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Abstract: Additive manufacturing or 3D printing of materials is a prominent process technology
which involves the fabrication of materials layer-by-layer or point-by-point in a subsequent manner.
With recent advancements in additive manufacturing, the technology has excited a great potential
for extension of simple designs to complex multi-material geometries. Vat photopolymerization
is a subdivision of additive manufacturing which possesses many attractive features, including
excellent printing resolution, high dimensional accuracy, low-cost manufacturing, and the ability
to spatially control the material properties. However, the technology is currently limited by design
strategies, material chemistries, and equipment limitations. This review aims to provide readers with
a comprehensive comparison of different additive manufacturing technologies along with detailed
knowledge on advances in multi-material vat photopolymerization technologies. Furthermore,
we describe popular material chemistries both from the past and more recently, along with future
prospects to address the material-related limitations of vat photopolymerization. Examples of the
impressive multi-material capabilities inspired by nature which are applicable today in multiple
areas of life are briefly presented in the applications section. Finally, we describe our point of view on
the future prospects of 3D printed multi-material structures as well as on the way forward towards
promising further advancements in vat photopolymerization.

Keywords: 3D printing; vat photopolymerization; multimaterials; step-growth; chain-growth;
cationic polymerization; orthogonal networks; grayscale printing

1. Introduction

Polymers have revolutionized the world with their diversity, tempting appearances,
inherent properties, and unique functionality. They are macromolecules formed by repeat-
ing monomer units, and thus exhibit exceptional physical, mechanical, and viscoelastic
properties. Because of their long chemically bonded macromolecular chains, mechanical
and thermal stimuli can induce mobility and deformations in polymers [1].

The vast variety of monomers and their adjourning mechanisms have led to polymers
differing in flexibility, stiffness, and elasticity. Based on their crosslinked structure and
related thermo-mechanical and viscoelastic properties they can be divided into thermoplas-
tics, elastomers, and thermosets, which collectively represent a huge share of the technically
relevant materials available on the market [2–4]. As the name suggests, thermoplastics
are high molecular weight polymers; they do not possess chemical crosslinks, and thus,
at elevated temperatures, they become mobile, soft, and flowable enough to be shaped
into commodity articles [3,5,6]. Cooling the shaped articles below the glass and melting
temperature hardens thermoplastic objects and fixes the microstructure. Thermoplastics
can be processed by injection molding and extrusion; upon heating, they can be softened,
melted, and reshaped repeatedly. In contrast, duromers, thermosets, or thermosetting
polymers are highly crosslinked polymer networks, which harden and cure into a perma-
nent shape during processing [7]. Such curing reactions are typically induced by heat or
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ultraviolet-visible (UV-Vis) light irradiation, and form irreversible crosslinks within the
polymer structure [2]. Owing to their highly crosslinked nature and the inherent rigidness
of the polymer network the recycling of duromers is challenging, as they are infusible and
non-soluble. Elastomers contain chemical crosslinks as well, albeit at a lower degree than
duromers. They are soft rubber-like polymers with a very low glass transition temperature
and notably lower Young’s modulus. They are typically known for their exceptional stretch-
ability beyond their original dimensions [4,8]. Elastomers are interchangeably denoted as
rubbers due to their inherent elasticity and amorphous nature, which induces considerable
segmental mobility within the chemical bonds [9].

The mechanical properties, especially the stiffness of the final polymer product,
is greatly affected by its composition, macromolecular structure, and number/type of
crosslinks. The stiffness of a polymer is a measure of the ratio of the applied force to
the strain produced in the material. Technically expressed as the Young’s modulus (E),
it is defined by the tangent of the modulus in the linear elastic region, and is typically
determined at an initial strain < 2% [10].

The Young’s modulus of polymers represents an important property that discriminates
between soft and stiff materials. Table 1 compares the Young’s moduli of selected polymers
with other material classes. Elastomers and hydrogels are soft, with a Young’s modulus
in the range of 103–109 Pa, which is comparable to the rigidity of natural soft tissues such
as muscle or skin. Thus, these classes of materials dominate sectors such as biomedical
engineering [11–13], soft robotics [14–18], and flexible electronics [19–21].

Table 1. Young’s moduli of selected soft and rigid materials [1,14,22].

Category Material Young’s Modulus (Pa)

Soft

Brain tissues 103

Alginate hydrogel fat 104

Silicone elastomer 105

Polydimethylsiloxane 0.8 × 106

Polycaprolactone 0.2 × 107

Biological skin 0.5 × 108

Rubber 0.8 × 108

Polyethylene (low density) 0.5 × 109

Rigid

Polylactic acid 0.5 × 1010

Nylon 0.6 × 1010

Wood 1010

Polymethylmethacrylate 4.5 × 1010

Polyethylene terephthalate 5.5 × 1010

Bone 0.5 × 1011

Glass 0.8 × 1011

Copper 1011

Steel 0.5 × 1012

Diamond 1012

In contrast, structural thermoplastic polymers have a Young’s modulus between
109–1012 Pa, which is in the range of the Young’s modulus of wood or bone [1,14].

Various processing strategies have been adopted to date for the manufacturing of multi-
material structures, including both soft and rigid domains. This particular interest in multi-
material manufacturing is inspired by nature, where countless exemplary multi-material
architectures of soft and hard constituents, including nacre [23], shell [24], wood [25],
bone [26,27], and crustacean exoskeleton [28], exhibit unique features in terms of mechanical
properties and functionality.

Consolidation of a wide spectrum of materials could form materials with large varia-
tions in properties or material functionalities in order to achieve required features [29,30].
However, this can generate significant interfacial stresses, leading to an interface vulnerable
to mechanical failure [31,32]. Significant problems have been recorded in application areas
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employing hydrated polymers such as hydrogels, as they can undergo swelling between
heterogenous materials, generating additional internal stresses [33]. The most common
problems encountered as a result of internal stress involve delamination and localized crack
failures. Consequently, manufacturing and application of synthetically formed soft and
stiffer materials is a prerequisite for upgraded processing methodologies [34].

Additive manufacturing, often termed 3D printing, is a comprehensive materials
development technique which has gained signification attention following its discovery in
the 1980s [1–6,35–37]. At present this technology is experiencing significant growth and can
now be applied using a wide range of methods, including material jetting [38,39], binder
jetting [40,41], material extrusion [42–46], powder bed fusion [47,48], vat photopolymeriza-
tion [37,49–53], and sheet lamination [35,36,54,55].

In particular, additive manufacturing or 3D printing of polymers offers significant ad-
vantages over conventional processing methodologies for the formation of 3D objects with
multi-material properties. The single-step manufacturing of complex three-dimensional
products offers drastically shortened processing times, and has gained increased attention
over the past decade [4,24,35,46,49,56–70].

The designed structures are evolved layer-by-layer or point-by-point via a comput-
erized controlled system in order to replicate the desired 3D shape models. Contrary to
traditional processing methods, which require the use of dies, molds, or lithography masks,
3D printing technologies employ automated assemblies that translate the computer-aided
designs into sophisticated 3D structures without excess loss of material [71–74].

Furthermore, the ability to quickly develop final products with lower process com-
plexity along with the lower costs of printing technologies has attracted both academia
and industry. To date, more than fifty different types of additive manufacturing technolo-
gies have been reported on the basis of the processing principles [1]. The choice of the
technology being used for the manufacturing of a specific product greatly depends on the
physical and chemical properties of the raw materials and the targeted end applications of
the final product.

Because thermoplastics become repeatedly soft and processable above their melting
temperature, they are processable by extrusion based additive manufacturing technologies [3].
However, due to their limited mechanical properties, they are not always suitable for
structural applications in neat condition, and it is often essential to add particular additives
such as reinforcing fillers in order to adjust the properties of the 3D printed articles [75,76].
However, due to the absence of covalent bonds, 3D printed thermoplastics can be easily
reprocessed and re-melted.

In contrast, 3D printed thermosets and duromers cannot be reprocessed, as chemical
crosslinks are formed during the printing process. These curing reactions are generally irre-
versible; once covalently crosslinked, the materials are insoluble and infusible. Curing reac-
tions are typically triggered by temperature or light. In particular, optically triggered curing
reactions have several advantages, such as fast curing under mild conditions (even at room
temperature), spatial control of the reaction, and low energy consumption [77–79]. These
make photoreactions ideal candidates for additive manufacturing. In vat photopolymeriza-
tion 3D printing, a liquid photocurable resin is selectively cured by light exposure and the
structure is formed layer-by-layer (digital light processing 3D printing) or point-by-point
(stereolithography). These vat photopolymerization additive manufacturing technologies
employ a variety of different functional monomers including epoxy resins, phenolic poly-
mers, unsaturated polyesters, acrylates, methacrylates, and organosilicons [80]. Additive
manufacturing of such systems can generate both soft materials and photopolymers with
high mechanical strength and stiffness, similar to that of dental resins [81].

Hydrogels present another subclass of polymer networks; their high hydrophilicity,
biocompatibility, and great flexibility make them ideal candidates for tissue engineering
applications [82,83]. Chemical crosslinking methodologies govern the structural devel-
opment of hydrogels and maintain the mechanical integrity of hydrogel materials and
scaffolds [84,85].
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Among the established additive manufacturing technologies, vat photopolymer-
ization technologies outperform in terms of their excellent building resolution, dimen-
sional accuracy, diversified reaction chemistries, low equipment costs, and high surface
quality [49,53,86]. Thanks to the attractive features of vat photopolymerization, recent
advancements have extended materials fabrication capacity; numerous different techniques
have been established, including stereolithography (SLA), digital light processing (DLP),
liquid crystal display (LCD) printing, continuous liquid interface printing (CLIP), and
two-photon absorption (TPA) printing [37,49,50].

In this review paper, we primarily focus on vat photopolymerization-based 3D printing
technologies, discussing in detail their manufacturing processes, accessible feedstock chem-
icals, and underlying curing mechanisms. Furthermore, we exclusively target the advance-
ments in multi-material vat photopolymerization and its ability to spatially control mechan-
ical properties through a combination of multiple materials and reaction chemistries within
3D printed architectures. In a systematic way, we develop the understanding of the whole
multi-material vat photopolymerization domain, then present several recent advances.

A growing number of experts and researchers with diverse backgrounds have begun
to utilize additive manufacturing technologies for developing complex objects with multi-
material properties which cannot be produced using traditional processing techniques.
Many remarkable results have been reported over the last couple of years [87,88], offering
significant potential to revolutionize the next generation of functional materials. Further-
more, the number of publications in the last decade has increased significantly (Figure 1),
representing a great perception of the emerging possibilities in this research field. At the
moment, extrusion-based technologies (fused filament fabrication, direct ink writing) are
mostly employed for additive manufacturing of polymers, although they suffer from a
lower spatial resolution and poor multi-material building capabilities at the molecular
scale (e.g., poor adhesion at the interface between soft and rigid domains) [49]. Here, vat
photopolymerization technologies could offer the required spatial and temporal control,
allowing nanoscale interactions between the reacting precursors.
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Nonetheless, multi-material vat photopolymerization 3D printing remains in the early
development phases and faces several challenges, including: (1) limited functionality of
monomers; (2) a limited library of photopolymers supporting multi-material printing
technology; (3) loss of orthogonality in reactions; (4) leaching of materials and long-
term property maintenance; and (5) the viscosity and printability of precursors with a
suitable resolution.

In order to highlight the full capabilities of multi-material vat photopolymerization 3D
printing, the multi-material printing process itself and the vat photopolymerization strate-
gies are both addressed in this review. At the end, we emphasis the application-oriented as-
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pects of multi-material vat photopolymerization 3D printing in flexible electronics, biomed-
ical applications, soft robotics, and rapid prototyping. In addition, we discuss the latest
concepts around increasing the sustainability and recyclability of highly crosslinked 3D
structures which rely on the introduction of dynamic covalent bonds, and elaborate the
postprocessing, mechanical properties, and economical aspects of the technology.

2. Additive Manufacturing Technologies

Additive manufacturing or 3D printing of polymers can be generally classified into
extrusion-based technologies (fused filament extrusion, direct ink writing), polymer bed
sintering, vat photopolymerization-based technologies (stereolithography, digital light
processing, liquid crystal display printing, continuous liquid interface printing, two-photon
absorption printing), and 3D-volumetric polymerization technologies. Each technology has
its own advantages and limitations, and the choice of a processing methodology depends
on the feed materials, required printing resolution, printing times, size, performance of the
printed materials, and overall cost of fabrication [89–92].

In this section, we briefly illustrate the different processing techniques and highlight
their key features; an executive summary is provided at the end.

2.1. Material Extrusion (Fused Filament Fabrication)

Fused filament fabrication (FFF) is the most widely used 3D-printing technology for
thermoplastic polymers. In this process, polymeric filaments are fed into the extrusion
head, where they are melted into a semi-liquid state. Acrylonitrile butadiene styrene (ABS),
polylactic acid (PLA), and polycarbonate (PC) are the most widely used thermoplastic
filaments due to their low processing temperatures. The molten polymers are then extruded
through the nozzle on the building platform, where the melt is allowed to cool down and
fuse together (Figure 2). The motion of the extrusion nozzle is controlled layer-by-layer
according to the 3D design interpretation.
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Adjustment of printing parameters such as temperature, building orientation, air gap,
raster angle and width, and thickness of layers plays a vital role in the quality of 3D printed
articles [10,93]. A major constraint when utilizing FFF technology is the need to feed the
polymers in filament form. The requirements of high temperatures, an acceptable viscosity
range for extrusion, and homogenous and void-free melt flow represent challenging areas
in FFF. On the other hand, the lower cost of printing, simplicity of the process, and fast
building speed make FFF a very attractive technology for the additive manufacturing of
3D objects.
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2.2. Direct Ink Writing

Direct ink writing (DIW) involves the extrusion of viscoelastic liquid pastes through a
pressurized nozzle. The material is extruded on a fixed platform and allowed to cool down
and solidify, while the nozzle is able to move and defines the shape of the printed material
(Figure 3). The final structure of the material is fixed via layer-by-layer deposition of the
liquid polymer ink [69]. The viscosity of the extruded liquid and the speed of extrusion
defines the quality of printed architectures [94]. The primary benefit of this technology is its
material versatility, as polymer solutions, hydrogels, and pastes can be easily charged into
the extrusion nozzle. A sacrificial structural support may be required for the fabrication of
complex architectures, as the viscoelastic nature of the material can collapse the 3D object
during building.
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2.3. Selective Laser Sintering

In the selective laser sintering (SLS) 3D printing technique, a solid polymer powder
bed is locally heated with a scanning laser. Laser illumination causes the melting and
fusion of the polymeric powder, which is spread over the surface of the build platform
by a rolling assembly. This spatially controlled exposure to laser light causes the melting
of the polymer at selected regions. For the next layer, a piston assembly moves one step
down to accumulate the polymer powder with the help of a spreading roller (Figure 4).
The whole process is repeated until the required number of layers according to the printing
program is achieved [95]. With powerful high-energy laser scans, the adjacent polymer
particles are able to fuse and molecularly diffuse into the printed structure. The removal of
unbounded materials during a postprocessing step is essential to achieving good resolution
of the printed articles.

The size of the polymeric powder particles, scanning speed, scan width and gap, and
laser intensity all have an impact on the final structure of printed materials [96]. In SLS
technology, any thermoplastic powder could ideally be fused and processed; however, the
molecular diffusion, complicated integration, and sintering of particles greatly limit the
number of processable polymers [97]. Widely used polymers in SLS include polyamide
and polycaprolactone.
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2.4. Stereolithography

Stereolithography (SLA) is a vat photopolymerization process in which liquid resins
with adequate viscosity are introduced into a vat. Light is illuminated on the liquid resin
in a controlled manner, resulting in polymerization reactions at the targeted positions
(Figure 5). The 3D structure is evolved by illumination of the 3D design point-by-point,
guided by 3D interpretation software [57,98,99]. Liquid resins such as methacrylates,
acrylates, vinyl, and epoxy monomers are typically used in SLA technology. The quality of
the printed structures depends on the cure kinetics of the polymerization process, which
is guided by the light intensity, illumination time, resin viscosity, chemical functionality,
and the additives in the formulations. Photoinitiators can be introduced into formulations
in order to initiate the reactions, while light absorbers can improve the resolution of
printed objects.
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The key benefit of SLA technology is the very high resolution of the printed objects.
Furthermore, as the monomers are already in liquid form, heating of the polymer feed and
nozzle is not required. Unfortunately, the technology is limited by the number of available
photopolymers. Cytotoxicity and the irritation potential of the resins and the unreacted
monomers in the printed articles should be considered while 3D printing using SLA [100].
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2.5. Digital Light Processing

Digital light processing (DLP) is another class of vat photopolymerization technology,
in which illumination with light starts the polymerization reaction locally. Liquid resins
containing vinyl, acrylate, or epoxide groups are often employed, along with a suitable
photoinitiator and a light absorber. In contrast to SLA, the liquid resin is irradiated layer-
by-layer according to the design of the printed article (Figure 6). Photoinitiators absorb the
light within a certain wavelength range according to their absorption capability, triggering
the polymerization reaction in the illuminated regions. As polymerization takes place,
the final printed article is formed by the solidification of each layer. After printing, the
object is removed from the build platform and the remaining resin is recovered from the
vat [101,102].
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Figure 6. Schematic diagram of the digital light processing (DLP) process.

