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Abstract: This study investigated eco-friendly antibacterial medical protective clothing via the non-
woven process and characteristic evaluations. Firstly, Tencel® fibers and low melting point polyester
(LMPET) fibers (re-sliced and granulated from recycled PET bottles) were mixed at different ratios and
then needle punched at diverse needle rolling depths. The influences of manufacturing parameters
on the Tencel®/LMPET nonwoven fabrics were examined in terms of mechanical properties, water
vapor transmission rate, and stiffness. Next, Tencel®/LMPET nonwoven fabrics were combined with
thermoplastic polyurethane (TPU)/Triclosan antibacterial membranes that contained different con-
tents of triclosan using melt processing technology. The resulting Tencel®/LMPET/TPU/Triclosan
composites were characterized via different measurements; an optimal bursting strength of 86.86 N,
an optimal horizontal tensile strength of 41.90 N, and an optimal stiffness along the MD and CD of
8.60 cm were recorded. Furthermore, the Tencel®/LMPET/TPU/Triclosan composites exhibited a
distinct inhibition zone in the antibacterial measurement, and the hydrostatic pressure met the re-
quirements of the EN 14126:2003 and GB 19082-200 disposable medical protective gear test standards.

Keywords: low melting point polyester (LMPET); triclosan; Tencel® nonwoven fabrics; antibacterial
TPU

1. Introduction

Tencel® is the commercial title of Lyocell fibers that are cellulous fibers made by
solvent spinning wood pulp using N-Methylmorpholine-N-oxide (NMMO) as the solvent.
What Lyocell fibers employ is a cellulose fiber technique that does not require a chemical
reaction [1]. When dissolved in NMMO, cellulose fibers do not break down. NMMO and
polyhydroxy (-OH) jointly generate hydrogen bonds that can dissolve cellulose, during
which the closed production process transforms cellulose into an electrospinning solution.
The electrospinning solution becomes cellulose fibers with the help of the dry-jet wet
spinning technology. Specifically, over 99% of NMMO can be recycled and reused without
jeopardizing the environment, and it can naturally decompose, featuring a clean production
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and decomposition, both of which are eco-friendly [2–4]. Products consisting of Lyocell
fibers have noticeable qualities of high strength, high purity, and high hygroscopicity
while appearing fluffy and drape due to the crimped feature. Moreover, they can retain
the intrinsic chemical properties in a wet state. Tencel® fibers are natural fibers with a
minor impact on the environment as they can be biodegraded, offering a solution to the
waste fabrics from disposable products [5]. Furthermore, Tencel® fibers also account for
a considerable market share of ready-made clothes, and they are suitable for high-end
shirts, underwear, and casual wear. Additionally, they can directly absorb perspiration
from users into the fiber molecules, leaving no residual sweat on the skin, and preventing
the growth of bacteria and the discomfort rendered by moisture and heat. Similarly, Tencel®

fibers also have unique advantages when applied to livelihood supplies, sanitary articles,
industrial cloth, medical bandages, and adult/infant diapers, featuring a broad range of
applications [6–8].

Low melting point polyester (LMPET) staple fibers have been commonly used in
global markets and are preferred by many large-scale yarn spinning factories since LMPET
fibers possess a low melting point, indicating an equivalently good adhesion quality. LM-
PET fibers are primarily used to replace resin or viscose [9,10]. In addition to a better quality
of nonwoven products, the use of LMPET fibers significantly addresses air pollution, water
pollution, and the like, all of which are disadvantages to using resin adhesives [11]. Re-
sembling the chemical structure of polyester, LMPET fibers are made by copolymerization
and modification, containing phthalic acid and ethylene glycol through esterification and
condensation polymerization. Moreover, amorphous LMPET fibers have the highest yield
and are the most frequently used fibers with dimensional stability, heat resistance, and
wear- and weather-resistant properties [12], the characteristics of which differ from those of
conventional polyester fibers. The melting point of LMPET fibers is 110 ◦C, and they have
a thermal shrinkage of 5% when in a free state. By contrast, polypropylene and polyamide
exhibit flow deformation after being melted, and the cortical structure exhibits thermoplas-
ticity. As a result, the melted skin of LMPET fibers bonds the particles or fibers; however,
the melted state is not reversible and indicates a high heat shrinkage. Hence, LMPET fibers
can substitute polypropylene and polyamide hot melt adhesives and are thus used for the
thermal consolidation process, strengthening the formability and improving mechanical
properties [13,14]. Recycled polyester fibers have a lower melting point (7–12 ◦C) and
lower crystallinity as compared to virgin polyester fibers. The tenacity of recycled polyester
fibers is lower (~15%) as compared to that of their virgin polyester counterparts, which
can be attributed to the thermal degradation of the polymer during secondary melting [15].
LMPET made from recycled PET bottles has decreased mechanical properties due to the
decrease in various temperature indicators and mechanical properties after secondary
melting [16,17]. When LMPET comes from recycled PET bottles, the temperature index
drops to the same point as the thermal bonding temperature of TPU [18,19].

