Electrical Conductivities of Narrow-Bandgap Polymers with Two Types of π-Conjugated Post-Crosslinking
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Measurements
2.3. Polymer Synthesis
2.3.1. π-Conjugated Polymers Having Reactive Groups
2.3.2. Two Types of π-Conjugated Post-Crosslinking Reactions
3. Results and Discussion
3.1. Polymerization
3.2. UV−Vis-NIR Absorption Spectroscopy
3.3. Thermal Stability and Electrical Conductivity Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burroughes, J.H.; Bradley, D.D.C.; Brown, A.R.; Marks, R.N.; Mackay, K.; Friend, R.H.; Burn, P.L.; Holmes, A.B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541. [Google Scholar] [CrossRef]
- Gross, M.; Muller, D.C.; Nothofer, H.-G.; Scherf, U.; Neher, D.; Bräuchle, C.; Meerholz, K. Improving the performance of doped π-conjugated polymers for use in organic light-emitting diodes. Nature 2000, 405, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.-Q.; Tian, R.-Y.; Yan, J.-G.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Deep-Red Electroluminescent Polymers: Synthesis and Characterization of New Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic Devices. Macromolecules 2005, 38, 244–253. [Google Scholar] [CrossRef]
- Kawabata, K.; Saito, M.; Osaka, I.; Takimiya, K. Very Small Bandgap π-Conjugated Polymers with Extended Thienoquinoids. J. Am. Chem. Soc. 2016, 138, 7725–7732. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef] [PubMed]
- Woo, C.H.; Beaujuge, P.M.; Holcombe, T.W.; Lee, O.P.; Frechet, J.M.J. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells. J. Am. Chem. Soc. 2010, 132, 15547–15549. [Google Scholar] [CrossRef]
- Wang, M.; Hu, X.-W.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. Donor-Acceptor Conjugated Polymer Based on Naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells. J. Am. Chem. Soc. 2011, 133, 9638–9641. [Google Scholar] [CrossRef]
- Cui, C.-H.; Fan, X.; Zang, M.-J.; Zhang, J.; Min, J.; Li, Y.-F. A D-A copolymer of dithienosilole and a new acceptor unit of naphtho[2,3-c]thiophene-4,9-dione for efficient polymer solar cells. Chem. Commun. 2011, 47, 11345–11347. [Google Scholar] [CrossRef]
- Almeataq, M.S.; Yi, H.; Al-Faifi, S.; Alghamdi, A.A.B.; Iraqi, A.; Scarratt, N.W.; Wang, T.; Lidzey, D.G. Anthracene-based donor-acceptor low band gap polymers for application in solar cells. Chem. Commun. 2013, 49, 2252–2254. [Google Scholar] [CrossRef]
- Feng, K.; Xu, X.-P.; Li, Z.-j.; Li, Y.; Li, K.; Yu, T.; Peng, Q. Low band gap benzothiophene-thienothiophene copolymers with conjugated alkylthiothieyl and alkoxycarbonyl cyanovinyl side chains for photovoltaic applications. Chem. Commun. 2015, 51, 6290–6292. [Google Scholar] [CrossRef]
- Fu, H.; Li, Y.-X.; Yu, J.-W.; Wu, Z.; Fan, Q.-P.; Lin, F.; Woo, H.Y.; Gao, F.; Zhu, Z.-l.; Jen, K.-Y. High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. J. Am. Chem. Soc. 2021, 143, 2665–2670. [Google Scholar] [CrossRef] [PubMed]
- Shoji, E.; Freund, M. Potentiometric Saccharide Detection Based on the pKa Changes of Poly (aniline boronic acid). J. Am. Chem. Soc. 2002, 142, 12486–12493. [Google Scholar] [CrossRef] [PubMed]