The key benefits of DLP 3D printing are the high resolution of the final product and the
fast building speed. As in SLA, DLP technology is limited by the availability of monomers
that can be photopolymerized.

2.6. Liquid Crystal Display

Liquid crystal display (LCD) is another a vat photopolymerization technology, which
uses a liquid crystal display unit for the imaging tasks. By applying an electric field,
molecular rearrangements of the liquid crystals take place, which block the passage of
light through selected areas (Figure 7). The design of the 3D printed structure is translated
through a computerized system, which creates a response in the LCD imaging unit. Very
high printing resolutions can be achieved with the leading LCD technologies. Despite the
promise of LCD technology, molecular rearrangements can remain trapped or stuck under
the applied electrical field, which can enable the passage of light through the LCD screen,
resulting in reduced resolution [103–105].
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2.7. Continuous Liquid Interface Printing

Continuous liquid interface printing (CLIP) technology was first introduced in 2015,
and permits a continuous printing of monolithic and layer-less photopolymeric architec-
tures [106]. The technology is based on the utilization of an oxygen-permeable chamber
that allows the formation of an interfacial oxygen layer. The radical induced polymerization
reaction is inhibited by the presence of the oxygen layer. This oxygen interference is able to
quench the excited phase of photoinitiators, and can form peroxides by reacting with free
radicals in the polymerizing system [107]. As a result, unreacted monomers remain at the
interface between the build platform and oxygen layer. This results in rapid printing of
polymer resins without slicing the 3D designs, avoiding the conventional layer-by-layer
approach (Figure 8). CLIP technology can typically draw out printed objects at a very
fast speed, with production cycles of only a few minutes and a resolution lower than
100 µm [106,108,109]. However, it is limited to curing systems which are quenched by
oxygen, such as photocurable (meth)acrylate-based monomers.
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2.8. Hot Lithography

The hot lithography process employs the principles of vat photopolymerization tech-
nology, with the difference that the vat is additionally supplied by a heating element to
control the temperature of the printing process (Figure 9). During conventional vat pho-
topolymerization processes the printing temperature is kept at room temperature, which
is sometimes limited by the higher viscosity of the printing resins. By taking advantage
of higher-temperature processing, hot lithography can reduce the viscosity of the resins
while increasing the reactivity of monomers, which cannot be fully polymerized at room
temperature [110–112]. Photocurable resins are cured by applying a typical SLA or DLP
projector, although the conversion of monomers can be expected to be higher in comparison
to room temperature curing [111]. This technology offers the potential to enhance the resin
portfolio available for vat photopolymerization.
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2.9. Two-Photon Absorption 3D Printing

Two-photon absorption 3D printing (TPA or TPP) is a vat photopolymerization tech-
nique which employs a highly compact laser beam as a light source. An extremely high-
powered density of illumination, in the range of 1013 W/µm2, on a very confined volume
of less than a cubic wavelength (λ3) results in photon absorption in a nonlinear pattern (i.e.,
two-photon absorption) [113]. Hence, an excellent spatial resolution (i.e., nanometer range),
far ahead of the optical diffraction limit, can be realized [114]. To take complete advantage
of non-linear absorption, an infrared irradiation source is adopted to facilitate the deep
penetration of laser light into the bulk of the matter, minimizing absorption power loss.
In the case of lithography where the light is linearly exposed, the material response only
corresponds to the first order. However, the response is of the second or multiple orders
as a result of two-photon or multi-photon absorption, respectively (Figure 10). The square
light intensity distribution is spatially more precise than the linear one [114], consequently
decreasing the light–matter interaction volume and resulting in improved printing resolu-
tion. The photoinitiator absorbs two photons in the near-infrared range (NIR), providing a
similar quantum of energy to that supplied by the single-photon absorption in a photocur-
able formulation. Hence, the spatially distributed photoinitiated radicals formed during
two-photon polymerization of resins follow the square law of light intensity function. Due
to the presence of radical scavengers such as dissolved oxygen in the resin formulations,
radicals are sustained in the regions of higher light intensity and a polymerization threshold
is attained. This light intensity corresponding to the threshold is adjustable using printing
parameters such illumination time, target unit volume (i.e., voxels), and illumination inten-
sity. Using TPA, printing resolutions much lower than the defined diffraction limit can be
achieved [115–120]. With adjustments in the 3D printing parameters, voxels up to 100 nm
have been 3D printed [114,121,122].
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Figure 10. UV light is absorbed at the surface of a photosensitive resin, and can only be used for
fabrication of planar structures (one-photon absorption). NIR light is focused into the volume of the
photocurable resin and is used for 3D structuring (TPP). Reproduced with permission from [123].
Copyright © 2022 Elsevier.

TPA 3D printing can be used to fabricate nanostructures that cannot be developed
with other technologies. Owing to a very strong transient power, laser illumination in TPA
can activate multiple reactive species in the resins; hence, a suitable strategy is required in
order to effectively use the process for the 3D printing of nanostructures (Table 2).

Table 2. Different printing strategies and applications of TPA polymerizations.

Processing Strategy Application Area Resolution
Achieved Reference

TPA Photo
polymerization

Radical quencher Microstructures 100 nm [124]
Activation beam Microdevices 40 nm [125]
Scanning speed
manipulation Micromachines 25 nm [126]

Self-smoothing Micro-optics 20 nm [127]
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2.10. Volumetric 3D Printing

Volumetric 3D printing is a process in which multiple sliced images are DLP projected
at distinct angles on a synchronized rotating resin chamber according to computer-aided
designs [128,129]. While the intensity of a single illuminated ray is deficient enough to
avoid the photopolymerization of resin under oxygen inhibition, the superposition of
exposed irradiation leads to the activation of radical species above a threshold, resulting
in the polymerization of a centimeter-scale object in a matter of few seconds. The degree
of polymerization for each resin can be adjusted by tuning the light intensity and the
exposure duration. For such volumetric techniques, resins with a higher viscosity (up
to 90 Pa.s) can be 3D printed [128]. Typically, flexible polymers with an elastic modulus
of <10 kPa and discrete applications such as bio-imprints and tissue engineering are
challenging to print using layer-by-layer printing technologies. Here, gravitational and
auxiliary forces occur during printing, which result in frequent breakage of the layers
and building structure. Volumetric 3D printing can easily overcome these problems by
avoiding the layer-by-layer approach. A resolution of 80 µm has been achieved [130] using
volumetric printing technologies, with a printing speed much higher than conventional vat
photopolymerization-based technologies. There are many classes of volumetric 3D printing
techniques, including computer axial lithography (CAL), xolography [86], tomographic
printing [129,130], and holographic light patterning [131]. While the technology remains
very much under development, a few of these, such as xolographic and tomographic
printers (Readily 3D), are already commercially available; however, they have not yet been
extended to multi-material 3D printing.

In contrast, solution mask liquid lithography (SMaLL) is a volumetric 3D printing tech-
nology which has shown the potential to fabricate 3D objects with multi-material properties.
In this technology, collimated UV-Vis light is illuminated over an optically dense resin
consisting of a combination of photocurable monomers, photoinitiators, photochromes, and
photosensitizers. Particular interest has been generated by the addition of photochromes to
deploy photo-bleaching fronts capable of activating the photosensitizers and subsequently
deep curing the materials, which significantly enhances the building speed. During 3D
printing, the reversible absorption characteristics of the photochromic dyes are exploited to
locally activate or deactivate photoreactions at different wavelengths [24].

The detailed summary of all 3D printing techniques is also added in Table 3.
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Table 3. Characteristics of selected common 3D printing technologies.

Suitable Materials Resolution Building Speed Benefits Limitations Reference

Fused filament fabrication (FFF)

Acrylonitrile butadiene styrene,
nylon, polylactic acid,
polyethylene terephthalate,
polyvinylalcohol, high impact
polystyrene, thermoplastic
polyurethane, polycarbonate,
polypropylene

100 µm 1–10 m/min
Ability to print large functional
materials with standard
thermoplastic polymers

Low resolution,
nozzle choking,
non-homogenous filament melting,
material, anisotropy along z-axis

[1,62,68,75,132,133]

Direct ink writing (DIW) Liquid polymer/melt/gel/paste 1–100 µm 3 m/min Highest resolution among all
extrusion processes

Higher cost, not suitable for complex
geometries [1,62,68,134–136]

Selective laser sintering (SLS)
Polylaurylamide,
polyether ketone ketone,
polyamide, polycaprolactone

80–100 µm 1.80–3.6 m/min
Ability to process standard
plastics, good mechanical
properties

Lower resolution, rough surface [1,10,68,137–139]

Stereolithography (SLA) Acrylate, methacrylate, epoxy,
vinyl monomers 5–50 µm 0.25 mm/min High resolution and accuracy Limited availability of photopolymers,

toxicity of monomers [1,68,99,138,140–144]

Digital light processing (DLP) Acrylate, methacrylate, epoxy,
vinyl monomers 5–50 µm 0.4–2.5 mm/min

High resolution and accuracy,
lower cost, higher printing speed
compared to SLA

Limited availability of photopolymers,
toxicity of monomers [1,68,143]

Liquid crystalline display (LCD) Acrylate, methacrylate, epoxy,
vinyl monomers <50 µm 10 mm/min High resolution and accuracy,

lower cost
Limited availability of photopolymers,
toxicity of monomers [37,103–105]

Continuous liquid interface
printing (CLIP)

Acrylate, methacrylate, vinyl
monomers, epoxies <100 µm 8–16 mm/min High printing speed Anisotropy of printed structures [106,109]

Two-photon absorption (TPA) Acrylate, methacrylate, vinyl
monomers, epoxies <100 nm 0.08–33 mm3/min Excellent resolution Expensive, time consuming, requires

tedious control strategies (rastering) [145,146]

Volumetric 3D printing Acrylate, methacrylate, vinyl
monomers, epoxies Up to 80 µm 10 mm/min Fast printing speed.

High viscosity resin (>10 Pa·s)
required. Costly technology, tedious
resin formulation strategies, low
absorption and high reactivity of
monomers required.

[86,128,130,147]

Solution mask liquid
lithography (SMaLL)

Acrylate, methacrylate, vinyl
monomers, epoxies Up to 100 µm 8.33 mm/min Large curing depth, no moving

parts required, rapid curing rates

Additional photochromes and
sensitizer required. Reaction strategies
must be developed before printing.

[24]
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3. Multi-Material 3D Printing

Multi-material 3D printing involves the combination of two or more material prop-
erties in a single 3D printed article. The combination of multiple materials can be accom-
plished through different printing technologies. Among the class of extrusion-based 3D
printing techniques, fused filament fabrication (FFF) is the most widely used 3D print-
ing technology. The first dual-component FFF was proposed in 2002 via the modeling
of an optimization strategy for FF technology [148]. Subsequently, numerous studies
have been reported on the development and fabrication of multi-material structures with
FFF [60,67,149,150]. A schematic illustration of a multi-material FFF printer is shown in
Figure 11. Multiple nozzles are installed under the extrusion head for melting and ejecting
each polymer filament onto the build platform. After a desired number of layers is printed,
the extrusion process is interrupted and the extrusion head is swapped for the ejection of a
second type of filament on the build platform. The process continues until the designed
multi-material architecture is evolved.
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Figure 11. Schematic diagram of the multi-material FFF process. A central motorized controller
adjusts the position of the extrusion heads intermittently for layer-by-layer extrusion of each material.

Commercial two-elements FFF printers are available for less than EUR 10,000, and
theoretically offer a resolution up to 100 µm. However, the practically achievable figures
with commercially available polymers are twice this or even higher in number compared
to the theoretical offered features, which quite often are not reproducible with similar
printing settings. Furthermore, additional compounding, melting, mixing, or kneading
cycles are required during the application of functional materials with magnetic or dielectric
properties [64,151–153]. The round nature of the filaments, layer by layer deposition, and
poor adhesion between adjacent layers is a particular limitation in single [153] as well as
multi-material FFF technologies [154]. Furthermore, the limited range of materials and
the thermal processing requirements corresponding to each filament create challenges in
multi-material FFF 3D printing.

In contrast to FFF, vat photopolymerization-based 3D printing involves the in-situ
polymerization of monomers through photoreactions. Light is illuminated according to
the design of the materials, which causes localized initiation and gelation of the liquid
resins. Vat photopolymerization-based technologies offer the best solution among all
3D printing technologies in view of the outstanding surface finish and printing resolu-
tion, lower equipment, and energy costs. Moreover, they are well suited for the printing
of structures with multi-material properties [37,51–53]. The main disadvantage of vat
photopolymerization-based technologies is the limited number of material classes that are
available for photopolymerization. With multi-material printing, the potential is great for
the combination of numerous chemical moieties into a single built material that is able to
offer properties entirely different from the individual characteristics of each single compo-
nent. However, in order to realize multi-material vat photopolymerization 3D printing it is
essential to understand the photochemistry of the polymerization process.
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4. Chemistry of Multi-Material 3D Printing via Vat Photopolymerization

The chemistry of vat photopolymerization technology relies on the light-triggered
solidification of liquid monomers. Light-curable resins are placed in a vat, in which the
polymerization reactions take place upon UV/Vis-light exposure in selective and confined
areas. Monomers start to react rapidly in the presence of an appropriate photoinitiator and
form crosslinked networks in a discrete manner (Figure 12). For the formation of networks
with adequate properties and to achieve the required properties, it is vital to understand
the structure, functionality, and underlying mechanism of the reacting monomers and
photoinitiators. Utilizing the curing reaction, photoinitiators are locally activated and
solidification of liquid resin takes place either layer-by-layer or point-by-point.
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Figure 12. Schematic representation of a photo-curable resin prior to and after light exposure,
high-lighting the formation of an insoluble and infusible polymer network.

These reactions typically involve radical induced chain-growth polymerization of
(meth)acrylates, radical induced step-growth reaction of thiol-ene and thiol-yne systems,
mixed-mode thiol-acrylate polymerization, cationic polymerization of epoxides or vinyl
ethers, or hybrid reaction mechanisms, which constitute dual curing networks (Figure 13).
However, the rapid generation of radicals, which is followed by initiation and propaga-
tion steps in radical-induced chain-growth reactions, makes them the most often applied
candidates among the available polymerization routes [141].
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4.1. Light-Triggered Reaction in Polymers

Exploiting light to generate and crosslink polymers and to adjust their structural
and functional properties has become a versatile synthesis strategy in polymer science.
Owing to their numerous advantages such as low energy consumption, spatial control, and
high yields, photoreactions have become indispensable for numerous industries including
microelectronics, medicine, adhesives, coatings, and inks. In particular, energetically
unfavorable reactions which normally would need high temperatures to overcome the
activation barrier can be started at room temperature or under mild conditions simply by
light exposure [79,155]. For this, irradiation of the full electromagnetic spectrum can be
exploited for photoinitiation, while the choice of the correct light source is crucial to meet
the required energy for the targeted photoreaction. While the energy of irradiation rises
with decreasing wavelength, the penetration depth of light decreases at the same time,
which often limits the use of photoreactions in thicker samples [156].

In addition, photo-reactions can be temporally controlled and are conveniently started
by switching the light source on, while most processes (e.g., radical polymerization, pho-
toisomerization, and photocyclization) can be easily stopped again by turning off the
light [79].

In addition to temporal control, light as an external trigger further enables spatial
control of the reactions in polymers. Control in two dimensions is accomplished by masking
or patterning of the incident light. Moreover, light can be focused with optical fibers within
a volume, facilitating three-dimensional control of the photoreactions. Numerous polymer
processing techniques, such as photolithography and vat photopolymerization, rely on
spatiotemporal control of phototriggered reactions [79,155].

