at −20 ◦C within a home-made glass apparatus equipped with ampoules. Ethylene oxide
(EO, Sigma-Aldrich, 99.5%) was purified by distillation over CaH2, over n-BuLi at 0 ◦C,
and stored under high vacuum in ampoules. Methanol (MeOH, Sigma-Aldrich, ≥99.9%)
was purified by distillation over CaH2 and stored in ampoules under a high vacuum.

2.2. For Ring-Opening Polymerization

Toluene, 1,4-dioxane (anhydrous, >99.9%), and benzoic acid (99.5%) were dried over
CaH2 and PS(−)Li(+). Ethyl acetate (EtOAc) was purchased from VWR Chemicals (HiPer-
Solv Chromanorm) and used as received. LLA (Sigma-Aldrich, Zwijndrecht, The Nether-
lands, 99%) and DLA (Jinan Daigang Biomaterial Co., Ltd., Jinan, China, ≥99.5%) were
recrystallized from EtOAc three times and dissolved in anhydrous 1,4-dioxane, cryo-
evaporating the 1,4-dioxane, followed by drying under vacuum overnight. Stannous
octoate (Sn(Oct)2, Sigma-Aldrich, 95%) was distilled twice over anhydrous MgSO4 and
activated 4 Å molecular sieves, followed by azeotropic distillation with dry toluene. PS-OH
and P2VP-OH macronitiators obtained by anionic polymerization were dried through a
freeze-drying process in benzene two times. All monomers, solvents, and catalysts for
polymerizations were stored under argon (Ar) in a glove box (LABmaster SP, MBraun,
Stratham, NH, USA).

2.3. Instrumentation
1H NMR measurements were performed using Bruker AVANCE III spectrometers

operating at 400 or 500 MHz; chloroform-d (CDCl3, 99.8% D, Sigma-Aldrich) was used as
the solvent for all samples. 1H NMR spectra were used to calculate the number-average
molecular weight (Mn) of each block by using the integrals of the characteristic signals
from the end-groups and repeating unit of each block. SEC measurements were performed
using Agilent SEC (Agilent Technologies, Santa Clara, CA, USA) equipped with a PLgel
5 µm MIXED-C and PLgel 5 µm MIXED-D columns. THF was used as eluent at a flow
rate of 1.0 mL min−1 at 35 ◦C. The instrument was calibrated with PS standards. SEC
samples were prepared by dissolving 2 mg/mL solutions in THF and filtered through
0.22 µm Teflon filters before injection. DSC measurements were performed with a Mettler
Toledo DSC1/TC100 under nitrogen (N2) and calibrated with Indium (purity > 99.999%).
The samples were first heated from 25 to 200 ◦C to erase the thermal history and then
cooled to−20 ◦C with a heating/cooling rate of 10 ◦C min−1. This cycle was repeated twice
before the glass transition, melting, and crystallization temperatures (Tg, Tm, and Tc) were
recorded. X-ray diffractograms were obtained from XRD Bruker D8 Advance using Cu Kα
irradiation. The sample for XRD measurements was deposited on a glass substrate with
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an approximate size of 1.5 cm × 1 cm, from a chloroform solution. Circular dichroism
(CD) was performed with a Jasco J-815 model, featuring a Peltier model PTC-423S/15
thermo-stabilizing system. The cell used was a 1 mm quartz suprasil cell. The solutions
of the PS-b-PDLA, P2VP-b-PLLA, and their stereocomplexes were made with acetonitrile.
Typical concentrations were ∼0.1 mg/mL.

2.4. Synthetic Procedures

The anionic polymerization of styrene and 2VP was carried out in specific custom-
made glass apparatuses, which were evacuated and washed with n-BuLi solution prior
to polymerization. Break seals were used for the introduction of reagents. Further details
regarding the polymerization techniques are provided in previous reports [40–42].

