Friction Stir Welding Optimization of 3D-Printed Acrylonitrile Butadiene Styrene in Hybrid Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- Tool PPB (frustum pin) yielded better E and sB and higher temperatures (WT). This can be because the conical surface of PPB is larger than the cylindrical of PPA (see Figure 3d,e). Therefore, the side contact surface with the plasticized material was bigger and transferred a higher mass between the tool’s leading and trailing, resulting in better mixing and homogenization. Moreover, the heat produced by the contact frustum pin surface was higher, too, resulting in higher WTs in the welded area. It will be interesting to see these results in future work utilizing the Finite Element Method (FEM) and validate these observations.
- The rotational speed (RS) increases all outputs, i.e., the tensile strength, the modulus of elasticity, and the welding temperatures highly from 600 to 1000 rpm and then from 1000 to 1400 rpm, yielding higher values for the modulus of elasticity and about the same for ultimate tensile strength and welding temperature. The mixing and the homogenization of the specimens’ material on the welding seam area are caused by the tool’s rotational speed. The two welded materials shaped a lattice structure, which is highly affected by the rotational speed. More, the explanation of these observations is connected with the thermal dependence of the wear coefficient of the pin contact surface. An elevated-value frictional heat was induced and transmitted to the material during the FSW process, resulting in higher welding temperatures and improved sB and E values.
- Finally, travel speed increased from 3 to 6 mm/min and resulted in a weld with a better mechanical response (tensile strength and modulus of elasticity) and higher welding temperatures. Then, higher than 6 mm/min TS resulted in lower sB, higher E, and about the same negligible higher WT. It seems that between 3 and 9 mm/min, the TS influenced the effects of the RS in E and WT positively, while for the sB, the effect was initially positive and then negative. The friction coefficient between the tool surface and the weld material is probably the reason for the observed results. The increase of friction coefficient resulted in a higher tangential force exerted on the ABS and consequently caused the pouring of the melt material out of the welding area.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, W.M.; Threadgill, P.L.; Nicholas, E.D. Feasibility of friction stir welding steel. Sci. Technol. Weld. Join. 1999, 4, 365–372. [Google Scholar] [CrossRef]
- Vidakis, N.; Vairis, A.; Diouf, D.; Petousis, M.; Savvakis, K.; Tsainis, A.M. Effect of the tool rotational speed on the mechanical properties of thin AA1050 friction stir welded sheets. J. Eng. Sci. Technol. Rev. 2016, 9, 123–129. [Google Scholar] [CrossRef]