Photoreactions in polymers typically follow two laws: (i) the Grotthus–Draper law,
which states that only the light absorbed by a molecule is able to initiate a photoreaction,
and (ii) the Stark–Einstein law, which states that each absorbed quantum of radiation
initiates the reaction of one molecule [157].

Thus, photoreactions only proceed in electronically excited molecules. If the incident
light has adequate energy (the spectral emission of the light source has to be overlapping
with the absorption spectrum of the molecule), an absorbed photon is able to promote
an electron from the illuminated molecule from the HOMO (highest occupied molecular
orbital) to the LUMO (lowest unoccupied molecular orbital). The energy of an absorbed
photon is described by the Planck law (Equation (1)), in which the absorbed energy (E)
directly depends on the frequency of the photon (v) and Planck’s constant (h). The frequency
is further a function of the speed of light in vacuum (c) and the wavelength (λ).

E = hv = hcλ (1)

By exposure to the appropriate wavelength, the electrons of the molecule are promoted
from the ground state (S0) to an excited singlet state (Sn). The excited electron then has var-
ious ways towards deactivation, which are explained in the Jablonski diagram. Following
radiationless processes (internal conversion and vibration relaxation), the molecule reaches
the lowest excited singlet state (S1). From S1 the molecule then returns to the ground
state (S0) by vibration relaxation, fluorescence, or a photochemical reaction (10−12–10−6).
Another possible transition with longer lifetimes (10−7–10 s) is from the triplet state (T1),
which is reached by intersystem crossing (ISC). This is quantum mechanically forbidden, as
the electron’s spin has to be inverted. By undergoing vibration relaxation, phosphorescence,
or a chemical reaction, the molecule reverts from T1 back to S0 [157–160].
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The absorption of a single illuminated molecule is described by the Beer–Lambert
law (Equation (2)), in which A is the absorbance of irradiation within a film, ε is the molar
extinction coefficient, and c is the concentration of the absorbing species. In addition, d
corresponds to the optical path length, I0 to the incident intensity of light, and I to the light
intensity, which is able to pass through the film [161].

A = εcd = − log
(

I
I0

)
(2)

However, not each absorbed photon triggers the desired molecular process. Thus, the
quantum yield (ϕ) is introduced (Equation (3)), which describes the number of times a
specific event (Ne) occurs per photon absorbed by the system (Np).

ϕ =
Ne

Np
(3)

As molar absorption and quantum yield are strongly governed by the wavelength, a
high absorption throughout the film is required to ensure a fast reaction rate. It should be
noted that photoreactions are limited the areas of the film where light can be absorbed or
intermediates can diffuse. Thus, highly absorptive, pigmented, opaque, and filled and/or
thick films suffer from light intensity/rate gradients and, as a consequence, gradients in
material properties.

4.2. Photoinitiators

Photoinitiators are molecules that are capable of generating reactive species in the
form of free radicals, anions, or cations when they are exposed to ultraviolet (UV), visible
(Vis), or near-infrared (NIR) light. Photoinitiators are the most essential starting units
required for the majority of photopolymerization reactions. Commercial photoinitiators are
available in solid or liquid form, and have to be dissolved in the resin formulations prior
to irradiation.

For radical photoinitiators, there are typically two different types of initiation mech-
anisms that can be distinguished: Type I photoinitiators (α-cleavage), which undergo
unimolecular bond cleavage to form radicals; and type II photoinitiators, which follow
a bimolecular reaction yielding radicals by interaction between the excited states of the
absorbing molecule and the second molecule.

For a radical photoinitiator, which forms two identical radicals, the rate of initiation,
Ri (Equation (4)), is directly related to the light intensity. I0, the molar absorptivity (ε), the
radical efficiency (f ), the quantum yield (ϕ), and the concentration of the initiator ([I]).

Ri = 2 f ϕI0[I]ε (4)

However, it should be noted that the equation is only valid if the film has low light
attenuation through its cross-section [79].

Type I photoinitiators are typical aromatic carbonyl compounds, including benzoin
and its derivatives, benzyl ketals, acetophenones, aminoalkyl phenones, O-acyl-α-oxyimino
ketones, α-hydroxyalkyl ketones, and acylphosphine oxides, which generate free radicals
by α-cleavage upon light exposure (Figure 13) [141,162,163]. Owing to their high quantum
efficiency and reactivity, benzoin derivatives are the most commonly applied photoini-
tiators. However, they suffer from a short shelf life at room temperature, as the benzylic
hydrogen can be easily abstracted [164]. In contrast, acylphosphine oxides benefit from an
adequate thermal stability and high reactivity of the generated phosphonyl radicals [165].

Type I photoinitiators (Figure 14) are widely employed for starting crosslink reactions
in vat photopolymerization 3D- printing, which mostly uses light sources emitting in the
UV/Vis region. Photoinitiators with a high molar extinction coefficient and UV absorption
range (λ < 400 nm) are mostly employed in SLA 3D printing [166].
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The intensity and wavelength of the light required to start photocleavage reactions
depends on the chemical structure of the photoinitiators. In case of Irgacure 1173 and
Irgacure 651 (Table 4), the energy absorption takes place at relatively lower bands and the
π to π* transition occurs in the UV range, which makes them suitable for use in SLA [159].

In the case of photoinitiators based on phosphine oxide a lower energy level of π*
is exhibited, shifting the π to π* peak towards higher wavelengths and resulting in wide
applications in DLP systems [161].

In contrast to type I photoinitiators, the initiation rate and curing rate of type II pho-
toinitiators is lower, as they follow a bimolecular reaction mechanism. They require the
addition of a co-initiator, which facilitates an electron transfer or hydrogen abstraction
reaction in the presence of the electronically excited initiator molecular (Figure 15) [164].
In particular, light exposure of aromatic ketones, such as benzophenone, thioxanthones,
benzyl, and quinones, in the presence of hydrogen donors yields ketyl radicals along with
another radical obtained from the hydrogen donor [167]. For starting the polymeriza-
tion/crosslinking reaction, the hydrogen donor radical is usually used. Ketyl radicals are
quite stable and do not react with vinyl monomers due to steric hindrance and delocaliza-
tion of unpaired electrons. However, ketyl radicals are able to terminate the polymerization
reaction by forming ketyl species within the growing polymer chains [168]. Onium salts
or bromo compounds are often added to the compounds to quench the ketyl radical by
oxidation or bromonation and thereby prevent chain termination [164]. It should be noted
that the choice of co-initiator (H-donor) is critical for a fast photoinitiation process. Tertiary
amines have a higher reactivity than alcohols or ethers. While most photoinitiators absorb
light in the UV range, by adding an appropriate sensitizer the absorption window can be
shifted into the visible light spectral region. There are bimolecular initiator types as well,
which are directly activated by visible light exposure; one example is camphorquinone in
combination with an amine synergist [169].
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The successful application of a photoinitiator depends on the suitability of the match
between its absorption characteristics and the emitting wavelengths of the illuminating light
source [91]. A list of commonly used radical photoinitiators in vat photopolymerization 3D
printing is provided in Table 4.

In addition to radical photoinitiators, cationic photoinitiators have gained considerable
attention, as they are able to initiate polymerization reactions of epoxy and vinyl ether
monomers. In the late 1970s, Crivello described the use onium salts for photochemically
initiating cationic polymerizations [20,35].

Initiation relies on the formation of a Brønsted acid (H+), which is formed by the
light-triggered decomposition of the onium salt and subsequent reaction with solvents or
monomers in the formulation [37]. The chemical structure of the counter-anion governs the
acidic strength of the formed acid, which increases with the size and nucleophilicity of the
counter-anion [37,38].
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Table 4. List of radical photoinitiators used in vat photopolymerization 3D printing.

Photoinitiators Absorption Wavelength Structure Reference

Phenyl bis (2,4,6-trimethylbenzoyl)
phosphine oxide (BAPO) 295 nm, 370 nm
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Diaryliodonium or triarylsulfonium salts are well-known photoacid generators [186]
on account of their remarkable ability to release acids when light is irradiated; selected
derivatives are presented in Figure 16. Upon UV exposure, iodonium salts undergo
homolytic and heterolytic cleavage reactions. In the case of heterolytic cleavage reactions,
an aryl cation is generated, while in case of homolytic cleavage, an aryl radical pair or a
radical cation is formed [187]. These reactive species react with neighboring monomers
or solvent molecules and form strong Brønsted acids (e.g., HF), which are able to initiate
cationic polymerization reactions [188].
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Diaryliodonium or triarylsulfonium salts typically suffer from limited absorption
(absorption maximum between 200–300 nm). One way to shift the initiation to higher
wavelengths is radical-induced cationic polymerization [39]. Here, the photoacid generator
is combined with a Type I or II initiator, which forms free radicals upon visible light
irradiation. After they are formed, the free radicals are oxidized in the presence of the
arylidonium salt and radical cations, which are able to initiate cationic reactions, are
generated. Other approaches used to shift the absorption window to longer wavelengths
are the use of dyes as a sensitizer [40].

4.3. Light-Triggered Curing Reactions Exploited in Vat Photopolymerization 3D Printing
4.3.1. Chain-Growth Polymerization Reaction

Chain-growth polymerization is a reaction resulting in high molecular weight poly-
mers at early stages of the polymerization process in which the polymer yield increases
gradually with time [189]. These reactions need to be initiated by either radical or ionic
initiators. The formed radicals or ionic species subsequently react with the monomers
and the chains begin to grow, which is termed the initiation reaction. Propagation reac-
tions represent the next step of the polymerization progress, during which unsaturated
monomers are added one-by-one to the active centers on the growing chain [190]. The final
termination of the polymerization reactions can take place either through the combination
of active centers, or disproportionation reactions in which molecular rearrangements take
place, exchanging the H-atom and forming a saturated and an unsaturated chain end [191].

Because chain-growth polymerization reactions take place rapidly, material properties
can vary drastically. Originally low-viscous liquids are converted into glassy and highly
crosslinked networks in a few seconds, which substantially impacts the polymerization
performance and results in a diffusion-controlled regime and heterogenous crosslink den-
sity [192–196], delays in achieving equilibrium properties, and gradients in concentration
and temperature.
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For initiation of the polymerization reactions, aforementioned initiators need to be
utilized. Under light irradiation the initiator cleaves into primary radicals, which react
with the unsaturated carbon–carbon bonds in the formulation [191,196]. Hence, densely
pigmented or dyed films cause gradients in light intensity and initiation rate [197]. Overall,
the reaction mass transfer becomes difficult and the initiator’s efficiency declines, as primary
radicals are increasingly caged and tend to combine [194,198].

The propagation step in chain-growth reactions involves the addition of monomer/
oligomer radicals to the unsaturated carbon–carbon bonds, which form further radicals at
the chain ends [194,199,200]. The crosslink density increases over the reaction time, leading
to diffusion limitations and vitrification of the polymer. The general propagation reaction
rate, Rp, can be represented as (Equation (5)) [191]:

Rp = kp[M][Mn.] (5)

where kp represents the propagation rate constant and [M] and [Mn.] represent the concen-
tration of double bonds and total radicals, respectively. Termination of the reactions can
take place with the combination of two radical species. The ideal termination kinetics does
not consider the chain length dependency, radicals trapping, or heterogeneity within the
evolving network, and can be presented as (Equation (6)) [191]:

RT = 2kT [Mn.]2 (6)

where kT represents the termination rate constant and [Mn.] the overall radical concen-
tration. The termination step is frequently limited by the diffusion-controlled regime,
leading to the gel effect or Trommsdorff effect [201]. As mass transfer is limited by dif-
fusion, termination due to the chain combination reactions becomes challenging and the
concentration of primary radicals increases abruptly, resulting in an increased polymer-
ization rate and reaction temperature. This increasing temperature causes faster radical
formation, and it becomes difficult to disperse them homogeneously due to the increasing
viscosity of the system [202–204]. This can result in the trapping of radical species within
the crosslinked networks, which can hence remain in the polymer over a long service
period [189,196,202,203].

Radical Polymerization

Free radical polymerization is a chain addition reaction in which a radical center
starts and propagates the polymerization reaction. These reactions can proceed at room
temperature without any extreme conditions. The reaction involves the formation of radical
species by excitation and photocleavage of the photoinitiator, which starts the addition
reaction [53]. These free radicals are highly reactive species and attack the monomer
molecules, transmitting the active center to the attacked molecule. Hence, the reaction
propagates (Figure 17) with the addition of active radical centers to other monomers
(having unsaturated carbon bonds) by electron transfer throughout the activated volume
and continuously increases the viscosity of resins, leading to gelation [191,196].

The reaction is terminated by immobilization of the active centers, either via combi-
nation of radical species or the deprotonation (H-transfer) of active monomers, to form
stable macromolecules [191]. Radical induced chain-growth polymerization reactions are
much faster than step-growth polymerization, which employs a combination of different
monomers [196,199,200,205]. Acrylates, methacrylates, and vinyl monomers are the most
widely applied building blocks during radical polymerization in 3D printing systems. The
mechanism of the reaction is shown schematically in Figure 17.

The primary limitations of such polymer networks are observed in terms of shrinkage
stresses and network heterogeneity [195,196]. Furthermore, such reactions are very sensi-
tive to the presence of oxygen, which can react with radical species and inhibit addition
reactions [164,196].
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Monomers are the building blocks of a polymer network, and greatly define the fi-
nal properties of the end product. Successful completion of the polymerization reaction
requires the compatibility with the 3D printing equipment, reactivity of the monomers,
and appropriate absorbing characteristics of the photoinitiators and the light source. Fur-
thermore, it is important that the printed architectures are dimensionally stable, possess
the required stiffness, durability, and biocompatibility, and can withstand the application
pressures, temperatures, and other environmental conditions [89–92]. Several of the widely
used commercial (meth-)acrylates are presented in Figure 18.
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Cationic Polymerization

Cationic polymerization is a class of chain-growth polymerization which involves
the formation of cationic initiator species that activates the monomer by charge trans-
fer. Cationic polymerization offers a range of advantages, including insensitivity to oxy-
gen, higher mechanical performance, and lower shrinkage stresses in the evolved net-
works in comparison to radical-mediated polymerization of (meth)acrylates and vinyl
monomers [207,208]. On the other hand, the reaction kinetics of cationic-initiated reactions
are slower in comparison to widely adopted forms of radical polymerization. The most
commonly used monomers for cationic polymerization consist of epoxies and nucleophilic
vinyl monomers (Figure 19) [207–209].
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Cationic polymerization was initially realized using cationic photoinitiators, i.e., sul-
fonium salts and aryl iodonium, which create reacting species as a result of illumina-
tion [188,210,211]. During epoxy ring-opening reactions, these highly reactive cationic
initiators attack the adjacent epoxy rings and form polyether links via cationic ring-opening
polymerization (Figure 20). The chemical reactivity of the epoxies greatly depends on
their structure and functionality. Generally, cycloaliphatic epoxides have dual strained
rings, and hence are particularly reactive towards ring-opening polymerization [195]. Com-
mercial epoxies such as (3,4-epoxycyclohexane) methyl-3,4-epoxycyclohexylcarboxylate
(ECC) [212–215] and bisphenol A diglycidyl ether (DGEBA) [216] are widely used in vat
photopolymerization 3D printing [217,218].
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As a general requirement, the liquid resins involved in SLA-based 3D printing should
have a suitable viscosity < 4 Pa.s [49,220,221], as higher viscosity monomers hinder exact
layer thickness during printing and increase the curing period. Furthermore, higher
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viscosity results in a diffusion-limited regime, as the monomers are not able to effectively
disperse over the building platform during consecutive building layers, and the illuminated
areas can run short of resin.

4.3.2. Step-Growth Polymerization

This type of polymerization reaction typically requires initiators for starting the reac-
tion, which they proceed between two or more different monomers with contrary functions
in equimolar concentrations. In comparison to chain-growth polymerization, the molecular
weight increases slowly during the early stages of the reaction and only a single type of
reaction takes places repeatedly for polymer network formation [196,199,200,205].