2.5. Synthesis of Hydroxy-Terminated Polystyrene (PS-OH)

Styrene (5 g) was added to the appropriate amount of solvent (benzene, 5–10% poly-
mer concentration), followed by the addition of the initiator, sec-BuLi (0.833 mmol). The
polymerization was left to proceed until total monomer consumption (~18 h) at room tem-
perature. An aliquot was taken to verify the molecular characteristics (molecular weight
and distribution) by heat-sealing the proper constriction. EO (~1 mL) was then added to the
reaction mixture and kept for 12 h at room temperature. Finally, methanol (~0.5 mL) was
added for the termination of the living polymer. The polymer solution was precipitated
into a large excess of methanol. The resulting polymer was filtered and dried in a vacuum
oven at 40 ◦C for 24 h. Mn of PS-OH was calculated to be 6300 g mol−1 by using 1H NMR
end-group analysis. SEC analysis indicated an Mn of 6200 g mol−1 and Ð of 1.02.

2.6. Synthesis of Hydroxy-Terminated Poly(2-vinylpyridine) (P2VP-OH)

2VP (6 g) was distilled into the glass reactor containing the appropriate amount of
solvent (150 mL of THF), followed by the addition of sec-BuLi (1.2 mmol). The polymer-
ization was conducted at −78 ◦C and was left to proceed for 1 h. EO (~1 mL) was then
added to the reaction mixture and kept for 12 h at room temperature. Finally, methanol
(~0.5 mL) was added for the termination of the living polymer. The polymer solution was
precipitated into a large excess of n-hexane. The resulting polymer was filtered and dried
in a vacuum oven at 40 ◦C for 24 h. Mn of P2VP-OH was calculated to be 6000 g mol−1 by
using 1H NMR end-group analysis. SEC analysis indicated an Mn of 5500 g mol−1 and Ð
of 1.03.

2.7. Synthesis of PS-b-PDLA

In a glove box under Ar atmosphere, dry PS-OH (248 mg, 0.039 mmol), Sn(Oct)2
(8.1 mg, 0.02 mmol), D-LA (288 mg, 2 mmol), and 3 mL dry toluene were added to a dry
Schlenk flask equipped with a stirrer bar. The reaction mixture was stirred for 24 h at
80 ◦C, and the conversion was monitored by 1H NMR spectroscopy. After 24 h, the reaction
mixture was quenched with benzoic acid and precipitated in cold MeOH. The resulting
diblock copolymer was centrifuged and dried under a vacuum for 24 h at 40 ◦C.

2.8. Synthesis of P2VP-b-PLLA

In a glove box under Ar atmosphere, dry P2VP-OH (240 mg, 0.04 mmol), Sn(Oct)2
(8.1 mg, 0.02 mmol), L-LA (290 mg, 2 mmol), and 3 mL dry toluene were added to a dry
Schlenk flask equipped with a stirrer bar. The reaction mixture was stirred for 24 h at
80 ◦C, and the conversion was monitored by 1H NMR spectroscopy. After 24 h, the reaction
mixture was quenched with benzoic acid and precipitated in cold n-hexane. The resulting
diblock copolymer was centrifuged and dried under vacuum for 24 h at 40 ◦C.

2.9. Stereocomplex Formation (PS-b-SC-b-P2VP)

Equimolar solutions of PS-b-PDLA and P2VP-b-PLLA were prepared separately by
dissolving each polymer (~100 mg) in chloroform (5 mL) under vigorous stirring for 15 min
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at 400 rpm. Subsequently, the two solutions were mixed and stirred for another 15 min at
400 rpm. Finally, the final solution was precipitated in cold n-hexane (200 mL) and stirred
for 30 min at 200 rpm. The precipitate was centrifuged and dried under vacuum for 24 h at
40 ◦C. In the following discussion, the stereocomplex-based samples (PS-b-SC-b-P2VP) are
referred to as SCPLAx, where x is the calculated molecular weight of the PLA segments.