- Mironov, S.; Inagaki, K.; Sato, Y.S.; Kokawa, H. Effect of Welding Temperature on Microstructure of Friction-stir Welded Aluminum Alloy 1050. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 783–790. [Google Scholar] [CrossRef]
- Byreddy, S.; Materialia, S.; Rhodes, C.G.; Mahoney, M.W.; Bingel, W.H.; Spurling, R.A.; Bampton, C. 6 Effects of friction stir welding on microstructure of 7075 aluminum. Scr. Mater. 1996, 36, 69–75. [Google Scholar]
- Khodir, S.A.; Shibayanagi, T. Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2008, 148, 82–87. [Google Scholar] [CrossRef]
- Dimopoulos, A.; Vairis, A.; Vidakis, N.; Petousis, M. On the friction stir welding of al 7075 thin sheets. Metals 2021, 11, 57. [Google Scholar] [CrossRef]
- Heinz, B.; Skrotzki, B. Characterization of a friction-stir-welded aluminum alloy 6013. Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2002, 33, 489–498. [Google Scholar] [CrossRef]
- Gao, J.; Cui, X.; Liu, C.; Shen, Y. Application and exploration of friction stir welding/processing in plastics industry. Mater. Sci. Technol. 2017, 33, 1145–1158. [Google Scholar] [CrossRef]
- Lambiase, F.; Derazkola, H.A.; Simchi, A. Friction stirwelding and friction spot stir welding processes of polymers-state of the art. Materials 2020, 13, 2291. [Google Scholar] [CrossRef]
- Payganeh, G.H.; Mostafa Arab, N.B.; Dadgar Asl, Y.; Ghasemi, F.A.; Saeidi Boroujeni, M. Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds. Int. J. Phys. Sci. 2011, 6, 4595–4601. [Google Scholar] [CrossRef]
- Iftikhar, S.H.; Mourad, A.H.I.; Sheikh-Ahmad, J.; Almaskari, F.; Vincent, S. A comprehensive review on optimal welding conditions for friction stir welding of thermoplastic polymers and their composites. Polymers 2021, 13, 1208. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.A.R.; Galvão, I.; Costa, J.D.; Amaro, A.M.; Leal, R.M. Joining of Fibre-Reinforced Thermoplastic Polymer Composites by Friction Stir Welding—A Review. Appl. Sci. 2022, 12, 2744. [Google Scholar] [CrossRef]
- Czigány, T.; Kiss, Z. Friction stir welding of fiber reinforced polymer composites. In Proceedings of the ICCM International Conferences on Composite Materials, Jeju, Korea, 11–16 August 2011. [Google Scholar]
- Aydin, M. Effects of welding parameters and pre-heating on the friction stir welding of UHMW-polyethylene. Polym. Plast. Technol. Eng. 2010, 49, 595–601. [Google Scholar] [CrossRef]
- Gao, J.; Shen, Y.; Zhang, J.; Xu, H. Submerged friction stir weld of polyethylene sheets. J. Appl. Polym. Sci. 2014, 131, 1–8. [Google Scholar] [CrossRef]
- Arici, A.; Selale, S. Effects of tool tilt angle on tensile strength and fracture locations of friction stir welding of polyethylene. Sci. Technol. Weld. Join. 2007, 12, 536–539. [Google Scholar] [CrossRef]
- Aghajani Derazkola, H.; Simchi, A. Experimental and thermomechanical analysis of friction stir welding of poly(methyl methacrylate) sheets. Sci. Technol. Weld. Join. 2018, 23, 209–218. [Google Scholar] [CrossRef]