Polymerization takes place by the reaction of functional groups from the monomer.
Initially, a dimer is formed by the combination of two monomers, and dimers subsequently
react with other monomers to form trimers, which combine further to form tetramers.
This process proceeds until complete conversion is achieved [200,205]. The degree of
polymerization (Dp) in a step-growth reaction can be expressed using Carothers’ equation
(Equation (7)) for a conversion (p) as in [222]:

Dp =
2

2− p f
(7)

where f represents the average number of functional groups for all kind of utilized
monomers. Step-growth polymerization reactions are classified according to their reaction
types, comprising polyesterification, polyamidation, polycondensation, or polyaddition re-
actions. However, they can take place by cycloaddition reactions, electron transfer and radi-
cal coupling reactions, and atom transfer radical addition reactions as well [191,199,200,205].
A special category of step-growth polymerization is termed click-reactions, which bene-
fit from unique features such as: (1) performance at ambient conditions; (2) high yields;
(3) insensitivity to water and oxygen; (4) regiospecificity and orthogonality with other
reactions; and (5) no side reaction or easily removable side products [223–226]. Nucle-
ophilic ring-opening reactions, copper-catalyzed azide–alkyne cycloaddition (CuAAc),
Diels–Alder reactions, and thiol-ene/yne reactions are among the more well-known click
reactions [223].

Thiol-ene and Thiol-yne Chemistry

Photopolymerization reactions based on thiol-ene or thiol-meth(acrylate) are systems
which can proceed with either radical-induced step-growth polymerization or thiol Michael-
addition reactions (Figure 21) [195,226]. These photoreactions are referred to as thiol-ene
reactions, as the reacting group in acrylate or methacrylates is typically a -C=C moiety and
presents the traits of a modular click reaction [225]. During thiol-ene free radical coupling
reactions, a free radical (i.e., a thiyl radical) is added to the -C=C groups, while thiol-Michael
addition reactions (TMR) involve the catalyzed addition of thiols to an electron-deficient
-C=C bond. In the case of TMR, the reaction proceeds through the anti-Markonikov route,
in which a nucleophilic carbon is added to an α,β-unsaturated carbonyl group through
1,4-addition reactions [12].
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thiol-ene versus catalyzed thiol-Michael reaction (TMR) [225].

While the final product of both reactions can be the same, the processing method-
ology is entirely different [225] and a good understanding is required before correctly
implementing either in a vat photopolymerization process. Thiol-Michael reactions can
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be initiated with a wide range of catalysts, such as Lewis acids, metals, strong bases, and
organometallics [227,228], and can take place even in the dark, resulting in gelation of
the liquid resins and significantly reducing their shelf life [102]. Furthermore, the fast
polymerization kinetics of TMRs makes it very difficult to control the orthogonality. Hence-
forth, we only discuss radical-induced thiol-ene step-growth polymerization within the 3D
printing domain. From a physical point of view most of the commercially available thiols
are in the liquid state, which makes them convenient to dissolve and quickly introduce into
photocurable resin formulations. Several commercially available alkene (Figure 22) and
thiol (Figure 23) structures are presented below.
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The free radical reaction of thiol-ene resins involves a series of reaction stages involving
the activation of thiols in an H-abstraction reaction (Figure 24), generating thiyl radicals
which are then able to attack the unsaturated -C=C bonds and shift the active radical centers
by forming carbon-centered radicals. The carbon-centered radicals are able to abstract a
hydrogen atom from another thiol groups, and the reaction propagates by further reaction
with unsaturated carbon bonds following a step-growth mechanism [225]. By employing
acrylates or methacrylates as the “ene” component, the unsaturated carbonyl bonds can
undergo homopolymerization via addition reactions (chain-growth), giving rise to the
mixed-mode reaction mechanism [225] represented in Figure 24.
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Free radical thiol-ene reactions offer multiple advantages over conventional acrylate
or methacrylate-based homopolymerization reactions. First, thiols have the ability to
donate hydrogen atoms and form thiyl radicals in the presence of peroxide radicals; hence,
they express insensitivity to oxygen [226,229]. Second, during thiol-ene reactions flexible
thioether bonds are formed, and gelation takes place at higher reaction conversions as a
result of step-growth polymerization, resulting in lower shrinkage stresses and tougher
polymer networks [230–232].

Moreover, thiol-ene polymers present a higher level of biocompatibility compared to
a pure acrylate/methacrylate polymerization system [233,234]. All of these advantages
make thiol-ene or thiol-(meth)acrylate reactions one of the most promising chemistries in
vat photopolymerization 3D printing, and numerous research works have adopted it in
recent years [101,102,235–237].

Thiol addition reactions are not limited to -C=C; they are able to proceed with -C≡C
groups from alkyne monomers as well [238–241]. The reaction mechanism is the same
as in a thiol-ene reaction, however, it typically involves a double addition reaction with
a thiyl radical, forming an additional vinyl sulfide intermediate. Thiol-yne reactions
generate polymer networks with a higher crosslinking density and higher glass transition
temperature compared to thiol-ene reactions [242–244]. Selected alkyne structures are
shown in Figure 22.

4.3.3. Hybrid (Interpenetrating) Polymerization

In addition to photopolymerization of single networks including vinyl monomers,
(meth)acrylates, thiol-ene/yne, or epoxies, hybrid polymerization routes yielding inter-
penetrating networks (IPNs) have gained increased attention over the past years. IPNs
are formed by the consolidation of more than one polymerization mechanism in a single
resin formulation. Specifically designed to compensate for the limitations of one type of
the polymerization network, the additional polymer networks are usually exploited to
improve the physicochemical, thermal, or mechanical performance of the IPN. There are
many examples of photocurable interpenetrating networks and selected ones are briefly
described in the following section.

Dual Curable Networks (Photothermal Sequential Curing)

Thiol-ene/yne-based photopolymerized materials exhibit much better network homo-
geneity and reduced shrinkage stresses compared to pure (meth)acrylate-based polymers,
as discussed earlier. However, the flexible core structure of the commercially available
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thiols along with the formation of inherently flexible thioether bonds significantly limits
their thermal, mechanical, and physical properties [245]. This becomes particularly critical
when 3D printed prototypes with higher modulus, hardness, and thermal resistance are
required [246,247]. On the other hand, while pure epoxy-based networks are brittle and
possess a high temperature resistance, they suffer from poor flexibility [248].

One way to benefit from the traits of both materials is to employ a combination of
these monomers. Sangermano et al. developed dual curing networks consisting of a
combination of thiol, acrylate, and epoxy monomers. They formulated the resins with
equimolar concentrations of thiol and allyl groups and varied the concentration of epoxy
monomers in the formulation. Moreover, they added 1 wt% benzophenone and 1wt%
triphenylsulfonium hexafluoroantimonate as photoinitiators for the thiol-acrylate and
thiol-epoxy curing reactions, respectively. The formulations were UV-irradiated, forming a
mixed-mode network composed of thiol-acrylate and epoxy segments. Due to the slow
curing kinetics of the cationic ring-opening reaction, a thermal post-treatment step was
required in order to completely consume the epoxy monomers forming the second polymer
network. They concluded that the addition of 50% epoxy monomer resulted in polymer
networks with a Tg of 25 ◦C and a higher modulus, in contrast to a Tg of −5 ◦C when using
pristine thiol-acrylate chemistry [247].

Morancho et al. studied hybrid networks consisting of epoxy monomers and thiol-ene
resins as well. They concluded that irradiation obtained the radical-induced polymeriza-
tion product, while an additional thermal curing step was required to accelerate the epoxy
ring-opening reaction. The formed interpenetrating network benefited from much better
thermomechanical properties in comparison to pristine thiol-ene networks [249]. Several
other studies have been reported on the combination of radical and cationic photopolymer-
ization to form IPNs using sequential curing [250,251].

Konuray et al. applied this concept in 3D printable resin formulations and developed
resin formulations with varying epoxy and acrylate monomers in different concentrations.
The resins were photocured during SLA 3D printing followed by thermal curing to achieve
complete conversion of the epoxy monomers via cationic-induced dark curing reactions.
Using these approaches, the authors developed materials with two different Tg values
corresponding to the values of the single acrylate and epoxy networks. Moreover, varying
the concentrations of constituents resulted in wide variations in Tg and thermomechanical
properties [252]. Kuang et al. exploited a similar approach for DLP printing, using a
combination of acrylate and epoxy resins for the additive manufacturing of functional
devices for engineering applications [253].

Griffni et al. formulated a photothermal curing resin using a combination of light
curable acrylate and thermally curable epoxy monomers, which they applied in SLA 3D
printing. TPO-L was used as a radical photoinitiator, as the SLA printer contained a light
source operating at 405 nm. Instead of a cationic photoinitiator, they employed classic
hardeners and accelerators for the thermal curing of the epoxy monomer in a subsequent
post-baking step. They demonstrated that the Tg could be increased from 73 ◦C for a pure
acrylate system to 115 ◦C when using a blend with a 1:1 ratio of epoxy:acrylate, along with
a notable increase in the storage modulus [254].

Dual Photo-Curing System

In addition to the dual curing cycle (i.e., photocuring followed by thermal curing),
another way to form IPNs is to exploit resin formulations, which are able to form different
polymer networks through a single illumination step. This idea has been exploited by using
the ability of photoinitiators to initiate both radical and cationic polymerizations [248,254,255]
simultaneously under UV illumination.

Various investigations have been performed on dual curing hybrid networks based on
acrylate and epoxy as well as thiol-ene and thiol-epoxy networks. Jian et al. reported on
a reaction system which contained a combination of thiol-acrylate and thiol-epoxy resins
in a single formulation. For the photopolymerization of epoxy monomers with thiols,
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a photo-base generator was utilized and a radical photoinitiator was introduced in the
precursor resin for triggering the thiol-acrylate reaction. An interpenetrating network was
developed by simultaneously generating free radicals and a strong base by irradiating
the formulation with UV wavelengths, leading to a hybrid reaction of thiols across both
epoxy and acrylate groups [256]. They further reported that the Tg of pure thiol-acrylate
networks was limited to −12.3 ◦C, although the interpenetrating networks formed with
thiol-epoxy/thiol-acrylate (75/25 wt%) could achieve a Tg of 37.6 ◦C. Subsequently, they
tuned the resin formulations in order to generate hybrid polymer networks with improved
storage modulus, hardness, and thermal resistance.

Yu et al. developed hybrid epoxy–acrylate-based resins which they applied in SLA
3D printing using an illumination source at 355 nm. They adopted a similar strategy of
introducing both radical and cationic photoinitiators in the formulations, which started the
polymerization reactions with their respective monomers all at once upon UV irradiation.
However, reaction orthogonality was not observed; instead, an interpenetrating network
was developed with a single network Tg [248]. They reported that the cationic polymeriza-
tion of epoxies could even take place in dark conditions, limiting the storage stability of
the resins.

Decker et al. developed hybrid networks which underwent simultaneous curing
of both acrylate and epoxy monomers upon UV exposure. They introduced applied
cationic photoinitiators such as diaryliodonium hexafluorophosphate salts, which could
both generate protonic acid for the cationic ring-opening reaction of the epoxy monomers
and release free radicals in the presence of hydrogen donors. Thus, UV irradiation of such
formulations initiated both cationic and radical polymerization reactions and successfully
formed IPNs [255].

Furthermore, with recent advancements in photopolymerization and increasing ap-
plications in various fields of material science, hybrid (interpenetrating) networks have
evolved as an emerging area; multiple research activities have been reported over the past
several years [110,253,257–260]. The application of an appropriate reaction methodology
along with a selection of appropriate monomers can further broaden the aspect of the vat
photopolymerization 3D printing industry.

4.4. Vat Photopolymerization of Hydrogels

3D printing of hydrogels is another emerging field in the development of functional
polymeric architectures. Crosslinking methodologies govern the structural development
of hydrogels and maintain the mechanical integrity of their hydrophilic polymer net-
works [84,261,262]. Photopolymerization of hydrogels offers great spatiotemporal con-
trol [263] and flexible operation, which is vital for bioapplications such as controlled drug
delivery [264]. Furthermore, the choice of monomers is crucial for the formation of hydro-
gels due to the associated cytotoxicity, solubility, biodegradability, biocompatibility, and
stimuli response [265–267].

The application environment for hydrogels involves extensive interaction with water.
Hence, the network should be compatible with water and exhibit suitable solubility, which
often limit the application area [268–270]. Biologically-derived oligomers have been a great
source of raw materials for hydrogel-based tissue engineering and scaffolds on account of
their excellent biocompatibility and biodegradability. Gelatin is one of these materials; it
has no adverse efficacy and consists of amino acid building blocks [271,272]. The presence
of the cell binding motif tripeptide arginylglycylaspartic acid (RGD) primarily results in cell
adhesion and diffusion along the matrix and active degradation sites, which are sensitive
to metalloproteinase (MMP) [273]. Chemical modification of gelatin groups is required in
order to improve the mechanical properties prior to the photopolymerization of precursors.

Thiol-ene reactions have been successfully executed together with reactions between
vinyl ester-modified gelatin and thiol monomers. Vinyl ester groups are introduced by
modifying gelatin with divinyl adipate [274,275]. Furthermore, gelatin can be modified
by using allyl glycidyl ethers to form allyl gelatin, which can be further used in thiol-ene
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click-reactions. The network crosslinking degree and the related mechanical and thermal
properties of the polymer networks can be controlled by varying the functionality of
the thiols.

Hyaluronic acid (HA) represents another biological derivative; it consists of glucuronic
acid and acetylglucosamine building blocks, and is found in connecting tissues [276].
Extracellular matrix, which contains hyaluronic acid, has great biocompatibility and sup-
ports multiple important functions including cell proliferation, migration, differentiation,
and angiogenesis. The chemical modification of HA can be carried out for the formation
of mechanically-tuned HA hydrogels [276]. Methacrylic anhydride is reacted with HA to
yield HA–MA, which can be photopolymerized to form hydrogel networks with improved
degradation times [277]. In addition, HA can be functionalized using glycidyl methacrylate
to form HA–GMA, which can then be photopolymerized to form crosslinked networks with
better mechanical characteristics [278]. Divinyl adipate (DVA) has been used to form HA–
vinyl ester hydrogels through lipase-catalyzed transesterification reactions with hyaluronic
acids [279]. Silk fibroin is another naturally occurring oligomer which has shown the poten-
tial for application in hydrogels photopolymerization. Glycidyl methacrylate is generally
adopted for the modification of silk fibroin to form Sil-glycidyl methacrylate in the presence
of lithium bromide [280,281]. Furthermore, 2-isocyanateoethyl methacrylate or methacrylic
anhydride can be used to form methacrylated silk fibroin or methacryloyl silk protein,
respectively, by reaction with silk fibroin [282].

In contrast to natural oligomers, which require reactive functionalization in order
to undergo adequate photopolymerization, synthetic monomers have been utilized fre-
quently in the photopolymerization of hydrogels. Such monomers offer low-cost operation,
convenient processing, and homogenous and reproduceable results due to consistent
quality [283]. Polyethylene glycol (PEG) is one of the most widely used oligomers, and has
excellent biocompatibility, hydrophilicity, and insignificant cytotoxicity [284]. On account
of these properties, it has been widely used in hydrogel scaffolds, drug delivery, tissue
engineering, cell encapsulation, etc. Photopolymerization of PEG can conveniently con-
trol the crosslinking degree of the polymer network, consequently achieving the desired
structural and mechanical properties, size of hydrogels (which can affect drug delivery),
and cell interaction activities [285,286]. Similar to natural bio-based oligomers, PEG can be
modified to obtain functional (meth)acrylate derivates for photopolymerization. Currently,
such strategies are undertaken through the reaction between hydroxy groups from the PEG
side with (meth)acryloyl chlorides to form polyethylene glycol diacrylate or dimethacry-
late [287]. Furthermore, Mautner et al. synthesized vinyl ester-modified polyethylene
glycol oligomers (PEGDVA) [288]. In comparison to PEDGA, vinyl ester-based PEG has a
lower cytotoxicity than (meth)acrylate-based PEG, and can be easily implemented in thiol-
ene-based photopolymerization systems. Polyvinyl alcohol (PVA) is another monomer
with good biocompatibility and mechanical properties, and is often used in soft tissue
engineering implants [289]. Similar to PEG, the successful application of PVA in photopoly-
merization systems requires functional modification steps involving reactions between the
hydroxy groups of PVA and glycidyl methacrylate (GMA) or methacrylic anhydride in
order to generate PVA-methacrylate [290].