3. Results and Discussion

The anionic polymerization of 2VP and styrene was carried out in THF (at−78 ◦C) and
benzene (at room temperature), respectively, using sec-BuLi as the initiator (Scheme 1). After
complete consumption of monomers, the living polymers were end-capped by an excess
amount of EO at room temperature. Quantitative functionalization reaction of polymeric
organolithium compounds in hydrocarbon solutions with EO at room temperature proceeds
in the absence of EO oligomerization [43]. The anionic polymerization of EO does not
happen under these conditions, resulting in initiation without propagation. Therefore, only
one monomeric unit of EO is inserted at the chain-end. This is due to the high charge density
of the lithium cation resulting in the strong aggregation of terminal lithium alkoxides.
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Scheme 1. General reactions for the synthesis ofω-hydroxyl functionalized PS and P2VP via anionic
polymerization and the subsequent ROP of DLA/LLA.

The functionalization of both polymers (PS and P2VP) with EO was confirmed
by 1H NMR and by FT-IR spectrosocopies. 1H NMR spectrum shows a peak around
(δ = 3.2–3.7 ppm), which corresponds to the –CH2 attached to the hydroxyl end-group
(Figure S1). Moreover, the –OH group can be observed using FT-IR as a broad peak around
3401 cm−1 and 3394 cm−1 for PS-OH and P2VP-OH, respectively (Figure S2). Further
confirmation is evident by the successful copolymerization of PLA via ROP using PS-OH
and P2VP-OH as macroinitiators, as confirmed by SEC and 1H NMR spectroscopy (Table 1).

PS-OH and P2VP-OH were synthesized with an Mn of 6300 and 6000 g mol−1, as
obtained by 1H NMR end-group analysis, respectively. Their molecular characteristics are
presented in Table 1. Both homopolymers have low molar-mass dispersity, as indicated by
SEC, suggesting that the polymers can be considered to be well defined (Figure S3).

ROP of DLA/LLA initiated by dry PS-OH and P2VP-OH macroinitiators and catalyzed
by Sn(Oct)2 was performed in toluene at 80 ◦C to afford PS-b-PDLA and P2VP-b-PLLA
diblock copolymers, respectively. Sn(Oct)2, is considered one of the most effective cata-
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lysts for the ROP of lactides under a wide range of conditions [44–48]. Moreover, it is
commercially available, soluble in most organic solvents, and has been approved by the
United States Food and Drug Administration. The targeted molecular weights of PLAs
were varied: 5000, 7000, and 10,000 g mol−1. The molecular characteristics of the result-
ing diblock copolymers were determined by SEC and 1H NMR measurements and are
presented in Table 1.

Table 1. Molecular characteristics of homopolymers, diblock copolymers, and the corresponding
stereocomplex.

Entry Sample Conv c (%) Mn (kg mol−1) Ð d

1 PS6.2-OH a 100 6.20 d 1.02
2 P2VP5.5-OH a 100 5.54 d 1.03
3 PS6.2-b-PDLA5.5

b 97 5.49 e 1.03
4 P2VP5.5-b-PLLA5.6

b 96 5.57 e 1.08
5 PS6.2-b-PDLA7.1

b 98 7.06 e 1.04
6 P2VP5.5-b-PLLA7

b 99 6.96 e 1.04
7 PS6.2-b-PDLA10.7

b 99 10.7 e 1.05
8 P2VP5.5-b-PLLA11

b 99 11.0 e 1.07
a Synthesized by anionic polymerization high-vacuum techniques. b Synthesized by ROP of DLA/LLA with
Sn(Oct)2 as the catalyst. c Conversions of the monomers were determined by 400 MHz 1H NMR spectra of crude
products in CDCl3 at 25 ◦C. d Determined by SEC in THF at 35 ◦C (calibrated with PS standards). e The molecular
weight corresponds to the PLA block.