- Mostafapour, A.; Asad, F.T. Investigations on joining of Nylon 6 plates via novel method of heat assisted friction stir welding to find the optimum process parameters. Sci. Technol. Weld. Join. 2016, 21, 660–669. [Google Scholar] [CrossRef]
- Gonçalves, J.; dos Santos, J.F.; Canto, L.B.; Filho, S.T.A. Improvement of friction spot welding (FSpW) to join polyamide 6 and polyamide 66/carbon fibre laminate. Weld. Int. 2016, 30, 247–254. [Google Scholar] [CrossRef]
- Arif, M.; Kumar, D.; Noor Siddiquee, A. Friction stir welding and friction stir spot welding of polymethyl methacrylate (PMMA) to other materials: A review. Mater. Today Proc. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Rahbarpour, R.; Azdast, T.; Rahbarpour, H.; Shishavan, S.M. Feasibility study of friction stir welding of wood–plastic composites. Sci. Technol. Weld. Join. 2014, 19, 673–681. [Google Scholar] [CrossRef]
- Khodabakhshi, F.; Haghshenas, M.; Chen, J.; Shalchi Amirkhiz, B.; Li, J.; Gerlich, A.P. Bonding mechanism and interface characterisation during dissimilar friction stir welding of an aluminium/polymer bi-material joint. Sci. Technol. Weld. Join. 2017, 22, 182–190. [Google Scholar] [CrossRef]
- Ghiya, R.; Badheka, V.J. A review of friction stir lap welding of polymer to metal. Polym. Technol. Mater. 2021, 60, 1966–1995. [Google Scholar] [CrossRef]
- Amancio-Filho, S.T.; Santos, J.F.d. Joining of Polymers and Polymer–Metal Hybrid Structures: Recent Developments and Trends. Polym. Eng. Sci. 2009, 49, 1461–1476. [Google Scholar] [CrossRef]
- Sued, M.K.; Pons, D.; Lavroff, J.; Wong, E.H. Design features for bobbin friction stir welding tools: Development of a conceptual model linking the underlying physics to the production process. Mater. Des. 2014, 54, 632–643. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Kechagias, J.D. Parameter effects and process modelling of Polyamide 12 3D-printed parts strength and toughness. Mater. Manuf. Process. 2022, 121, 785–803. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Vidakis, N.; Petousis, M. Parameter effects and process modeling of FFF-TPU mechanical response. Mater. Manuf. Process. 2021; online ahead of print. [Google Scholar] [CrossRef]
- Kechagias, J.; Chaidas, D.; Vidakis, N.; Salonitis, K.; Vaxevanidis, N.M. Key parameters controlling surface quality and dimensional accuracy: A critical review of FFF process. Mater. Manuf. Process. 2022, 37, 963–984. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Ninikas, K.; Petousis, M.; Vidakis, N.; Vaxevanidis, N. An investigation of surface quality characteristics of 3D printed PLA plates cut by CO2 laser using experimental design. Mater. Manuf. Process. 2021, 36, 1544–1553. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Fountas, N.A.; Ninikas, K.; Petousis, M.; Vidakis, N.; Vaxevanidis, N. Surface characteristics investigation of 3D-printed PET-G plates during CO2 laser cutting. Mater. Manuf. Process. 2021; online ahead of print. [Google Scholar] [CrossRef]