Both the application and final properties of hydrogels are strongly dependent on the
processing methodology, which governs the final architecture. The interaction of hydrogels
with the environment and their diffusion, migration, proliferation and differentiation in
application-specific areas requires that the materials have high resolution, crosslinking,
spatial control, and structural integrity. Therefore, formation of a complex structure is
very important for stimulating the complexity of the microenvironment. Photopolymeriza-
tion of monomers can form high resolution hydrogels with outstanding space and time
precision [291,292]. The most commonly utilized photopolymerization technologies for
hydrogels include micro-patterning, stereolithography (SLA), digital light processing (DLP)
3D printing, laser printing, and two-photon absorption (TPA) [261].
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5. Progress on Multi-Material Vat Photopolymerization 3D Printing

There are three primary strategies (Figure 25) that have been adopted by the scientific
community for the development of multi-material vat photopolymerization 3D printing
technology:

1. Changing the resins during 3D printing in a sequential manner to form a multi-
material structure.

2. Printing one resin formulation while selectively activating photoreactions by changing
the light source (layer-by-layer) during 3D printing.

3. Printing one resin formulation while selectively varying the intensity of the light
source (layer-by-layer) during 3D printing.
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Figure 25. Strategies for multi-material vat photopolymerization 3D printing.

In the following sections, we briefly discuss the history of multi-material vat pho-
topolymerization, recent works, and the pros and cons of both printing approaches.

5.1. Multi-Vat Photopolymerization 3D Printing

The introduction of different resins using various resin vats in a vat photopolymeriza-
tion 3D printing process and fabricating the material in a chronological manner to form a
multilayer structure has been well exploited by the research community. The first efforts
were made by Maruo et al. in 2001; they introduced a micro-stereolithography process
which was able to print with different photocurable resins. Using two polymer resin-dosing
pumps in a sequential manner, they printed two different photocurable resins in a single
vat and cured the materials by illumination with UV light (325 nm) layer-by-layer [293].

Later, Wicker et al. developed a multi-vat carousel assembly for multi-material stere-
olithography. They introduced three vats in a stereolithography setup, two for incorporat-
ing different photocurable resins and a third vat for intermittent washing and drying of
the printed structure [294]. Furthermore, they demonstrated the concept of two building
platforms in a multiple rotary vat setup together with a mechanical assembly to support
the movement of platform and resin vat for customized multi-material printing. However,
the retrofitted apparatus was limited to a building area of 4.5 inches × 4.5 inches. Their
further work on multi-vat systems was extended to four rotary vat assemblies in an SLA
3D printer (Figures 26 and 27) with a capability of printing resin volumes up to 9 L [57].

Choi et al. developed a simpler and non-automated multi-material system. They
realized the process by intermittently removing the vat during SLA printing, withdrawing
the resin, cleaning the resin vat, and introducing predetermined volumes of other resins
into the vat using syringes [58].
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With these strategies, researchers were able to print multi-material 3D-structures;
however, the primary challenge in these concepts is the effective exchange and removal
of the resin materials during the different printing steps. Furthermore, most prior multi-
material vat photopolymerization works were adopted using the top-down light-scanning
methodology for 3D printing, in which the platform is largely immersed into the resin
volume and the 3D printing structures are built along the z-axis. Such a printing process
greatly enhances the chances of contamination and resin trapping within the confined areas
of 3D printed architectures, ultimately making it difficult to wash and perfectly clean the
material during the printing steps.

In 2013, Zhou et al. proposed multi-material SLA printing using a bottom-up approach.
With this set-up, the contact between the building platform and liquid resin was minimized
and only cleaning of those parts of the structure in direct contact with the resin was required.
However, their technology of multi-material 3D printing continued to rely on carousal-
based vat changeover, and the cleaning process involved extensive ultra-sonification and
brushing, which was not able to overcome all of the problems [295].
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Matte el al. developed a multi-material DLP setup using an automated storage and
retrieval system (ASRS). Instead of using rotary vat assemblies, they utilized a tower
approach in which different vats were provided as vertical trays. They successfully incorpo-
rated eight resin vats into their multi-material DLP printer, and significantly improved the
packing density in comparison to rotary carousel storage system. Using their developed
methodology, they reduced the swapping time delays observed during vat exchange in
rotary systems. Furthermore, they installed a spray cleaning unit after the exchange of vats
in order to remove entrapped resin and avoid contamination of the lateral resin vats [296].

Pursuing another approach, Kowsari et al. established a multi-material DLP 3D
printing setup by installing a glass plate for delivering material puddles in order to achieve
faster material exchange during printing. Furthermore, they employed a novel air jet-
based cleaning assembly to reduce contamination of the vats and wastage of resin while
avoiding damage to the printed articles. Photocurable resins were placed in syringes and
deposited on the glass plate layer-by-layer during printing. An air jet of 0.5 MPa applied
in 5 s intervals was used to clean the 3D printed structures. The printing platform was
adjusted above the glass plate, leaving a gap corresponding to the designed layer thickness.
Multi-material structures were evolved using layer-by-layer introduction of the resins,
intermittent cleaning, and visible light curing (405 nm) [66].

Ge et al. reported on multi-material printing using micro-SLA technology with dif-
ferent acrylate monomers and two automatic exchanging vats. They utilized a mixture of
mono-functional methacrylate as linear chain builder and a difunctional methacrylate as
crosslinker, and fabricated multifunctional structures with shape memory properties [61].
The process employed the automatic swapping of resin chambers after printing fixed layers
of each material (Figure 28).
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Figure 28. (a) Process working schematics for multi-material SLA printing using two different
monomers and (b) the chemical structure developed by monomers via multi-material SLA printing.
Reproduced from [61].

Keneth et al. utilized a combination of methacrylates with different glass transition
temperatures using DLP 3D printing to fabricate multi-material architectures. They adopted
the philosophy of print, pause, and exchange to define the steps during printing. After
partially printing the initial design using one of the resins, they stopped the DLP printer
and exchanged the resin vat, filled it with the second methacrylate blend formulation,
and resumed the printing process for evolution of the multi-material object. Using this
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approach, they exploited the materials’ responses to thermal stimuli to create 3D objects
which underwent localized shape memory-induced movements (Figure 29) without making
modifications to their complete structure [70].
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Figure 29. Thermally-induced transitions in a double-lid multi-material DLP printed box. Both
lids remain closed below 52 ◦C; at 52 ◦C, both lids open. The inner lid closes at 58 ◦C. Reproduced
from [70].

Hu et al. developed an automatic multi-vat DLP printing setup including a washing
and drying chamber (Figure 30). The apparatus consisted of three different resin vats,
and they employed a moving DLP projector which could illuminate the vat in all three
positions, corresponding to the design. After each illumination interval, the platform was
raised from the vat and transported by the motorized assembly to the washing and drying
chamber, where it was washed with water and ethanol and purged before displacing it to
the next resin vat [63]. Although the technology involved a time delay due to additional
time consumption during the platform transfer, cleaning, and drying steps, the authors
successfully 3D printed multi-material structures.

Furthermore, many other research works have been reported on multiple resin vat-
based photopolymerization; these are summarized in Table 5.

Table 5. Multi-material vat photopolymerization.

Technology Strategy Reference

SLA Carousel-like rotating disks including various resins [297]
SLA Carousel-based rotary vats [298]

SLA Multiple resin injections under the servo-stage on the building
stage through an orifice [299]

SLA Resin droplet delivery via rotary wheel [300]
DLP Resin exchange in vat with intermittent cleaning [301]

µSLA Multiple-resin dynamic liquid control within an integrated
fluidic cell. Pumps for drawing/withdrawing of materials. [302]

SLA Multiple resin supply via microchannels [303,304]
SLA Multiple resin injection and intermittent cleaning [305]

In summarizing the recent progress on multiple-vat 3D printing, it can be concluded
that the technology has evolved and advanced significantly, allowing for the additive man-
ufacturing of 3D objects with multi-material properties within the last decade. However,
there are immense limitations on account of the intermittent resin exchange mechanism,
where extensive cleaning is required. The process is time consuming, and even automated
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processes cannot ensure complete cleaning of the printed structures during swapping
between multiple vats. Moreover, the interlayers’ adhesion and anisotropic properties
and the incompatibility of multiple polymers often results in poor material properties and
premature damage to the printed objects. Hence, an optimized multi-material 3D print-
ing technology using multiple vats while allowing for fast building of high-performance
materials is yet to be realized.
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5.2. Orthogonality-Mediated Multi-Material 3D Printing

Chemo-selective multi-material printing using vat photopolymerization has evolved
as a chemical strategy to spatially control the network formation traits layer-by-layer, and
presents a potential solution to the contamination and vat exchange problems encountered
with multi-vat 3D printing technology. The design of the resin formulations and the
polymerization strategy are the key factors that determine the orthogonality control and
final chemical properties of the 3D printed articles.

Orthogonality was initially utilized in the literature to describe distinct features that
could not overlap [306,307]; in 1977, it was used for the first time in chemistry to represent
the selective withdrawal of protecting groups in the presence of many other groups by
varying the reaction conditions [308]. Subsequently, orthogonality has been repeatedly
used to illustrate selectivity in chemical interactions [309–312].

In order to achieve concurrent and independent reaction control in a single-reacting
system, it is essential to induce stimuli which could drive the selective reactions without
effecting the other components in the system. Various external stimuli, including heat,
pH, light, redox, and electric potential, have been used for reaction initiations; among
these, light is the most well-known on account of its suitable properties, including low
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energy consumption, spatial and temporal control, and independence from other external
stimuli [313,314]. On account of light’s ability to operate independently of other external
stimuli, examples of orthogonal reactions using a combination of both photo and other
reaction drivers already exist for complex material fabrication [315,316], although more
important for 3D printing vat photopolymerization are those systems based on the at-
tributes of chromophores and their reactivity. One way to achieve orthogonality control
in multi-reaction systems is to employ different wavelengths of light (Figure 31). This
chemical reaction orthogonality coupled with the application of multi-wavelength light is
frequently termed chromatic orthogonality, or λ-orthogonality in chemistry [317].
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The chemical structure of the chromophores defines the capabilities of absorbing light
at certain wavelengths and initiating photochemical reactions. Hence, a rational choice of a
mixture of chromophores can be utilized to independently initiate selective photochemical
reactions, while numerous organic synthesis conventions and post-modifications can be
evolved using this reaction philosophy [318,319]. As a result, multi-wavelength light irra-
diation to sequentially or simultaneously initiate specific reactions broadens the prospect
of performing complicated synthesis protocols, which can be challenging to drive using
conventional chemical approaches. The capability to discriminately control the reaction
using the wavelength can allow for materials with distinct and spatially-detailed chemical
and mechanical traits [22].

Initial attempts at the development of 3D printed orthogonal vat photopolymerization
protocols were made in 2019 by Schwartz et al., when they formulated a combination of
acrylate and epoxy resins for DLP 3D printing (Figure 32). Radical and cationic photoini-
tiators were dissolved in a single resin and illuminated with visible (long wavelength)
as well as UV (short wavelength) light, utilizing a multi-material actinic spatial control
(MASC) strategy. Taking advantage of the reactions’ orthogonality, various multi-material
3D structures with varying spatially-induced mechanical anisotropy, swelling, and network
heterogeneity were fabricated by varying the illumination wavelength [320].

Figure 33 presents a conceptual illustration of an orthogonal reaction control. Cationic
photoinitiators (a mixture of triarylsulfonium salts) and radical photoinitiators (Irgacure 189)
were utilized with an intrinsic absorption cut-off at 390 nm and 450 nm, respectively. In
the first step, visible light was exploited to selectively activate the radical polymerization
of acrylates by taking advantage of the long-wavelength absorption capability of Irgacure
819. In contrast, short-wavelength light (UV light with λ = 365 nm) was able to additionally
activate triarylsulfonium salts, initiating epoxy ring-opening polymerization by forming
photoacids in an orthogonal manner. Multi-material objects were fabricated using a layer-
by-layer approach, with one layer illuminated with visible light and the subsequent layer
with UV light. The process was repeated until the full design was 3D printed [320]. A
schematic diagram of the DLP 3D printing process is shown in Figure 33.
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Rossegger et al. developed a vat photopolymerization 3D printing setup using DLP
technology in which they introduced a spatially activated photoacid in an orthogonal
manner. The resin formulation comprised thiol and acrylate monomers along with a visible
light photoinitiator. In addition, triphenylsulfonium phosphate was added as a latent
transesterification catalyst (photoacid) with the capacity to release Brønsted acid under UV
irradiation. The resin formulation was DLP 3D printed with both visible light (405 nm)
and UV light (365 nm) projectors, as shown in Figure 34. Cured structures were evolved
by illuminating the resin layer-by-layer with visible light and UV light in an alternating
manner. In this way, the photoacid was activated orthogonally in the desired layers,
which was exploited as the catalyst to initiate dynamic exchange reactions at elevated
temperatures [237].
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5.3. Grayscale Photopolymerization 3D Printing

Grayscale illumination is a process for locally controlling light doses during 3D print-
ing, leading to a spatially customized crosslink density in the polymer network. The
technology employs a single vat photopolymerization unit, although it could be based on
multiple vat units as well.

The core methodology is based on grayscale processing, in which images are scanned
in a monochromic light setting in order to induce location-specific properties within the
network. The designed articles are sliced into images corresponding to each illuminating
layer and materials are built in a layer-by-layer approach. Mathematical software tools are
then utilized to process the individual images and set the grayscale distribution according
to the preferred material properties. Grayscale images are derived from the normalization
of red-green-blue (RGB) values to determine grayscale percentages and classified from 100%
(dark scale) to 0% (full intensity). These programmed images with grayscale impressions are
transmitted to the light projection modules for illumination and vat photopolymerization.
Higher grayscale levels result in a lower crosslink density, and hence a lower modulus of
the materials. Empirical relationships can be further derived by determining the conversion
of reactive functional groups with light illumination [321].

Kuang et al. formed functionally graded materials with a wide range of mechani-
cal properties using grayscale vat photopolymerization. Their technology of grayscale
printing was based on digital light processing. As photocurable resins, a combination of
mono-functional and di-functional acrylates were selected along with a methacrylate bear-
ing epoxy moieties, amine crosslinkers and photoinitiator. Initially, acrylates in the resin
formulation were allowed to radically photopolymerize, leading to a polymer network
formation which could fix the designed structure [321]. Regions that were underexposed
during greyscale polymerization resulted in unreacted monomers, potentially resulting in
poor mechanical properties [322–325]. A second thermal curing step was introduced to con-
vert the unreacted monomer and improve the mechanical properties of the underexposed
greyscale regions. The primary contribution to thermal curing was observed from the
crosslinking reaction of diamine with acrylate and epoxide monomers [321]. The thermal
curing of the articles was carried out at below 120 ◦C, effectively avoiding self-initiation of
acrylate homopolymerization [326]. Materials formed with higher grayscale (93%) factors
were typically soft and had a Young’s modulus up to 1.4 MPa, while stiffer material regions
were formed by adjusting the grayscale to 0% and had a Young’s modulus of up to 1.2 GPa.
A wide range of graded materials were fabricated using this approach, with a Tg varying
between 14 to 68 ◦C [321].

Wu et al. further devised grayscale light patterns to control the light intensity of light
projection. DLP vat photopolymerization technology was adopted to develop spatially
varied materials by illuminating each layer for the same amount of time and employing
digital mask patterns, which ultimately varied the crosslinking density distribution. The
fundamental principle was based on the fact that dark scaling corresponds to lower light
intensity, and thus results in materials with lower crosslinking density. Mathematical
integration software programs such as Matlab and Solidworks were employed to obtain the
grayscale values of each pixel of the slicing image. Grayscale values ranged between 0–255,
from a completely black to a completely white scale, respectively. These grayscales were fed
into a digital micromirror device projector, which transmitted the grayscale patterns into
the corresponding light intensities in such a way that completely black patterns (0 grayscale)
led to 0% light illumination and completely white patterns (255 grayscale) led to 100% light
intensity. Hence, the crosslinking degree was spatially controlled by transforming grayscale
patterns into a light intensity distribution in each layer while using resin formulations
containing conventional acrylates and methacrylates [325].

Muralidharan et al. employed a combination of thiol-acrylate and thiol-ene based
hydrogels for developing composite materials by employing grayscale SLA technology.
For pursuing the grayscale illumination strategy, the resin formulations were experimen-
tally studied in order to determine the relationships between the illumination intensity,
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illumination time, and reaction conversions. The reaction conversions corresponded with
the crosslinking density, which was verified by swelling test measurements. In this way,
regions of soft and stiff materials were successfully integrated in a composite structure by
employing grayscale impressions [34].