- Herland, A.; Inganas, O. Conjugated polymers as optical probes for protein interactions and protein conformations. Macromol. Rapid Commun. 2007, 28, 1703–1713. [Google Scholar] [CrossRef]
- Luo, S.; Ali, E.M.; Tansil, N.C.; Yu, H.; Gao, S.; Kantchev, E.A.B.; Ying, J.Y. Poly(3,4-Ethylenedioxythiophene) (PEDOT) Nanobiointerfaces: Thin, Ultrasmooth, and Functionalized PEDOT Films with in Vitro and in Vivo Biocompatibility. Langmuir 2008, 24, 8071–8077. [Google Scholar] [CrossRef]
- Liu, W.-j.; Pink, M.; Lee, D. Conjugated polymer sensors built on π-extended borasiloxane cages. J. Am. Chem. Soc. 2009, 131, 8703–8707. [Google Scholar] [CrossRef]
- Taroni, P.J.; Giovanni, S.; Kening, W.; Philip, C.; Manting, Q.; Han, Z.; Pugno, N.M.; Matteo, P.; Natalie, S.S.; Martin, H.; et al. Toward stretchable self-powered sensors based on the thermoelectric response of PEDOT:PSS/polyurethane blends. Adv. Funct. Mater. 2018, 28, 1704285. [Google Scholar] [CrossRef]
- Kudoh, Y.; Akami, K.; Matsuya, Y. Solid electrolytic capacitor with highly stable conducting polymer as a counter electrode. Synth. Met. 1999, 102, 973. [Google Scholar] [CrossRef]
- Nogami, K.; Sakamoto, K.; Hayakawa, T.; Kakimoto, M. The effects of hyperbranched poly(siloxysilane)s on conductive polymer aluminum solid electrolytic capacitors. J. Power Sources 2007, 166, 584–589. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, L.-L.; Ding, Y.; Zhao, Y.; Yu, G.-H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Yoo, J.; Im, H.; Kim, J. The effects of different oxidants on the characteristics of conductive polymer aluminum solid electrolyte capacitors. J. Power Sources 2013, 230, 1–9. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Katsunuma, M.; Kudo, K.; Okuzaki, H. pH-Tunable High-Performance PEDOT:PSS Aluminum Solid Electrolytic Capacitors. ACS Appl. Energy Mater. 2018, 1, 2157–2163. [Google Scholar] [CrossRef]
- MacDiarmid, A.G. “Synthetic Metals”: A Novel Role for Organic Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590. [Google Scholar] [CrossRef]
- Meyers, F.F.; Heeger, A.J.; Bredas, J.L. Fine tuning of the band gap in conjugated polymers via control of block copolymer sequences. J. Chem. Phys. 1992, 97, 2750–2758. [Google Scholar] [CrossRef]
- Roncali, J. Synthetic Principles for Bandgap Control in Linear ð-Conjugated Systems. Chem. Rev. 1997, 97, 173–205. [Google Scholar] [CrossRef] [PubMed]
- Eldo, J.; Ajayaghosh, A. New Low Band Gap Polymers: Control of Optical and Electronic Properties in near Infrared Absorbing π-Conjugated Polysquaraines. Chem. Mater. 2002, 14, 410–418. [Google Scholar] [CrossRef]
- Cheng, P.; Yang, Y. Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics. Acc. Chem. Res. 2020, 53, 1218–1228. [Google Scholar] [CrossRef]
- Kobayashi, M.; Colaneri, N.; Boysel, M.; Wudl, F.; Heeger, A.J. The electronic and electrochemical properties of poly(isothianaphthene). J. Chem. Phys. 1985, 82, 5717–5723. [Google Scholar] [CrossRef]
- Jenekhe, S.A. A class of narrow-band-gap semiconducting polymers. Nature 1986, 322, 345–347. [Google Scholar] [CrossRef]