- Lemi, M.T.; Gutema, E.M.; Gopal, M. Modeling and simulation of friction stir welding process for AA6061-T6 aluminum alloy using finite element method. Eng. Solid Mech. 2022, 10, 139–152. [Google Scholar] [CrossRef]
- Das, D.; Bag, S.; Pal, S. A finite element model for surface and volumetric defects in the FSW process using a coupled Eulerian–Lagrangian approach. Sci. Technol. Weld. Join. 2021, 26, 412–419. [Google Scholar] [CrossRef]
- Shi, L.; Wu, C.S.; Liu, H.J. The effect of the welding parameters and tool size on the thermal process and tool torque in reverse dual-rotation friction stir welding. Int. J. Mach. Tools Manuf. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Rai, R.; De, A.; Bhadeshia, H.K.D.H.; DebRoy, T. Review: Friction stir welding tools. Sci. Technol. Weld. Join. 2011, 16, 325–342. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Vairis, A.; Savvakis, K.; Maniadi, A. A parametric determination of bending and Charpy’s impact strength of ABS and ABS-plus fused deposition modeling specimens. Prog. Addit. Manuf. 2019, 4, 323–330. [Google Scholar] [CrossRef]
- Vairis, A.; Petousis, M.; Vidakis, N.; Savvakis, K. On the Strain Rate Sensitivity of Abs and Abs Plus Fused Deposition Modeling Parts. J. Mater. Eng. Perform. 2016, 25, 3558–3565. [Google Scholar] [CrossRef]
- 37. Vidakis, N.; Petousis, M.; Maniadi, A.; Liebscher, M.; Tzounis, L. Mechanical Properties of 3D-Printed Acrylonitrile–Butadiene–Styrene TiO2 and ATO Nanocomposites. Polymers 2021, 13, 1589. [Google Scholar] [CrossRef]
- Vidakis, N.; Maniadi, A.; Petousis, M.; Vamvakaki, M.; Kenanakis, G.; Koudoumas, E. Mechanical and Electrical Properties Investigation of 3D-Printed Acrylonitrile–Butadiene–Styrene Graphene and Carbon Nanocomposites. J. Mater. Eng. Perform. 2020, 29, 1909–1918. [Google Scholar] [CrossRef]
- Kechagias, J.D.; Ninikas, K.; Petousis, M.; Vidakis, N. Laser cutting of 3D printed acrylonitrile butadiene styrene plates for dimensional and surface roughness optimization. Int. J. Adv. Manuf. Technol. 2022, 119, 2301–2315. [Google Scholar] [CrossRef]
- Nath, R.K.; Maji, P.; Barma, J.D. Effect of tool rotational speed on friction stir welding of polymer using self-heated tool. Prod. Eng. 2022; online ahead of print. [Google Scholar] [CrossRef]
- Iftikhar, S.H.; Mourad, A.-H.I.; Guessoum, M. Numerical modeling of friction stir welding of thermoplastic materials—An overview. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conference, Montreal, QC, Canada, 8–9 August 2022; 2022. [Google Scholar] [CrossRef]
- Xue, Y.; Zhao, H.; Zhang, Y.; Gao, Z.; Zhai, D.; Li, Q.; Zhao, G. Design and multi-objective optimization of the bumper beams prepared in long glass fiber-reinforced polypropylene. Polym. Compos. 2021, 42, 2933–2947. [Google Scholar] [CrossRef]