6. Applications of Multi-Material Vat Photopolymerization 3D Printing

Vat polymerization 3D printing technologies have clearly presented themselves as
an outstanding competitor among all the various additive manufacturing technologies on
account of their high printing resolution and building speed and of the surface finish of
their final products. The ease of upscaling and simplicity of combining various chemistries
has led to complex 3D designs which can be quickly realized as real objects at lower costs. In
this section, we discuss the applications of vat photopolymerization-based multi-material
3D printing in various materials-related fields.

6.1. Bio-Mimicking by Combining Soft and Hard Segments

The existence of natural high-performance biological structures and evolution over
the past hundreds of years has been a great motivation for the design and fabrication
of materials that could mimic natural bodies. The complex structural geometry of bio-
inspired architectures has surpassed the complexity limits that were achievable using
additive manufacturing with single materials. Mimicking the architectures of natural
bodies, such as bones and nacre, which comprise two different materials (as in a brick-and
mortar-design, that is, the stiff and the soft part, respectively), in order to achieve higher
strength and energy-dissipation characteristics, is nearly impossible via fabrication using
single-material 3D printing technologies. Multi-material 3D printing could revolutionize
material developments for replicating such multi-functional and multiscale natural entities.

Schwartz et al. worked on multi-material vat photopolymerization and printed poly-
mer structures which mimic an anisotropic human hand. Applying dual-wavelength
photopolymerization, they used a stiff polymer to form the internal bone structure along
with a soft polymer wrapped around the rigid structure. A combination of acrylate and
epoxy resin was formulated and orthogonally cured with visible light to yield a soft acrylate
network, while the stiff epoxy–acrylate IPN was formed using cationic polymerization
(UV illumination) [320]. Anisotropic compression in multi-material architectures was
attained through well-defined soft and hard segments. Figure 35 shows the resulting
multi-material DLP 3D printed hand structure.
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Theses anisotropic properties can be tuned to develop a different set of multi-material
structures by varying the contents of acrylate and epoxy in the formulation. Further-
more, the capability of such multi-material systems to spatially control the strength and
anisotropic features by controlling the content and location of soft and rigid polymers is a
technically relevant aspect in bioinspired materials.

Furthermore, metamaterials with a negative Poisson’s ratio have been developed
using multi-material vat photopolymerization. Such materials have the capability of be-
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coming thicker perpendicular to the applied force in stretched conditions. This property
is particularly useful in preventing of fractures and impact resonance. Chen et al. fabri-
cated metamaterial lattices consisting of spatially distributed rigidity over the material
by employing an automatic resin switching process. They employed resins comprising a
stiff and low-molecular mass polyfunctional tri-acrylate and a very flexible high-molecular
mass oligomeric polyether(meth)acrylate in order to visualize hard and soft segments. By
varying the content of these monomers, they could tune the modulus and Poisson’s ratio in
microlattices over a broad range (Figure 36) [327].
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Peterson et al. developed materials by spatially controlling the crosslinking density
with greyscale DLP technology. Multi-material lattices and trusses were fabricated with
distinctive mechanical features by 3D printing using commercially available acrylate-based
resins. Octet trusses with lower crosslinking density at the joints and higher crosslinking
density at the beams were produced, which significantly improved the mechanical proper-
ties of trusses in comparison to constant greyscale printing [322]. Kuang et al. developed
compression lattices and made use of greyscale DLP 3D printing to tune the deformations,
negative Poisson’s ratio, and structural anisotropy in their work [321].

6.2. Bio-Medical Applications

Multi-material vat photopolymerization 3D printing has been a very prominent tech-
nology for mimicking biological structures and synthetic tissue architectures. Owing to
the ability of multi-materials to incorporate different properties into a single complex,
numerous cell types and natural tissues can be developed on a reasonable time scale.

Wu et al. developed a customized vat-interchanging SLA system for the fabrication of
a bi-phase osteochondral scaffold for implantation in a goat’s knee joint. The scaffold was
developed using poly(ethylene glycol) diacrylate (PEGDA) to act as the cartilage scaffold
in the multi-material and a ceramic beta-tricalcium phosphate (β-TCP) as the bone tissue
scaffold [328]. Furthermore, tissue models have been developed using multi-material vat
photopolymerization technology. PEG and hyaluronic acid derivates were implemented as
degradable scaffolds in a cell-laden biopolymer to obtain channels in vascular model and
liver tissues [329,330]. The same process exploited DLP 3D printing with the exchange of
materials in the resin vat (Figure 37).

Moreover, maskless microfluidics-enabled multi-material 3D printers using DLP tech-
nology have been used to fabricate various models of tissue geometry, such as muscle
strips, angiogenesis, and muscular skeleton joints, employing polymer precursor resins,
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including poly(ethylene glycol) diacrylate (PEGDA) and gelatin methacryloyl (GelMA) in
different compositions (Figure 38) [331].
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mapping. Each layer presents a different drug printed layer. Work reproduced from [332]. 

  

Figure 38. (a) Tumor angiogenesis model: (i) illustration of tumor angiogenesis model; (ii) schematic
of the mask for 3D printing; (iii) bioprinted MCF7 cell-laden microvascular bed of GelMA (blue);
(iv) bioprinted cell-laden microvascular bed of GelMA (blue) seeded with cells (green) in the channels.
(b) Skeletal muscle model: (i) schematic showing the skeletal muscle tissue; (ii) schematic of the mask
for 3D printing; (iii) bioprinted structure of GelMA containing patterned cells (red) and fibroblasts
(blue); (iv) Presto blue measurements of cell proliferation in the printed structures. (c) Tendon-
to-bone insertion model: (i) schematic of the tendon-to-bone insertion site; (ii) schematic of the
mask for printing; (iii) bright field optical image showing a bioprinted dye-laden GelMA structure;
(iv) bioprinted structure of GelMA containing patterned osteoblasts (blue), MSCs (red), and fibroblasts
(green). Produced with permission from [331]. Copyright © 2022 John Wiley and Sons.
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Moreover, many other studies have described the use of stereolithography with exchang-
ing resin systems for additive manufacturing of biocompatible multi-material polymers such
as polyethylene glycol dimethacrylate and polyethylene glycol diacrylate [65,332–345].

Multi-material 3D printed polypills have been developed in recent years using SLA
technology with exchange vats during fabrication. Drugs are introduced into bio-compatible
photocurable resins in required doses and illuminated for curing and structuring [332,333].
This can support patients’ efforts to undertake defined volumes of medicine or multiple
medicines in a single shot, as well as reducing non-adherence. Figure 39 shows a multi-
material polypill developed in PEGDA using a blend of six medical drugs (naproxen,
aspirin, paracetamol, caffeine, chloramphenicol, and prednisolone) and printed layer-by-
layer using each blend formulation [332]. Furthermore, other applications of multi-material
vat photopolymerization in bio-medical industry are summarized in Table 6.
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Figure 39. Visual presentation of a (multilayer) polypill under: (a) optical microscope and (b) Raman
mapping. Each layer presents a different drug printed layer. Work reproduced from [332].

Table 6. Applications of multi-material vat photopolymerization in various bio-medical areas.

Applications Printing Materials Methodology Reference

Scaffolds for tissue engineering PEGDA, PEGDMA Resin exchange, SLA [334]
Multilayer polypills PEGDA + dissolved drug Resin exchange, SLA [332]
Multilayer polypills PEGDA, PEGDMA + dissolved drug Resin exchange, SLA [333]

Tissue-porous scaffolds PEGDA, Commercial photocurable resins, +
Leachable salt particulates DLP [335]

Bioactive scaffolds PEGDA, PEGDMA, + fluorescently labeled
components Resin exchange, SLA [336]

Neovasculature PEGDA, PEGDMA, + Murine cells Resin exchange, SLA [337]
Constructs with Encapsulated Cells PEGDA + human dermal fibroblasts Resin exchange, SLA [338]

Piezoelectric acoustic sensor PEGDA + barium titanate nanopowder +
multi-walled carbon nanotubes Resin exchange, DLP [339]

Cell encapsulation PEGDA + cells Resin exchange, SLA [340]

Multi-material cantilevers poly(ethylene glycol) diacrylate (PEGDA) and
acrylic-PEG-collagen (PC) Resin exchange, SLA [341]

Selective Porous Barriers PEGDA: MW 258, MW 575, MW 700 Resin exchange, SLA [65]
Biological sensors PEGDA, commercial resin, + biomolecules Resin exchange, SLA [342]

Tissue scaffolds PEGDA+ fluorescently-labeled polystyrene
microparticles Resin exchange, SLA [343]

Spatially-designed biological sensor oxidized methacrylic alginate, poly(ethylene
glycol) methyl ether methacrylate, PEGDA + cells Resin exchange, SLA [344]

Cells interactive sensors Gelatin methacrylate, PEGDA, fluorescent
dextrans, cells Resin exchange, SLA [345]

6.3. Stimuli-Responsive Behavior and Robotic Actuators

Stimuli-responsive behavior describes the tendency of materials to exhibit physico-
chemical transitions as a result of changes in their environment [346]. Multi-material 3D
printed polymers could offer exceptional traits of stimuli responsiveness thanks to their
inherent structural features. The presence of two or more polymer networks in a composite
material could generate different responses based on the driving force, and numerous
works in this direction have been reported.
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Kuang et al. adapted greyscale DLP 3D printing to create multi-material polymer
networks with a Tg ranging from 14–68 ◦C within a single multi-material structure by
spatially varying the illumination intensity. The authors made use of a broad temperature
range and developed shape memory strategies by actuating the 3D printed parts at different
temperatures [321]. Furthermore, Wu et al. developed structures based on PEGDA, butyl
acrylate, and butyl methacrylate, comprising regions with varying crosslinking density.
These domains reacted to solvent absorption and swelling to varying extents, resulting in
spatially-controlled shrinkage and reversible bending deformations [325].

Keneth et al. exploited DLP 3D printing to prepare multi-material structures with
tailored Tg values, which were used to induce motions with thermal or photo-stimuli.
Polycaprolactone methacrylate (PCLMA) and a mixture of N-vinylcaprolactam and PCLMA
were introduced as two different polymer precursors in two different resin formulations.
Multi-material boxes were fabricated by initially printing the structures with the first
formulation, pausing the printer, and adding the second resin in the vat for printing with a
resin mixture. The shape memory-based activations were carried out by placing the 3D
printed box in a hot water bath (Figure 40). Pure PCLMA was activated at 52 ◦C, which
resulted in the box-top lid opening, while mixed resin was activated at 58 ◦C, resulting in
closure of the inset box lid [70].
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Ge et al. developed multi-materials with spatially-controlled shape memory properties.
They synthesized methacrylate-based copolymers and varied the reaction constituents and
compositions, obtaining photopolymer networks with Tg values varying between 50 and
180 ◦C. In addition, the modulus could be adjusted between 1 MPa and 100 MPa. SLA 3D
printing of multi-material structures was carried out via automatic swapping of the resin
vats according to the sliced 3D design [61]. Various designs of grippers were 3D printed
and programming of the transitions over a wide temperature range by controlling resin
properties was presented (Figure 41).

Furthermore, they developed a multi-material flower structure, with the inner petals
having a Tg of 56 ◦C and the outer petals having a Tg of 43 ◦C. All of the petals were
manually closed at 70 ◦C and then cooled down to 20 ◦C to fix the structure (programming
step). Figure 42a presents the structure of the petals after the cooling stage. The temperature
was then increased up to 50 ◦C to allow the outer petals to expand, resulting in blooming
(Figure 42b), while the internal petal remained closed. After the temperature was increased
to 70 ◦C, the inner petals opened up to recover the original shape of the flower [61].
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During the printing process they employed several photocurable resins: a low-modulus 
flexible, high-modulus flexible, and hard material, in a DLP 3D printing setup. The de-
signed number of layers was printed and then the printing was paused, followed by re-
placement of the photocurable resin in the vat [347]. Using this approach, the multi-mate-
rial gripper shown in Figure 43 was developed. 

 

Figure 42. Stimuli-responsive behavior of a multi-material 3D printed flower: (a) Programmed
(temporary) shape of the multi-material flower held at 20 ◦C; (b) heating to 50 ◦C, resulting in the
flower’s outer buds opening; (c) the flower fully bloomed at 70 ◦C; (d–f) simulation images of the
complete multi-material flower blooming process. Reproduced with permission from [61].

Thrasher et al. designed multi-material pneumatic grippers, a Gyroid lattice, and
an Octet truss and fabricated them by applying multi-material vat photopolymerization.
During the printing process they employed several photocurable resins: a low-modulus
flexible, high-modulus flexible, and hard material, in a DLP 3D printing setup. The designed
number of layers was printed and then the printing was paused, followed by replacement
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of the photocurable resin in the vat [347]. Using this approach, the multi-material gripper
shown in Figure 43 was developed.

Polymers 2022, 14, x FOR PEER REVIEW 43 of 71 
 

 

Figure 41. 3D printed multi-material grippers: (a) different sizes and designs of 3D printed grippers; 
(b) illustration of transitions between printed and temporary shapes as a function of temperature; 
(c) gripper used to lift a bolt assembly. Reproduced with permission from [61]. 

Furthermore, they developed a multi-material flower structure, with the inner petals 
having a Tg of 56 °C and the outer petals having a Tg of 43 °C. All of the petals were man-
ually closed at 70 °C and then cooled down to 20 °C to fix the structure (programming 
step). Figure 42a presents the structure of the petals after the cooling stage. The tempera-
ture was then increased up to 50 °C to allow the outer petals to expand, resulting in bloom-
ing (Figure 42b), while the internal petal remained closed. After the temperature was in-
creased to 70 °C, the inner petals opened up to recover the original shape of the flower 
[61]. 

 

Figure 42. Stimuli-responsive behavior of a multi-material 3D printed flower: (a) Programmed (tem-
porary) shape of the multi-material flower held at 20 °C; (b) heating to 50 °C, resulting in the flower’s 
outer buds opening; (c) the flower fully bloomed at 70 °C; (d–f) simulation images of the complete 
multi-material flower blooming process. Reproduced with permission from [61]. 

Thrasher et al. designed multi-material pneumatic grippers, a Gyroid lattice, and an 
Octet truss and fabricated them by applying multi-material vat photopolymerization. 
During the printing process they employed several photocurable resins: a low-modulus 
flexible, high-modulus flexible, and hard material, in a DLP 3D printing setup. The de-
signed number of layers was printed and then the printing was paused, followed by re-
placement of the photocurable resin in the vat [347]. Using this approach, the multi-mate-
rial gripper shown in Figure 43 was developed. 

 

Figure 43. (A) Multi-material 3D printed pneumatic gripper, descending, pneumatically actuating,
and grabbing a plastic ball. (B) Schematic illustration of the multi-material gripper before (left) and
after (right) pneumatic actuation. Ball diameter = 38 mm. Reproduced from [347].

Rossegger et al. took advantage of two transition temperatures in the developed
multi-material structures using the dual wavelength vat photopolymerization approach.
While the thiol-acrylate network was formed at 405, UV irradiation at 365 nm locally
activated a transesterification catalyst, resulting in dynamic exchange reactions at elevated
temperatures. Above the vitrification temperature (Tv), the UV-irradiated domains be-
come malleable, which can be exploited to locally change the shape memory properties.
Figure 44a presents a bar, one half of which was printed with visible light and the other
printed with UV light (and hence contained activated Brønsted acid) [237].
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Figure 44. (a) Illustrations of the printing setup of the rectangular bar and grippers; (b) the permanent,
programming, and spatially-controlled shaping experiment; and (c) the permanent, programming,
and spatially-controlled state of the multi-material gripper under thermal stimuli. Reproduced from
Ref. [237] with permission from the Royal Society of Chemistry.

During the programming step, the temperature of the gripper (permanent shape) was
increased above Tv in a U-shaped mold, which turned the material from both ends, while
the shape of the bar was fixed by cooling it down to 10 ◦C (Figure 44b, shape II). Further
heating of the material above Tg resulted in a special shape in which the UV-activated side
remained bent, while the visible light-activated side regressed back to the permanent bar
shape (Figure 44b, shape III).

A similar experiment was repeated with a gripper (Figure 44c), in which two arms
were printed with visible light and the other two with UV light (Figure 44a). After the pro-
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gramming step, only the localized motion of the visible light-exposed arms was observed,
while the UV-activated arms remained locked in programmed positions on account of the
Brønsted acid-catalyzed topological rearrangements (Figure 44c, shape III) [237].