- Becker, R.; Blochl, G.; Braunling, H. Polyheteroarylmethines, Syntheses and Physical Properties. In Conjugated Polymeric Materials: Opportunities in Electronics, Optoelectronics, and Molecular Electronics; Springer: Dordrecht, The Netherlands, 1990; Volume 182, pp. 133–139. [Google Scholar]
- Braunling, H.; Becker, R.; Blochl, G. Polyarylmethines; Synthesis and Physical Properties. Synth. Met. 1991, 42, 1539–1547. [Google Scholar] [CrossRef]
- Meyers, F.; Adant, C.; Toussaint, J.M.; Bredas, J.L. AB initio study of the structural, electronic, and nonlinear optical properties of pyrrole derivatives. Synth. Met. 1991, 43, 3559–3562. [Google Scholar] [CrossRef]
- Toussaint, J.M.; Brédas, J.L. Theoretical analysis of the geometric and electronic structure of small-band-gap polythiophenes: Poly (5,5′-bithiophene methine) and its derivatives. Macromolecules 1993, 26, 5240–5248. [Google Scholar] [CrossRef]
- Tanaka, S.; Yamashita, Y. Syntheses of narrow band gap heterocyclic copolymers of aromatic-donor and quinonoid-acceptor units. Synth. Met. 1995, 69, 599–600. [Google Scholar] [CrossRef]
- Akoudad, S.; Roncali, J. Electrogenerated poly(thiophenes) with extremely narrow bandgap and high stability under n-doping cycling. Chem. Commun. 1998, 19, 2081–2082. [Google Scholar] [CrossRef]
- Hong, S.Y. Zero Band-Gap Polymers: Quantum-Chemical Study of Electronic Structures of Degenerate π-Conjugated Systems. Chem. Mater. 2000, 12, 495–500. [Google Scholar] [CrossRef]
- Mai, C.-K.; Zhou, H.-Q.; Zhang, Y.; Henson, Z.B.; Nguyen, T.-Q.; Heeger, A.J.; Bazan, C.G. Facile Doping of Anionic Narrow-Band-Gap Conjugated Polyelectro-lytes During Dialysis. Angew. Chem. Int. Ed. 2013, 52, 12874–12878. [Google Scholar] [CrossRef] [PubMed]
- Mai, C.-K.; Schlitz, R.A.; Su, G.M.; Spitzer, D.; Wang, X.-J.; Fronk, S.L.; Cahill, D.G.; Chabinyc, M.L.; Bazan, C.G. Side-Chain Effects on the Conductivity, Morphology, and Thermoelectric Properties of Self-Doped Narrow-Band-Gap Conjugated Polyelectrolytes. J. Am. Chem. Soc. 2014, 136, 13478–13481. [Google Scholar] [CrossRef]
- Poverenov, E.; Zamoshchik, N.; Patra, A.; Ridelman, Y.; Bendikov, M. Unusual Doping of Donor-Acceptor-Type Conjugated Polymers Using Lewis Acids. J. Am. Chem. Soc. 2014, 136, 5138–5149. [Google Scholar] [CrossRef]
- Mai, C.-K.; Arai, T.; Liu, X.-F.; Fronk, S.L.; Su, G.M.; Segalman, R.A.; Chabinyc, M.L.; Bazan, G.C. Electrical properties of doped conjugated polyelectrolytes with modulated density of the ionic functionalities. Chem. Commun. 2015, 51, 17607–17610. [Google Scholar] [CrossRef]
- Goel, M.; Heinrich, C.D.; Krauss, G.; Thelakkat, M. Principles of Structural Design of Conjugated Polymers Showing Excellent Charge Transport toward Thermoelectrics and Bioelectronics Applications. Macromol. Rapid Commun. 2019, 40, 1800915. [Google Scholar] [CrossRef]
- Karikomi, M.; Kitamura, C.; Tanaka, S.; Yamashita, Y. New Narrow-Bandgap Polymer Composed of Benzobis(1,2,5-thiadiazole) and Thiophenes. J. Am. Chem. Soc. 1995, 117, 6791–6792. [Google Scholar] [CrossRef]
- Casado, J.; Ortiz, R.P.; Delgado, M.C.R.; Hernández, V.; Navarrete, J.T.L.; Raimundo, J.-M.; Blanchard, P.; Allain, M.; Roncali, J. Alternated Quinoid/Aromatic Units in Terthiophenes Building Blocks for Electroactive Narrow Band Gap Polymers. Extended Spectroscopic, Solid State, Electrochemical, and Theoretical Study. J. Phys. Chem. B 2005, 109, 16616–16627. [Google Scholar] [CrossRef]