- Lambiase, F.; Paoletti, A.; Di Ilio, A. Mechanical behaviour of friction stir spot welds of polycarbonate sheets. Int. J. Adv. Manuf. Technol. 2015, 80, 301–314. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Huang, X. Effects of Continuous Printing on Fused Deposition-Modeled One-Way Large-Sized Parts. J. Mater. Eng. Perform. 2021, 30, 5150–5158. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Tzounis, L.; Grammatikos, S.A.; Porfyrakis, E.; Maniadi, A.; Mountakis, N. Sustainable additive manufacturing: Mechanical response of polyethylene terephthalate glycol over multiple recycling processes. Materials 2021, 14, 1162. [Google Scholar] [CrossRef] [PubMed]
- Sadeghian, N.; Besharati Givi, M.K. Experimental optimization of the mechanical properties of friction stir welded Acrylonitrile Butadiene Styrene sheets. Mater. Des. 2015, 67, 145–153. [Google Scholar] [CrossRef]
- Azarsa, E.; Mostafapour, A. Experimental investigation on flexural behavior of friction stir welded high density polyethylene sheets. J. Manuf. Process. 2014, 16, 149–155. [Google Scholar] [CrossRef]
- Kiss, Z.; Czigány, T. Applicability of friction stir welding in polymeric materials. Period. Polytech. Mech. Eng. 2007, 51, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Elyasi, M.; Derazkola, H.A. Experimental and thermomechanical study on FSW of PMMA polymer T-joint. Int. J. Adv. Manuf. Technol. 2018, 97, 1445–1456. [Google Scholar] [CrossRef]
- Derazkola, H.A.; Eyvazian, A.; Simchi, A. Modeling and experimental validation of material flow during FSW of polycarbonate. Mater. Today Commun. 2020, 22, 100796. [Google Scholar] [CrossRef]
- Blanco, I. The use of composite materials in 3d printing. J. Compos. Sci. 2020, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.A.R.; Amaro, A.M.; Reis, P.N.B.; Loureiro, A. Effect of friction stir welding techniques and parameters on polymers joint efficiency—A critical review. Polymers 2021, 13, 2056. [Google Scholar] [CrossRef]
- George, E.P.; Box, W.G.; Hunter, J.S.H. Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building; John Wiley & Sons: New York, NY, USA, 1978; ISBN 9780471093152. [Google Scholar]
Abbr. | Units | Values | |
---|---|---|---|
3D-printing parameters (constant) | |||
Nozzle Diameter: | ND | Mm | 0.4 |
Layer Thickness: | LT | Mm | 0.20 |
Infill Density | ID | % | 100 (Solid) |
Printing Temperature | PT | °C | 275 |
Platform Temperature | PT | °C | 90 |
FSW parameters (variable) | |||
Rotational Speed | RS | Rpm | 600, 1000, 1400 |
Travel Speed | TS | mm/min | 3, 6, 9 |
Pin Profile | PP_ | A: cylinder, B: taper | PPA, PPB |
Input | Output | |||||||
---|---|---|---|---|---|---|---|---|
No | Tool | RS (rpm) | TS (mm/min) | WT (°C) | sB (MPa) | E (MPa) | sB/sB 1 (%) | E/E 2 (%) |
1 | 1 | 600 | 3 | 29.2 | 9.7 | 194.6 | 30.2% | 67.1% |
2 | 1 | 600 | 3 | 29.0 | 10.5 | 207.4 | 32.5% | 71.6% |
3 | 1 | 600 | 3 | 31.7 | 13.3 | 243.4 | 41.3% | 84.0% |
4 | 1 | 600 | 6 | 53.2 | 23.1 | 295.5 | 71.3% | 102.0% |
5 | 1 | 600 | 6 | 50.8 | 22.5 | 288.7 | 69.7% | 99.6% |
6 | 1 | 600 | 6 | 49.2 | 21.3 | 282.3 | 65.9% | 97.4% |
7 | 1 | 600 | 9 | 56.3 | 23.6 | 323.7 | 73.0% | 111.7% |
8 | 1 | 600 | 9 | 55.5 | 22.4 | 337.4 | 69.3% | 116.4% |
9 | 1 | 600 | 9 | 53.8 | 21.6 | 297.8 | 66.7% | 102.8% |