Figure 1 shows the SEC traces of the homopolymer precursors compared to the
corresponding diblock copolymers. The SEC traces clearly show a shift towards a lower
elution time, indicating an increase in molecular weight compared to the PS-OH and P2VP-
OH precursors. The Ð values of all copolymers are below 1.1 (between 1.02 and 1.08),
indicating that the diblock copolymers are nearly uniform (in molar mass).
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Figure 1. SEC traces of (a) P2VP-OH precursor and P2VP-b-PLLA diblock copolymers and (b) PS-OH
precursor and PS-b-PDLA diblock copolymers (THF as eluent, 35 ◦C, PS standards).

For the following discussion on 1H NMR, FT-IR, and CD results, P2VP5.5-b-PLLA5.6
and PS6.2-b-PDLA5.5 will be used as representative samples. 1H NMR spectra of the diblock
copolymers (Figure 2) show the characteristic peaks of methine proton from PLA main
chain (c, δ = 5.2–5.3 ppm) and the terminal C–H (d, δ = 4.3–4.4 ppm). The molecular weights
of the PLA blocks were determined by calculating the integral ratio of proton (c) and (d),
i.e., end-group analysis.
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FT-IR spectroscopy was used to investigate the formation of the diblock copolymers
and their corresponding stereocomplexes. The FT-IR spectra of the diblock copolymers
reveal that a new peak is present at ∼1750 cm−1, which corresponds to the carbonyl (C=O)
stretching, and two other peaks at∼1184 and 1088 cm−1 correspond to the (C–O) stretching
of PLA (Figure 3).
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Upon the formation of stereocomplex, the vibrational stretch of the carbonyl group of
PLA, i.e., ν(C=O) band, in the SCPLA (Figure 3) shifted to a slightly lower wavenumber
than that of the PS-b-PDLA (from 1756 to 1749 cm−1) and P2VP-b-PLLA (from 1754 to
1749 cm−1). This shift is attributed to the arrangement of the PLA chains into a more dense
crystal packing due to stereocomplex formation via intermolecular H-bond interaction [49].

The specific optical rotation of PDLA/PLLA blocks in the block copolymers was evalu-
ated by CD experiments. It is worth noting that PDLA chains take the right-handed helical
conformation, whereas PLLA takes the left-handed helical conformation in acetonitrile
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solution. Figure S4 shows the CD spectra for both PS6.2-b-PDLA5.5 and P2VP5.5-b-PLLA5.6
in acetonitrile. The carboxylic group of PLAs with a helical conformation is accompanied by
a characteristic absorption band of n→ π* transition. Therefore, a positive Cotton effect for
P2VP5.5-b-PLLA5.6 and a negative Cotton effect for PS6.2-b-PDLA5.5 can be observed at ~233
nm. On the other hand, the solution of SCPLA5.5 does not show such an effect, indicating
that the D- and L-helical conformations complement each other due to the stereocomplex
formation, resulting in zero CD response.

The influence of the molecular weight of PLA segments on the physical properties of
the diblock copolymers, as well as their corresponding stereocomplexes, was investigated
on the basis of DSC and XRD analyses. Figures 4 and 5 show the DSC thermograms and
XRD patterns of the block copolymers and the stereocomplexes obtained by precipitation.

DSC analysis was performed in order to evaluate the thermal properties, including
glass transition temperature (Tg) and melting temperature (Tm), of the homopolymers (PS6.2-
OH and P2VP5.2-OH) and diblock copolymers (PS6.2-b-PDLAx and P2VP5.2-b-PLLAy), as
well as the corresponding SCPLAs. The DSC thermograms of the homopolymers, block
copolymers, and corresponding SCPLAs are shown in Figure 4.
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were cast on top of the glass substrate).