Furthermore, several other applications of stimuli-responsive materials formed by
multi-material vat photopolymerization have been reported in the recent years; these are
summarized in Table 7.

Table 7. Stimuli-responsive materials printed by multi-material vat photopolymerization.

Applications Stimuli Printing Materials Multimaterial Strategy Reference

Hydrogel cantilevers
and actuators Chemical stimuli

Poly(ethylene glycol) diacrylate
(PEGDA) and acrylic-PEG-collagen
(PC) mixtures

Resin exchange in vat,
SLA [341]

Hydrogels Thermal stimuli
Poly(N-isopropylacrylamide),
N,N′-Methylene-bis(acrylamide)
mixtures

Resin exchange in vat,
SLA [348]

Hinges, robotic arms,
bars, and sheets Thermal stimuli

Bisphenol A ethoxylate diacrylate
(BPADA), glycidyl methacrylate
(GMA), n-butyl acrylate (BA), a
diamine cross-linker
[poly(propylene glycol)
bis(2-aminopropyl ether); D230],
mixtures

Grayscale DLP 3D
printing [321]

Hydrogels Osmotic pressure,
temperature and pH

N-Isopropylacrylamide,
2-carboxyethylacrylate,
N,N′-ethylenebisacrylamide

1. Swelling rates via high
surface area patterning,
2. Crosslinking density
via photo-exposure,
3. Chemical composition
via resin vat exchange

[349]

6.4. Multi-Material Structures with Self-Healing Functionality

Vitrimers are a class of materials with intrinsic dynamic bonds within the chemi-
cally crosslinked networks [350]. These dynamic bond exchanges are thermally activated,
resulting in microscopic reflow of the material under the application of certain forces
while maintaining the structural integrity of the cured architectures. Vitrimers are known
for their ability to self-heal and recycle under the application of heat and mechanical
stimuli [101,102,351,352].

Pure acrylate and thiol-acrylate-based 3D printed vitrimers have been developed
using vat photopolymerization in recent years, comprising transesterification-based dy-
namic reactions [101,102,206,226,351]. Rossegger et al. developed vitrimeric systems using
dual-wavelength vat photopolymerization technology. Through orthogonal activation
of Brønsted acid catalysts in UV-exposed regions, transesterification reactions could be
locally activated within the 3D printed structures, which were then further exploited for
thermo-activated healing. The quantification of dynamic response is carried out in terms
of stress-relaxation experiments, during which the time decay of the constantly applied
stress is measured. Figure 45a represents the dynamic responses obtained by incorporation
of photoacid generator in multi-materials formed using a vat photopolymerization 3D
printing process [237].

All UV-activated multi-material samples represent reasonable stress relaxation proper-
ties, however, the non-UV-activated multi-materials and the samples without photoacid
generators exhibit very slow stress relaxation behavior, confirming the exceptional ac-
tivity of dynamic reactions in UV-irradiated domains. Furthermore, the relaxation time
behavior over various temperatures follows a linear trend (Figure 45b), which is a charac-
teristic feature of vitrimeric materials [353,354], hence confirming the great prospects of
orthogonally-fabricated multi-materials in the field of vitrimers.



Polymers 2022, 14, 2449 45 of 69

Polymers 2022, 14, x FOR PEER REVIEW 45 of 71 
 

 

bars, and 
sheets 

(BA), a diamine cross-linker [poly(propylene 
glycol) bis(2-aminopropyl ether); D230], mixtures 

Hydrogels 

Osmotic 
pressure, 
temperature and 
pH 

N-Isopropylacrylamide, 2-carboxyethylacrylate, 
N,N′-ethylenebisacrylamide 

1. Swelling rates via 
high surface area 
patterning,  
2. Crosslinking density 
via photo-exposure,  
3. chemical composition 
via resin vat exchange 

[349] 

6.4. Multi-Material Structures with Self-Healing Functionality 
Vitrimers are a class of materials with intrinsic dynamic bonds within the chemically 

crosslinked networks [350]. These dynamic bond exchanges are thermally activated, re-
sulting in microscopic reflow of the material under the application of certain forces while 
maintaining the structural integrity of the cured architectures. Vitrimers are known for 
their ability to self-heal and recycle under the application of heat and mechanical stimuli 
[101,102,351,352]. 

Pure acrylate and thiol-acrylate-based 3D printed vitrimers have been developed us-
ing vat photopolymerization in recent years, comprising transesterification-based dy-
namic reactions [101,102,206,226,351]. Rossegger et al. developed vitrimeric systems using 
dual-wavelength vat photopolymerization technology. Through orthogonal activation of 
Brønsted acid catalysts in UV-exposed regions, transesterification reactions could be lo-
cally activated within the 3D printed structures, which were then further exploited for 
thermo-activated healing. The quantification of dynamic response is carried out in terms 
of stress-relaxation experiments, during which the time decay of the constantly applied 
stress is measured. Figure 45a represents the dynamic responses obtained by incorpora-
tion of photoacid generator in multi-materials formed using a vat photopolymerization 
3D printing process [237]. 

 
Figure 45. (a) Normalized stress relaxation behavior of multi-materials over time at various temper-
atures; (b) Arrhenius plot of UV-activated multi-materials derived from measured relaxation times. 
Reproduced from Ref. [237] with permission from the Royal Society of Chemistry. 

All UV-activated multi-material samples represent reasonable stress relaxation prop-
erties, however, the non-UV-activated multi-materials and the samples without photoacid 
generators exhibit very slow stress relaxation behavior, confirming the exceptional activ-
ity of dynamic reactions in UV-irradiated domains. Furthermore, the relaxation time be-
havior over various temperatures follows a linear trend (Figure 45b), which is a charac-
teristic feature of vitrimeric materials [353,354], hence confirming the great prospects of 
orthogonally-fabricated multi-materials in the field of vitrimers. 

7. Further Aspects of Multi-Material Vat Photopolymerization 3D Printing 

Figure 45. (a) Normalized stress relaxation behavior of multi-materials over time at various tempera-
tures; (b) Arrhenius plot of UV-activated multi-materials derived from measured relaxation times.
Reproduced from Ref. [237] with permission from the Royal Society of Chemistry.

7. Further Aspects of Multi-Material Vat Photopolymerization 3D Printing

The layer-by-layer formation of materials via additive manufacturing processes has been
commercially available for more than 25 years. In this section, we discuss several technical
and economic aspects of multi-material vat photopolymerization 3D printing processes.

7.1. Postprocessing of Multi-Material Vat Photopolymerization 3D Printing

Most multi-material vat photopolymerization approaches rely on radical-based pho-
topolymerization of acrylates, thiol-ene or thiol-yne reactions, and ring-opening poly-
merization of epoxy monomers or thiol-epoxy reactions. Post-curing of the photocured
materials is often carried out, with the goal of either completely polymerizing the polymer
network or improving the material properties to withstand certain application conditions.
Generally, photopolymerization reaction conversions are a function of time, illumination
wavelength, and light intensity. Although the reactions generally proceed quickly in such
polymerization mechanisms, the conversion of certain monomers can be limited, and
may not reach 100% during the photopolymerization process. In such situations, a post-
thermal/light treatment step is required in order to fully crosslink the networks. Printed
materials are removed for the 3D printer platform and washed with solvents (usually
ethanol or propanol) to remove the unreacted monomers from the surface and clean the
printed articles prior to thermal treatment.

Sangermano et al. studied the photocuring of a hybrid thiol-acrylate-epoxy resin
system and photocured materials with UV irradiation. It was observed that the ring-
opening reaction of epoxy groups proceeded at a much slower rate, and required a second
thermal treatment process for high conversion of the epoxy monomers [247]. Morancho et al.
studied thiol-ene and epoxy blend networks, which suffered from low thermo-mechanical
properties until the thermal curing step was performed and epoxy polymerization took
place [249]. Konuray et al. developed an SLA 3D printable resin containing epoxy and
acrylate monomers. Epoxy curing was carried out in a thermal post-curing step, which was
visible as two distinct glass transition temperatures [252].

Schwartz et al. studied the impact of thermal treatment on the network, curing, and
mechanical properties of orthogonally-formed multi-materials using epoxy and acrylate-
based resins. Multi-materials were DLP 3D printed by illuminating them with visible and
UV light in a sequential manner, causing them to undergo radical and cationic polymer-
ization, respectively. In order to study the network properties and the impact of thermal
treatment on individual materials, UV- and visible light-cured samples were thermally post-
processed at 60 ◦C; it was observed that the stiffness of the materials increased significantly
for the UV-cured samples only (Figure 46a), while the stiffness remained almost unchanged
for the visible light-cured samples. This observation coincided with the fact that UV curing
resulted in unreacted epoxy monomers becoming trapped within the 3D printed structures,
meaning that thermal curing caused further ring-opening reactions and an overall increase
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in crosslinking density [320]. The results of shore-A hardness tests for the UV- and visible
light-cured networks are exhibited in Figure 46b. The results further reveal that UV curing
resulted in increased crosslinking with prolonged photo-illumination time, while thermal
curing (a post-treatment step) resulted in conversion of the trapped unreacted monomers,
forming a stiffer and harder network. No significant impact of thermal treatment was
observed on visible light-cured networks.
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Figure 46. (a) Tensile stress values at 30% strain for UV and vis-light cured samples; (b) Shore A
hardness of UV and vis-light cured samples. Time in minutes represents illumination times and time
in hours represents times of thermal post-curing [320].

We investigated the effect of thermal treatment on DLP 3D printed structures from
thiol-acrylate resins [101]. The conversion of acrylates reached more than 90% during
visible light curing in DLP 3D printing; meanwhile, the conversion of thiol was limited to
60%. Thermal treatment of the samples resulted in further curing of the trapped unreacted
monomers, and the conversions increased after thermal post-curing, which led to a higher
crosslinking density. Furthermore, hydrogen bonds were formed within the network
during thermal treatment, which increased the stiffness of the network and contributed to
enhanced crosslink density (Figure 47).
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The impact of thermal post-curing on the mechanical properties of thiol-acrylate DLP
3D printed materials was investigated (Figure 48a,b), and it was observed that thermal
annealing significantly increased the mechanical properties of DLP 3D printed materials
(Figure 48b). The formation of hydrogen bonds and the additional conversion reactions
driven by heat treatment governed structural rearrangements and bond formations that
significantly increased the mechanical properties [101].

Polymers 2022, 14, x FOR PEER REVIEW 48 of 71 
 

 

2500 cm−1), and C=C-H (1700–1600 cm−1) absorption bands before and after thermal annealing. Re-
produced with permission from [101]. Copyright © 2022 Elsevier. 

 
Figure 48. Mechanical properties of DLP 3D printed materials (a) prior to and (b) after thermal 
treatment at 180 °C for 4 h. Reproduced with permission from [101]. Copyright © 2022 Elsevier. 

In another study from our group, we studied the impact of thermal treatment on the 
mechanical properties of DLP 3D printed resins and found that the strain at break and 
ultimate tensile stress improved from 23% to 47% and 0.26 to 3.1 MPa, respectively, as a 
result of thermal post-curing [102]. Furthermore, the glass transition of the vat photopol-
ymerized structures increased from 0 °C to 20 °C with thermal treatment at 180 °C for 4 h 
(Figure 49), which was attributed to the formation of additional hydrogen bonds and 
crosslinking reactions of trapped unreacted monomers. 

 
Figure 49. DSC plots of vat photopolymerized thiol-acrylate resins (a) prior to and (b) after thermal 
post-treatment at 180 °C for 4 h. Reproduced from Ref. [102] with permission from the Royal Society 
of Chemistry. 

7.2. Thermal and Mechanical Aspects of 3D Objects Fabricated Via Multi-Material Vat 
Photopolymerization 

The thermal and mechanical properties of 3D printed multi-material structures 
strongly rely on the compatibility and multilayer interactions of the applied materials. As 
multi-material vat photopolymerization 3D printing involves the combination of different 
resins or networks (either via resin exchange, orthogonally-mediated reaction mecha-
nisms, or grayscaling), it is vital to characterize the interaction of composite materials at 
the micro-level. 

In contrast to vat photopolymerization, the mechanical properties of extrusion-based 
processes are controlled by the thermal dynamics experienced by the filaments during the 
extrusion, deposition, and cooling processes [355,356]. Filaments being extruded via ther-
mal processes have to pass through four different stages of processing in the sintering, 
crystallization, glass transition phase, and shrinkage steps [45,356]. The interlayer adhe-
sion strength of the material layers being extruded depends heavily on these processing 

Figure 48. Mechanical properties of DLP 3D printed materials (a) prior to and (b) after thermal
treatment at 180 ◦C for 4 h. Reproduced with permission from [101]. Copyright © 2022 Elsevier.

In another study from our group, we studied the impact of thermal treatment on the
mechanical properties of DLP 3D printed resins and found that the strain at break and ulti-
mate tensile stress improved from 23% to 47% and 0.26 to 3.1 MPa, respectively, as a result
of thermal post-curing [102]. Furthermore, the glass transition of the vat photopolymerized
structures increased from 0 ◦C to 20 ◦C with thermal treatment at 180 ◦C for 4 h (Figure 49),
which was attributed to the formation of additional hydrogen bonds and crosslinking
reactions of trapped unreacted monomers.
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7.2. Thermal and Mechanical Aspects of 3D Objects Fabricated via Multi-Material
Vat Photopolymerization

The thermal and mechanical properties of 3D printed multi-material structures strongly
rely on the compatibility and multilayer interactions of the applied materials. As multi-
material vat photopolymerization 3D printing involves the combination of different resins
or networks (either via resin exchange, orthogonally-mediated reaction mechanisms,
or grayscaling), it is vital to characterize the interaction of composite materials at the
micro-level.

In contrast to vat photopolymerization, the mechanical properties of extrusion-based
processes are controlled by the thermal dynamics experienced by the filaments during
the extrusion, deposition, and cooling processes [355,356]. Filaments being extruded via
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thermal processes have to pass through four different stages of processing in the sintering,
crystallization, glass transition phase, and shrinkage steps [45,356]. The interlayer adhesion
strength of the material layers being extruded depends heavily on these processing stages,
which often results in limited mechanical characteristics. The improvement of mechanical
properties in such materials requires fine temperature control, knowledge of the filaments’
prior processing, chemistry, temperature dependence of viscosity, and good understanding
of their material chemistry and thermal stability [356–359]. In addition, thermal shrinkage
of the materials and their poor surface finish, which may require expensive and elabo-
rate post-processing steps, limit the resolution of the materials [42,360]. In contrast, vat
photopolymerization involves the input of liquid resins which are conveniently process-
able, mostly at room temperature; the reacting monomers form polymer networks at a
molecular level, which can significantly improve the multilayer interactions, overall sur-
face finish, material resolution, precise layer thickness control, and mechanical properties.
However, shrinkage is an issue for 3D objects formed by free radical photopolymerization
of acrylate monomers.

Ge et al. prepared multi-material structures by employing an automatic resin vat
exchange assembly in an SLA 3D printer to form shape memory materials. In addition,
they characterized the thermomechanical properties and the interface adhesion strength of
the multi-material structures, which are presented in Figure 50.
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Figure 50. Thermomechanical tests to investigate the interface bonding within multi-material struc-
tures (Material A = 50%B + 50%P550; Material B = 90%B + 10%BPA): (a) DMA and (b) uniaxial tensile
tests of the composite and the single materials [61].

Material A, comprising a mixture of 50% benzyl methacrylate (B) and 50% poly(ethylene
glycol) dimethacrylate (P550), had a glass transition temperature of 32 ◦C, while material B,
composed of 90% benzyl methacrylate and 10% bisphenol A ethoxylate dimethacrylate
(BPA), had a glass transition temperature of 56 ◦C. The multi-material structures formed
using both resins had two glass transition temperatures at 33 ◦C and 60 ◦C (Figure 50a),
which confirms great integration and polymerization control of individual networks. Fur-
thermore, the adhesion strength of the multi-material structures was measured through
uniaxial tensile testing of 3D printed strips (Figure 50b). For the purpose of comparison
single-resin versions of A and B were 3D printed separately and tensile tests were per-
formed under similar settings (Figure 50b). The authors reported that the multi-material
structure did not fail at the interface, rather cohesively within the domain formed by resin A.
Thus, the results show the great compatibility and adhesion of the photopolymer networks
formed during multi-material 3D printing [61].

Furthermore, the tensile properties of both the individual materials A and B and the
multi-material samples were determined (Table 8). It was found that the multi-material
structures had properties lying between the upper and lower limits defined by the single
materials A and B.
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Table 8. Tensile properties of single and multi-material structures [61].