10 | 1 | 1000 | 3 | 68.1 | 26.9 | 322.7 | 83.4% | 111.4% |
11 | 1 | 1000 | 3 | 67.1 | 25.3 | 313.5 | 78.2% | 108.2% |
12 | 1 | 1000 | 3 | 70.0 | 27.0 | 300.8 | 83.6% | 103.8% |
13 | 1 | 1000 | 6 | 107.3 | 35.90 | 336.1 | 110.9% | 116.0% |
14 | 1 | 1000 | 6 | 114.5 | 33.6 | 309.1 | 104.0% | 106.7% |
15 | 1 | 1000 | 6 | 109.5 | 34.6 | 298.5 | 107.0% | 103.0% |
16 | 1 | 1000 | 9 | 112.4 | 31.5 | 352.9 | 97.3% | 121.8% |
17 | 1 | 1000 | 9 | 115.0 | 32.7 | 340.1 | 101.0% | 117.3% |
18 | 1 | 1000 | 9 | 111.3 | 33.7 | 363.1 | 104.1% | 125.3% |
19 | 1 | 1400 | 3 | 33.9 | 36.1 | 299.4 | 111.7% | 103.3% |
20 | 1 | 1400 | 3 | 37.5 | 38.7 | 314.2 | 119.6% | 108.4% |
21 | 1 | 1400 | 3 | 41.7 | 34.3 | 301.7 | 106.0% | 104.1% |
22 | 1 | 1400 | 6 | 111.9 | 34.1 | 349.1 | 105.4% | 120.5% |
23 | 1 | 1400 | 6 | 112.0 | 34.5 | 339.5 | 106.8% | 117.1% |
24 | 1 | 1400 | 6 | 123.8 | 32.5 | 364.5 | 100.6% | 125.8% |
25 | 1 | 1400 | 9 | 142.3 | 30.9 | 393.8 | 95.8% | 135.9% |
26 | 1 | 1400 | 9 | 136.3 | 29.0 | 381.7 | 89.8% | 131.7% |
27 | 1 | 1400 | 9 | 124.2 | 32.2 | 397.8 | 99.6% | 137.3% |
28 | 2 | 600 | 3 | 71.2 | 27.0 | 339.7 | 83.6% | 117.2% |
29 | 2 | 600 | 3 | 69.3 | 25.9 | 331.4 | 80.0% | 114.3% |
30 | 2 | 600 | 3 | 66.3 | 26.1 | 320.8 | 80.6% | 110.7% |
31 | 2 | 600 | 6 | 99.4 | 27.0 | 347.3 | 83.5% | 119.8% |
32 | 2 | 600 | 6 | 102.2 | 24.7 | 319.5 | 76.4% | 110.2% |
33 | 2 | 600 | 6 | 103.9 | 26.7 | 321.3 | 82.6% | 110.9% |
34 | 2 | 600 | 9 | 112.9 | 25.0 | 342.8 | 77.5% | 118.3% |
35 | 2 | 600 | 9 | 116.4 | 26.1 | 335.5 | 80.7% | 115.8% |
36 | 2 | 600 | 9 | 109.1 | 23.6 | 326.6 | 73.0% | 112.7% |
37 | 2 | 1000 | 3 | 73.1 | 35.3 | 323.9 | 109.1% | 111.8% |
38 | 2 | 1000 | 3 | 69.2 | 33.7 | 333.1 | 104.3% | 114.9% |
39 | 2 | 1000 | 3 | 75.9 | 37.5 | 340.4 | 116.0% | 117.5% |
40 | 2 | 1000 | 6 | 117.7 | 35.5 | 349.3 | 109.8% | 120.5% |
41 | 2 | 1000 | 6 | 110.3 | 36.5 | 333.7 | 112.7% | 115.1% |
42 | 2 | 1000 | 6 | 122.5 | 35.6 | 330.6 | 110.1% | 114.1% |
43 | 2 | 1000 | 9 | 122.9 | 29.9 | 348.7 | 92.7% | 120.3% |
44 | 2 | 1000 | 9 | 136.3 | 31.2 | 374.7 | 96.5% | 129.3% |
45 | 2 | 1000 | 9 | 127.6 | 29.1 | 374.2 | 90.0% | 129.1% |
46 | 2 | 1400 | 3 | 57.5 | 33.7 | 329.1 | 104.3% | 113.6% |
47 | 2 | 1400 | 3 | 74.2 | 34.2 | 327.7 | 105.8% | 113.1% |
48 | 2 | 1400 | 3 | 66.3 | 35.1 | 341.1 | 108.7% | 117.7% |
49 | 2 | 1400 | 6 | 122.2 | 28.8 | 318.9 | 89.2% | 110.0% |
50 | 2 | 1400 | 6 | 119.2 | 31.1 | 338.7 | 96.3% | 116.9% |
51 | 2 | 1400 | 6 | 127.5 | 29.1 | 326.5 | 89.9% | 112.7% |
52 | 2 | 1400 | 9 | 127.1 | 24.4 | 348.6 | 75.6% | 120.3% |
53 | 2 | 1400 | 9 | 120.0 | 26.9 | 350.8 | 83.5% | 121.0% |
54 | 2 | 1400 | 9 | 118.1 | 26.7 | 363.6 | 82.8% | 125.5% |
Min | 9.7 | 194.6 | ||||||
Max | 38.7 | 397.8 | ||||||
Mean | 28.9 | 327.6 |
Source | DoF | SoS | MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 8 | 61,908.8 | 7738.6 | 28.52 | 0.000 |
Tool | 1 | 22,037.4 | 22,037.4 | 81.20 | 0.000 |
RS | 1 | 7083.4 | 7083.4 | 26.10 | 0.000 |
TS | 1 | 1419.2 | 1419.2 | 5.23 | 0.027 |