The Tg values of the amorphous PS6.2-OH and P2VP5.2-OH precursors are observed
to be 92.3 ◦C and 93.6 ◦C (Table 2), respectively. In the case of the diblock copolymers,
the Tg values of PS and P2VP blocks cannot be observed, indicating that the PS/P2VP
(amorphous blocks) and PLLA/PDLA (crystalline blocks) are miscible in the melt [50,51].
The PLLA/PDLA crystallites are well organized (as proved by the distinct ∆Hm) and limit
the mobility of the amorphous blocks [50]. In addition, for PS6.2-b-PDLA7.1 (Figure 4c), the
Tg of PS overlaps with the exothermic peaks from the cold-crystallization temperature (Tcc)
of PLA. Therefore, the effect of the molecular weight of crystalline PLA blocks on the Tg
of the amorphous blocks cannot be evaluated. The small endothermic humps observed
between 50 and 80 ◦C are attributed to the Tg values of PLA.

All block copolymers exhibited a Tm of PLAs in the range of 150–180 ◦C, indicating
the existence of crystalline PDLA/PLLA block. The PLLA block in P2VP5.2-b-PLLA5.6
and P2VP5.2-b-PLLA7 shows double melting (Tm) peaks. Two plausible explanations have
been proposed for this observed phenomenon. The first concerns the lamellar crystal
thickness [52,53], and suggests that the double endothermic behavior is the result of the
existence of two kinds of crystal lamellae having different thicknesses. Consequently, the
melting of the thinner lamellae would be observed at a lower temperature endotherm,
whereas the thicker lamellae are related to the higher temperature endotherm. The second
possible explanation is the partial melting and recrystallization process [54,55], where the
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lower-temperature endotherm is the result of the melting of the initial lamellae followed by
recrystallization into more perfect lamellae.

Table 2. Thermal properties of homopolymers, block copolymers, and the corresponding SCPLA.

Sample Tg (◦C) 1 Tm (◦C) 1 ∆Hm (J/g) 1 Xc (%) 2

PS6.2-OH 92.3 - - Amorphous
P2VP5.5-OH 93.6 - - Amorphous

PS6.2-b-PDLA5.5 - 153.0 24.4 14.5
P2VP5.5-b-PLLA5.6 83.0 156.0 23.5 34.0

SCPLA5.5 - 220.3 36.1 33.0
PS6.2-b-PDLA7.1 54.2 154.0 25.5 37.3

P2VP5.5-b-PLLA7 58.9 152.6 27.7 39.6
SCPLA7 - 223.3 41.3 38.3

PS6.2-b-PDLA10.7 73.9 162.6 30.0 52.4
P2VP5.5-b-PLLA11 59.9 162.9 43.2 51.4

SCPLA11 - 231.1 39.9 39.3
1 Determined by DSC (heating scan 10 ◦C min−1, N2 atmosphere). 2 Determined by XRD (samples were deposited
on top of a glass substrate).

In general, the Tm values of PLLA and PDLA are affected by the increase in molecular
weight. Such a trend is also observed in the PS6.2-b-PDLA and P2VP5.2-b-PLLA block
copolymers. The higher the molecular weight of PLLA and PDLA, the higher the Tm in
the diblock copolymers. When the molecular weight is increased from ~5000 g mol−1 to
~10,000 g mol−1, the Tm values increase from 153.0 to 162.6 ◦C for PDLA-containing BCPs,
and from 156.0 to 162.9 ◦C in the case of PLLA-containing BCPs. Similarly, the Tm and
the melting enthalpy (∆Hm) of SCPLA also increase with the increase in the molecular
weight of PLA (from 220.3 to 230.3 ◦C). These results are in good agreement with our recent
findings on the thermal properties of PS-b-SC-b-PI [39]. It is worth noting that the Tm of
SCPLA is always ~70 ◦C higher than the Tm of their corresponding diblock copolymers,
indicating that the effect of the amorphous PS6.2 and P2VP5.2 on the crystal packing of
SCPLA is not significant in this case.