Material A Material B Multi-Material

Modulus (MPa) 16.5 0.92 1.84
Failure strain 5% 99% 46%

Schwartz et al. prepared multi-material structures consisting of pillars of a stiffer UV-
cured network embedded within a matrix composed of a soft visible light-cured network
(Figure 51a,b). Compression tests were performed on the individual UV-cured resin and
visible light-cured resins and the performance was compared with the multi-material
structures. It was observed that UV-cured networks (Figure 51c, black) reached a maximum
stress limit (500N load cell) at very low strain values (~10%), while visible light irradiation
yielded flexible structures (Figure 51c, red) with very high compression strain values (up to
~90%) without reaching the load cell limit (no fracture onset was physically observed) [320].
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Figure 51. (a) 3D model of four-pillar multi-material objects. Purple corresponds to pillars printed
with UV light, while the white/transparent outer region corresponds to domains printed with visible
light. (b) Printed multi-material structures prior to thermal post-curing (left) and after thermal post-
curing at 60 ◦C for 3 h (right). (c) Representative compressive stress–strain plots of multi-material 3D
printed test specimens. Black curve (1) = Sample cured with UV light. Blue curve (2) = Multi-material
sample compressed along the z-axis. Yellow curve (3) = Multi-material sample compressed along the
x-axis. Red curve (4) = Sample cured with visible light [320].

In contrast, the multi-material structures exhibited anisotropic properties and their
compression behavior was orientation-dependent. Compression testing of the multi-
material structures along the x-axis (Figure 51c, yellow) was initially similar to the softer
network; however, after 59% compression strain, the stress was distributed evenly across
the stiffer and softer networks, resulting in the fracture of the pillars at around 75% strain.
Compression of along the z-axis (Figure 51c, blue) resulted in bilinear behavior, and the
compression of the stiff pillars led to early onset of failure (~50% strain) [320].

7.3. Economical Aspects of Vat Photopolymerization 3D Printing

The beginning of a business with the implementation of a new technology is a very
challenging process, and often requires complete knowledge of capital and running costs
along with a clear picture of the potential supply chain. 3D printing, specifically vat pho-
topolymerization 3D printing, can be effectively used to increase the economic values of
materials thanks to its exceptional product resolution, surface quality, multifunctionality,
and cost-effective operation. Other factors, such as the freedom to manufacture delicate
materials in-house irrespective of the risks generated by depending on raw material sup-
pliers and supply chain channels, and the protection of privacy, while hard to quantify,
always remain at the center of economic evaluation [35]. Owing to the tool-less nature of
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vat photopolymerization 3D printing technology, it can effectively reduce manufacturing
costs for processes involving high customization and complexity when smaller production
volumes are required [361]. Photopolymerization has been gaining market ground in rapid
prototyping, dental implants, and biomedical applications as a real-time processing tech-
nique, leading to a reduction in time to market and time to profit strategy [35]. Prospective
growth and future milestones can now be attained by direct manufacturing of consumer
goods, industrial and domestics parts, equipment housings, machine tools, etc.

The cost of any vat photopolymerization technology involves the cost of 3D print-
ers (equipment), resin raw materials (resin precursors), cleaning chemicals (ethanol, iso-
propanol, acetone, etc.), thermal post-curing equipment, energy costs (electricity), and 3D
design costs (Figure 52).
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Figure 52. Investment and running costs in vat photopolymerization 3D printing technology.

Commercial 3D printers based on vat photopolymerization technology are available in
different sizes and production capacities. The most widely used technologies, SLA and DLP
3D printers, are available from Formslab, Anycubic, and many other commercial brands.
Single-material 3D printers based on SLA technology are available in the price range of
USD 3000, while larger 3D printers with a larger building volume (33.5 × 20 × 30 cm) can
cost more than USD 11,000 [362]. In contrast to SLA, the DLP technology printers offered by
Anycubic are available in wide range of sizes and production capacities. A small lab-scale
DLP 3D printer with a building capacity of 13 × 8 × 16.5 cm (L × W × H) costs only
around USD 200, while larger DLP 3D printers (30 × 16 × 30 cm, LWH) are available in the
range of USD 1100 [363].

The operating (electricity) and raw materials (resin and cleaning liquids) costs can
vary depending on the production targets and the size of the objects which are being 3D
printed, as well as on the volume of materials procurement, as the chemical industry relies
heavily on bulk transfers, which significantly benefits the consumers as well in the final
economic aspects.

Multi-material vat photopolymerization printers made of vat exchange mechanisms
are derivates of single-material 3D printers, mostly customized and built in-house, with
additional arrangements of vats, transferring assembly, and intermediate cleaning tools.
Orthogonally-mediated 3D printing systems require much more sophisticated systems
and need a great degree of control for successful multi-material formation. Schwartz et al.
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developed a customized 3D printer for the formation of multi-material structures by
integrating illumination lamps into the printing setup [320]. Such dual-wavelength 3D
printers are currently on developmental scales and need advancement before being ready
for commercializing and large-scale manufacturing. Typical standard and engineering
resins utilized in vat photopolymerization 3D printing are commercially available in the
price range of USD 149–200/L [362], while customized 3D printing applications require
synthetic resins, which can cost even more based on the synthesis complexity and cost of
the reacting blocks. However, the unmatched surface quality, customization possibilities,
and building resolution of vat photopolymerization surpasses the technological hurdles,
and makes it one of the most competitive additive manufacturing technologies.

8. Outlook and Prospects

Additive manufacturing of materials has presented great potential over the past
decade, and has been adopted under many technology subdivisions by material researchers
and the industrial community. The desire of mankind to mimic nature and to create materi-
als that could offer multifunctional traits such as human bones, soft matter with supporting
structure, and natural bodies has given rise to multi-materials and many new additive man-
ufacturing technologies. Vat photopolymerization has become a popular technology among
3D printing technologies due to its excellent printing resolution, dimensional stability, high-
quality surface finish, and fast processing, although the technology seriously suffers from
the limited functionalities of the resins and materials that can be processed and photo-cured
for vat photopolymerization [53]. While customized resins can be synthesized at research
scales to achieve the required traits, the process becomes time- and energy-intensive, and
incurs a higher cost in terms of the required raw materials and synthesis assemblies.

Hence, on the one hand it is important to discover new resin material chemistries,
while on the other the focus should be placed on utilizing those which are currently
available in an effective way and making the most out of them. One way to achieve this is
the multi-material approach, which can take the advantage of what materials are on hand
or commercially available.

Multi-material 3D photopolymerization offers the advantages of combined material
chemistries along with the cumulative advantages of vat polymerization; however, suitable
strategies need to be built for developing the process. The capability to freely integrate
multiple materials having diverse mechanical, biological, optical, and electrical properties
could represent the most significant aspect of the current decade in terms of making 3D
printing more competitive.

However, the actual level of multi-material vat photopolymerization-based mate-
rials are currently simplistic and mostly based on multi-vat processes. Such systems
result in broadly contaminated products and suffer from the need for extensive cleaning
and time delays during inter-vat changeover. In contrast, the chemical advancements
in orthogonality-mediated multi-materials are limited, and need further developments
in order to advance the complexity and integration levels of the materials industry. Ap-
plication of two wavelengths for curing monomers is an attractive feature for network
functionalization in photo-chemistry.

Selective and orthogonal photoreactions in the presence of two or more photochromes
could lead to spatially and temporally controlled multi-materials with superior levels of
integrity and interlayer interactions. Multi-wavelength light sources, which can spatially
activate the distributed chromophores, are able to form different networks with distinctive
photo-illumination.

The combination of epoxy and acrylate monomers in combination with photo-selective
polymerization, i.e., cationic and radical polymerization using dual-wavelength vat pho-
topolymerization, has already been used to fabricate multi-material networks at different
wavelengths. As a future prospect, we believe that the combination of photoreactive
monomers, such as (meth)acrylates, epoxies, vinyl monomers, or alkynes, with the cycload-
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dition reaction, such as photo-favored [2π + 2π] and [4π + 4π] mechanisms, could develop
multi-materials with orthogonality-mediated network formations.

Photocuring of polymeric resins in photoresists was one of the earliest technologies to
be developed for micro-structures and surface treatments [364,365]. While vat photopoly-
merization technologies were first reported in late 20th century, they employed similar
principles that originated from photoresists. The formation of photoresists relies on anal-
ogous chemical ingredients as vat photopolymerization technology does today, with the
difference being transmission from smaller to macro-level features development. The latest
trends and technological advancements have diverted interests from simplistic photore-
sists and vat photopolymerization technologies to dual-wavelength photocuring systems,
as they offer the possibility of locally forming different polymer networks [312,366,367];
various studies have been presented in recent years in this direction [368,369].

Photocycloaddition reactions offer the capability to locally switch material charac-
teristics reversibly by wavelength-selective network formation and cleavage reactions.
Photo-dimers can form at typical long wavelengths >300 nm (low energy), while cycle-
reversion can occur when exposed with short-wavelength light of <300 nm (high energy).
Furthermore, [2π + 2π] cycloaddition reactions represent a class of photoreactions employ-
ing styrylpyrenes, coumarins, and thymins, and possess the attractive traits of selective
bonding and debonding under wavelength-selective illumination. These monomers find
special applications in photo-induced self-healing, photo-triggered shape memory, and
reversible photoresists.

Coumarin represents another photochrome which finds applications in micro- and
macromolecular applications [370–373]. Such monomers undergo [2π + 2π] cycloaddition
reactions with UV illumination (350 nm), forming cyclobutene rings (Figure 53) [373],
while irradiation with low-wavelength light (254 nm) can photocleave the crosslinks in a
reversible manner [370,374].
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Anthracene monomers are well-known in photochemistry on account of their ability
to undergo [4π + 4π] cycloaddition reactions under photo-illumination in the range of UV-
visible light, forming dimers [376–380]. These monomers possess fluorescence properties,
which make them distinct from the dimerized state, where the fluorescence is fully lost.
Barner-Kowollik et al. took advantage of the photocuring properties of acrylates bearing
anthracene moieties to present a multi-material formation strategy using direct laser writing
(DLW). With DLW, they formed networks using radical polymerization of acrylates, which
served the purpose of cleaving partially-existing anthracene dimers. Further illumination
with LED light of 415 nm resulted in a cycloaddition reaction of anthracene, forming
dimers via [4π + 4π] cycloaddition reactions. The higher laser illumination times during
DLW resulted in higher fluorescence generation as a result of anthracene dimer cleavage
reactions [381].

A promising area of chemistry relying on chromophores in wavelength-mediated
photo-activation is the o-nitrobenzyl ether family, which have the ability to undergo a
cleavage reaction in the UVA region and are transparent to the visible light spectrum [382].
Such chromophores find applications in photo-resists [383] and local drug release [384,385].
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Photolabile o-nitrobenzyl esters have been implemented in thiol-click photo reactions for
wavelength-based modifications of surface properties, reactivity, and thermomechanical
properties [386,387]. Radl and co-workers prepared switchable photoresists by introducing
o-nitrobenzyl ester moieties in visible light-curable thiol-ene networks. While the network
was formed by exposure at 405 nm, the covalent link could be selectively cleaved in
a subsequent UV exposure step [388]. Barner-Kowollik et al. synthesized an acrylate-
based monomer with o-nitrobenzyl ether chromophore groups (Figure 54) and radically
photopolymerized them under 900 nm wavelength light illumination. Furthermore, by
employing the photocleavage capabilities of o-nitrobenzyl ether groups they spatially
erased the microstructures at 700 nm [383].
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Copyright © 2022 John Wiley and Sons.

Romano and co-workers applied direct laser writing techniques to inscribe micropat-
terns within thiol-ene photopolymers containing photolabile o-nitrobenzyl ester links
without the requirement of a development step in the solvents [389]. The local change in
the surface properties was further exploited to covalently attach bio-molecules.

Bialas et al. developed macromolecular dual photoresists based on the orthogonal reac-
tion approach [364] by adding a photocaged diene generated from o-methyl benzaldehyde
groups (oMBA) that was capable of undergoing dimerization under UV activation [390], as
well as styrylpyrene units that formed [2π + 2π] dimers under visible light activation [391].
oMBA did not react under visible light illumination, while styrylpyrene dimerization was
effectively avoided in the UV illumination spectrum, with maximum levels of photocaged
oMBA reactivity (Figure 55) [364].

O-methyl benzaldehydes, N-ethyl-maleimides, and styrylpyrene groups have shown
orthogonal reaction approaches with thermo-activated [4π + 2π] Diels–Alder chemistry [364].

Alves et al. utilized di-thioacetal-protected aldehyde groups in combination with
oMBA to orthogonally induce deprotection of monomers along with the activation of oMBA
by using visible light and UV light in a sequential manner. After activation, oMBA formed
o-quinodimethane, which further underwent a thermally-induced [4π + 2π] cycloaddition
reaction with suitable electron deficient dienophiles such as N-ethylmaleimide [392].
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To summarize these aspects, the potential is great for combining state-of-the-art resins
with photo-driven cycloaddition reactions. Such processes can proceed with excellent
orthogonal chemistry and could offer various functional properties within a multi-material
structure. Furthermore, broadening of the chemical library to include a greater range of
mechanical and thermal properties could revolutionize the application areas, and a great
market potential can hence be predicted for multi-materials.

From a hardware point of view, limited progress has been reported to date in dual-
wavelength 3D printing. The number of commercially-available printers offering dual
illumination projections are scarce, and those available suffer from low printing capacities.
A strong need at present is to promote the manufacturing of 3D printers with greater man-
ufacturing capacities (larger resin vats) along with the capability to modify the wavelength
of light over a broad range. This could further expand the applicability of photoinitiators
and monomers in multi-material 3D printing systems.

9. Conclusions

In summary, the progress in vat photopolymerization 3D printing, and especially
multi-material fabrication, has made significant advancements in terms of the global efforts
towards developing new materials which mimic nature. The applications of multi-material
concepts in biological systems, stimuli responsive actuations, composites, self-healing, and
functionally advanced materials in industry has been a center of attention over the past
decade. However, as an emerging manufacturing process, there are certain challenges and
bottlenecks in terms of material chemistry, printing capacity, hardware shortfalls, design
strategies, purity, and the quality of fabricated structures.

Although additive manufacturing techniques based on extrusion and direct heat
application have been advanced to a technically relevant level and are able to form 3D
printed articles at low cost, they are certainly limited in terms of design complexity, surface
finish, material resolution, raw materials portfolio, mechanical properties, and additional
functionalities. Furthermore, the requirements of sintering and thermal processing require
compatibility of different materials for processing together in order to form multi-material
structures. The materials often lack appropriate interlayer adhesion (particularly at the
layer interface of materials having different mechanical properties), which adversely affects
multi-material fabrication.
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Formation of multi-material structures via vat photopolymerization 3D printing pro-
vides several ways to improve interlayer adhesion, and is thus currently one of the most
promising technologies for forming complex multi-material architectures with excellent res-
olution in a cost-effective manner. Multi-material vat photopolymerization processes have
mostly been designed using multiple exchanging resin vats, which involves monotonous
cleaning steps during resin changeover. Here, the efficiency of cleaning processes and
trapped contaminations remains questionable. In contrast, grayscale vat photopolymer-
ization 3D printing involves complex adjustments to the light intensity in a layer-by-layer
approach in order to vary the crosslinking degree of the photopolymers in a controlled
manner. However, this technology is limited by the number of reacting components, as
the light is provided by a single light source. Orthogonal 3D printed polymer networks
offer a promising solution to multi-material 3D-printing, however, the technology is in its
infancy due to the limited commercial availability of functional monomers and 3D with
the capability of changing the light source during the building of the object. Crossing such
barriers could both revolutionize vat photopolymerization technology and bring material
science into a new era of additive manufacturing where high-resolution multi-material
structures can be fabricated with a high degree of design freedom and at a fast build speed.

With this detailed discussion of additive manufacturing, competitive technologies,
vat photopolymerization, multi-material progress, and the underlying mechanisms and
material chemistry, we are optimistic that this review provides readers with all of the
key information for selection and implementation of effective multi-material strategies in
general, and particularly in the field of photopolymerization.

In order to enhance the functionality, endurance, and integration of materials, the
conjunction and streamlining of smart design, material chemistry, building software, and
equipment is necessary, could ultimately stimulate the development of multi-materials,
and could revolutionize the whole human community in coming years.
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