RS×RS | 1 | 1864.9 | 1864.9 | 6.87 | 0.012 |
TS×TS | 1 | 183.2 | 183.2 | 0.68 | 0.416 |
Tool×RS | 1 | 10,357.1 | 10,357.1 | 38.16 | 0.000 |
Tool×TS | 1 | 7279.6 | 7279.6 | 26.82 | 0.000 |
RS×TS | 1 | 0.5 | 0.5 | 0.00 | 0.965 |
Error | 45 | 12,212.2 | 271.4 | ||
Lack-of-Fit | 9 | 6171.6 | 685.7 | 4.09 | 0.001 |
Pure Error | 36 | 6040.6 | 167.8 | ||
Total | 53 | 74,121.0 | |||
R-sq | 83.52% | ||||
R-sq (adj) | 80.59% | ||||
R-sq (pred) | 76.17% |
Source | DoF | SoS | MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 8 | 1963.18 | 245.398 | 61.28 | 0.000 |
Tool | 1 | 490.16 | 490.158 | 122.41 | 0.000 |
RS | 1 | 845.98 | 845.976 | 211.27 | 0.000 |
TS | 1 | 285.78 | 285.779 | 71.37 | 0.000 |
RS×RS | 1 | 362.64 | 362.640 | 90.56 | 0.000 |
TS×TS | 1 | 63.62 | 63.621 | 15.89 | 0.000 |
Tool×RS | 1 | 256.62 | 256.623 | 64.09 | 0.000 |
Tool×TS | 1 | 181.90 | 181.902 | 45.43 | 0.000 |
RS×TS | 1 | 212.79 | 212.789 | 53.14 | 0.000 |
Error | 45 | 180.19 | 4.004 | ||
Lack-of-Fit | 9 | 119.99 | 13.333 | 7.97 | 0.000 |
Pure Error | 36 | 60.20 | 1.672 | ||
Total | 53 | 2143.38 | |||
R-sq | 91.59% | ||||
R-sq (adj) | 90.10% | ||||
R-sq (pred) | 87.69% |
Source | DoF | SoS | MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 8 | 54,643.5 | 6830.43 | 70.02 | 0.000 |
Tool | 1 | 4920.6 | 4920.65 | 50.44 | 0.000 |
RS | 1 | 4737.4 | 4737.38 | 48.56 | 0.000 |
TS | 1 | 3388.4 | 3388.39 | 34.73 | 0.000 |
RS×RS | 1 | 3403.7 | 3403.70 | 34.89 | 0.000 |
TS×TS | 1 | 4351.0 | 4351.02 | 44.60 | 0.000 |
Tool×RS | 1 | 3875.1 | 3875.06 | 39.72 | 0.000 |
Tool×TS | 1 | 27.6 | 27.56 | 0.28 | 0.598 |
RS×TS | 1 | 2595.8 | 2595.84 | 26.61 | 0.000 |
Error | 45 | 4390.0 | 97.56 | ||
Lack-of-Fit | 9 | 3581.5 | 397.94 | 17.72 | 0.000 |
Pure Error | 36 | 808.5 | 22.46 | ||
Total | 53 | 59,033.5 | |||
R-sq | 92.56% | ||||
R-sq (adj) | 91.24% | ||||
R-sq (pred) | 89.05% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidakis, N.; Petousis, M.; Korlos, A.; Mountakis, N.; Kechagias, J.D. Friction Stir Welding Optimization of 3D-Printed Acrylonitrile Butadiene Styrene in Hybrid Additive Manufacturing. Polymers 2022, 14, 2474. https://doi.org/10.3390/polym14122474
Vidakis N, Petousis M, Korlos A, Mountakis N, Kechagias JD. Friction Stir Welding Optimization of 3D-Printed Acrylonitrile Butadiene Styrene in Hybrid Additive Manufacturing. Polymers. 2022; 14(12):2474. https://doi.org/10.3390/polym14122474
Chicago/Turabian StyleVidakis, Nectarios, Markos Petousis, Apostolos Korlos, Nikolaos Mountakis, and John D. Kechagias. 2022. "Friction Stir Welding Optimization of 3D-Printed Acrylonitrile Butadiene Styrene in Hybrid Additive Manufacturing" Polymers 14, no. 12: 2474. https://doi.org/10.3390/polym14122474
APA StyleVidakis, N., Petousis, M., Korlos, A., Mountakis, N., & Kechagias, J. D. (2022). Friction Stir Welding Optimization of 3D-Printed Acrylonitrile Butadiene Styrene in Hybrid Additive Manufacturing. Polymers, 14(12), 2474. https://doi.org/10.3390/polym14122474