The investigation of crystal structure and degree of crystallinity (Xc) for the homopoly-
mers, block copolymers, and their stereocomplexes obtained by precipitation was carried
out by means of XRD analysis. The diffraction patterns are presented in Figure 5. The
diblock copolymers exhibited diffraction peaks at 2θ = 16.7◦, 17.6◦, 19.5◦, 22◦, and 26◦,
verifying the presence of α crystals, i.e., orthorhombic unit cells. In addition, the crystal
structure of SCPLAs obtained from the equimolar ratio of PLLA:PDLA was also investi-
gated. The diffractograms (Figure 5) show diffraction peaks of triclinic crystal at 2θ = 14◦,
24◦, and 28◦, confirming the formation of stereocomplexes. Overall, the XRD patterns of
block copolymers and their stereocomplexes are in good agreement with the literature, as
the α crystals show the reflection at 2θ = 16.6◦, 19.1◦ and 17◦, 19◦, and the SCPLA crystals
show the reflection at 2θ = 12◦, 21◦, 24◦, and 12◦, 20.9◦, 24◦ [23].

The total degree of crystallinity (Xc) of a polymeric material can be calculated from its
XRD pattern. Xc is defined as the ratio of the area of all crystalline peaks to the total area
under the XRD peaks (crystalline + amorphous), as shown in Equation (1):

% Crystallinity =
Ic

(Ic + Ia)
× 100, (1)

where Ia and Ic are the areas of the amorphous and crystalline domains, respectively. Based
on DSC and XRD results, both PS and P2VP segments are amorphous. Therefore, the Xc of
the diblock copolymers and their SCPLAs obtained from XRD can be attributed to the Xc
of their PLA segments.

As can be seen in Figure 5, the Xcs of PS-b-PDLAs (14.5 < Xc < 52.4) and P2VP-b-PLLAs
(34.0 < Xc < 51.4) increase with increasing molecular weight of the PLA blocks. This clearly
indicates that the fraction crystalline domain increases with increasing molecular weight
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of PLA. A similar trend is also observed for the SCPLA (33.0 < Xc < 39.3), although the
increment is insignificant.

4. Conclusions

Several well-defined diblock copolymers, PS6.2-b-PDLAx and P2VP5.5-b-PLLAy, were
successfully synthesized via the combination of anionic polymerization high-vacuum
techniques and ring-opening polymerization. PS6.2-b-PDLAx and P2VP5.5-b-PLLAy were
used as the precursors to synthesize non-covalent PS6.2-b-SC-b-P2VP5.5 triblock terpolymers
via stereocomplexation of PDLA and PLLA blocks in chloroform. 1H NMR spectroscopy
and SEC confirmed the molecular characteristics of the copolymers. FT-IR, DSC, XRD,
and CD spectroscopies revealed the formation of PS6.2-b-SC-b-P2VP5.5 as well as the effect
of varying PLA molecular weights on the thermal properties of co/terpolymers. It was
found that the Tm and Xc of the co/terpolymers increase with the increase of the molecular
weights of PLA segments.

Comprehensive studies are necessary to further understand this system and determine
a range of potential applications. Morphological and mechanical studies, including Young’s
modulus and tensile strength, will be conducted to fully establish the structure–properties
relationship of these new non-covalent triblock terpolymers. Moreover, the presence of
P2VP segments in these triblock terpolymers can be promising for biomedical applications
due to their pH-sensitive nature and the ability to bind with metal cations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14122431/s1. Figure S1: 1H NMR (400 MHz, CDCl3)
spectra of (a) PS-OH and (b) P2VP-OH; Figure S2: FT-IR spectra of (a) PS-OH and (b) P2VP-OH;
Figure S3: SEC traces of (a) PS-OH and (b) P2VP-OH in THF at 35 ◦C; Figure S4: CD spectra of PS6.2-
b-PDLA5.5, P2VP5.5-b-PLLA5.6, and SCPLA5.5 were measured in acetonitrile with a concentration of
0.1 mg mL−1 at room temperature.
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