- Aota, H.; Ishikawa, T.; Amiuchi, Y.; Yano, H.; Kunimoto, T.; Matsumoto, A. Band Gap and Absorption Profile Change by Changing Molecular Weight and Conformation of Water-soluble Narrow-band-gap Polymers. Chem. Lett. 2010, 39, 1288–1290. [Google Scholar] [CrossRef]
- Aota, H.; Ishikawa, T.; Maki, Y.; Takaya, D.; Ejiri, H.; Amiuchi, Y.; Yano, H.; Kunimoto, T.; Matsumoto, A. Continuous Band Gap Control from 0.3 to 1.1 eV of π-Conjugated Polymers in Aqueous Solution. Chem. Lett. 2011, 40, 724–725. [Google Scholar] [CrossRef]
- Guo, H.-X.; Ohashi, T.; Imai, Y.; Aota, H. Synthesis of Reactive Water-Soluble Narrow-Band-Gap Polymers for Post-Crosslinking. Polymers 2020, 12, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumer, J.W.; McCulloch, I. Organic photovoltaics: Crosslinking for optimal morphology and stability. Mater. Today 2015, 18, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-J.; Jo, Y.-R.; Kumar, S.; Yoo, S.J.; Kim, J.-G.; Kim, Y.-J.; Kim, B.-J.; Lee, J.-S. Close-Packed Polymer Crystals from Two-Monomer-Connected Precursors. Nat. Commun. 2016, 7, 12803. [Google Scholar] [CrossRef]
- Chung, Y.; Hyun, K.H.; Kwon, Y. Fabrication of a biofuel cell improved by the π-conjugated electron pathway effect induced from a new enzyme catalyst employing terephthalaldehyde. Nanoscale 2016, 8, 1161–1168. [Google Scholar] [CrossRef] [Green Version]
- Ochiai, B.; Tomita, I.; Endo, T. Thermal crosslinking of acetylene-containing polymers obtained by radical polymerization of aromatic enynes. Polymer 2001, 42, 8581–8586. [Google Scholar] [CrossRef]
- Yu, G.-P.; Wang, J.-Y.; Liu, C.; Lin, E.-C.; Jian, X.-G. Soluble and curable poly(phthalazinone ether amide)s with terminal cyano groups and their crosslinking to heat resistant resin. Polymer 2009, 50, 1700–1708. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Luft, J.C.; Tian, S.-M.; Owens, G.; Pandya, A.A.; Berglund, P.; Pohlhaus, P.; Maynor, B.W.; Smith, J. Rendering Protein-Based Particles Transiently Insoluble for Therapeutic Applications. J. Am. Chem. Soc. 2012, 134, 8774–8777. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.-x.; Takahara, H.; Imai, Y.; Aota, H. Electrical Conductivities of Narrow-Bandgap Polymers with Two Types of π-Conjugated Post-Crosslinking. Polymers 2022, 14, 2472. https://doi.org/10.3390/polym14122472
Guo H-x, Takahara H, Imai Y, Aota H. Electrical Conductivities of Narrow-Bandgap Polymers with Two Types of π-Conjugated Post-Crosslinking. Polymers. 2022; 14(12):2472. https://doi.org/10.3390/polym14122472
Chicago/Turabian StyleGuo, Hao-xuan, Hiroshi Takahara, Yusuke Imai, and Hiroyuki Aota. 2022. "Electrical Conductivities of Narrow-Bandgap Polymers with Two Types of π-Conjugated Post-Crosslinking" Polymers 14, no. 12: 2472. https://doi.org/10.3390/polym14122472
APA StyleGuo, H. -x., Takahara, H., Imai, Y., & Aota, H. (2022). Electrical Conductivities of Narrow-Bandgap Polymers with Two Types of π-Conjugated Post-Crosslinking. Polymers, 14(12), 2472. https://doi.org/10.3390/polym14122472