Thermoplastic polyurethane (TPU), also known as polyurethane, is a polymer com-
posed of polyisocyanate, polyether, polyester, macromolecule polyol, small molecule poly-
ols, polyamine, water, a chain extender, and a cross-linking agent [20,21]. TPU has an
abrasion resistance that is five times greater than that of natural rubber, while its good tear
properties, transparency, and elasticity suggest that TPU is a polymer that shares similar
characteristics with rubber and plastic [22,23]. With excellent manufacturing stability, and
comprehensive physical and chemical properties, TPU can substitute polyvinyl chloride
(PVC) and polyurethane (PU) to satisfy the eco-friendly purpose to fit the requirements
of national defense, medical hygiene, sporting goods, electronic appliances, and the food
industry [24,25]. TPU membranes are made of TPU pellets through a special process. There
is well-developed TPU waterproof/breathable clothing which includes special TPU films
for shoe material lamination, special films specially designed for silicone breast pads, and
TPU elastic ribbons developed in the 20th century. In effect, TPU is essentially a linear
structural polymer and can be applied using the same technique and equipment as for
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thermoplastic plastics, e.g., injection, extruding, blow molding, and calendaring. In sum,
TPU is particularly suitable for mass production of medium- and small-sized components.

Triclosan (TCS) is also known as Dichlorophenoxychlorophenol, with the chemical
formula of C12H7Cl3O2, and is an efficient antibacterial agent and disinfectant. TCS appears
resistant to biodegradation and is commonly a white or grayish crystal powder that emits
a phenolic odor [26]. TCS is not water-soluble but easily dissolves in lye and organic
solvents. TCS is a broad-spectrum antibacterial agent used against hepatitis B virus and
staphylococcus. Everyday necessities grant an upper limit of triclosan of 0.3%; as such, it is
commonly used in soap, toothpaste, and other chemical products [27,28]. The sterilization
mechanism is that TCS adsorbs and then penetrates the cell walls of bacteria to interact
with the lipids and proteins of the cytoplasm, thereby deteriorating the protein so as to
kill the bacteria [29,30]. More TCS is added to medicated mouthwash when used in the
treatment for Candida albicans, gingivitis, or mouth ulcers. Moreover, TCS can also be
used as a plastic additive in the production of antibacterial trash bags and the like [31].

In this study, Tencel® fibers and LMPET fibers were blended at different ratios (LMPET
comes from recycled PET bottles), and the blends underwent the nonwoven process with
different needle punch depths in order to form Tencel®/LMPET nonwoven matrices. Next,
a single-screw granulator was used to blend TPU pellets with diverse contents of TCS pow-
ders, forming TPU/Triclosan antibacterial membranes. Finally, Tencel®/LMPET nonwoven
matrices and TPU/Triclosan antibacterial membranes were combined to form eco-friendly
antibacterial composites used in protective clothing. The composite nonwoven fabrics
were tested for stiffness, water vapor transmission rate, scanning electron microscopic
observation, antibacterial efficacy, and mechanical properties, thereby determining the
optimal Tencel®/LMPET/TPU/Triclosan antibacterial composites for protective clothing
matrices. Taking advantage of the characteristics of the lower melting point of recycled PET
bottles, LMPET was compounded with TPU/Triclosan by a hot pressing process without
using adhesives. Whether LMPET or Tencel® fibers are recycled or regenerated fibers,
this research proposes such a concept in the hope that nonwoven fabrics used in medical
protective clothing during the time of COVID-19 can be improved.

2. Materials and Methods
2.1. Materials

The Tencel® staple fibers, previously named Lyocell (Haoshen Fiber Technology Co.,
Ltd., Jiangsu, China), had a length of 51 mm and a fineness of 1.7 dtex. The low melting
point polyester (LMPET) fibers (re-sliced and granulated from recycled PET bottles) (Huvis
Co., Ltd., Incheon, Korea) had a length of 64 mm, a fineness of 4D, and a melting point
of 110 ◦C. Thermoplastic polyurethanes (TPU, # HV-7280EB, Zhanyu Polyurethane Co.,
Ltd., Shanghai, China) had a melting index of 32 g/10 min (190 ◦C/8.7 kg). Triclosan
(Wuqi Biotechnology Co., Ltd., Henan, China) had a molecular weight of 300. The needle
type for the needle punch was M332G53017 (Groz-Beckert Co., Ltd., Baden-Wurttemberg,
Germany). Staphylococcus aureus (S. aureus) meets ATCC25923 and Escherichia coli (E. coli)
meets ATCC25922. S. aureus and E. coil were purchased from the Food Industry Research
and Development Institute, Shanghai, China.

2.2. Preparation of Tencel®/LMPET Nonwoven Fabrics

A porcupine opener was used to scatter Tencel® and LMPET fibers separately, and the
fibers were then mixed at blending ratios of 100/0, 90/10, 80/20, 70/30, and 60/40 wt%
using a needle curtain. Afterwards, the Tencel®/LMPET blends became fluffy due to the
breaking-and-opening process by a cotton comber, a cylinder, and a doffer. The blended
fibers were carded to form an aligned fiber mesh that was then transmitted to the top screen
for lay-up formation. Passing through the shake screen of a reciprocating traverse forming
machine, the aligned Tencel®/LMPET fiber mesh was laminated over the bottom screen and
then needle bonded via a needle punching machine, forming Tencel®/LMPET nonwoven
fabrics (Figure 1). The needle punch parameters included a speed of 200 needle/min
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and a depth of 13 mm or 14 mm. Finally, the nonwoven fabrics and TPU/Triclosan
underwent roller thermoforming at 160 ◦C at a speed of 7 rpm/min with a two-wheel
embossing machine.
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Figure 1. Diagram illustrating the manufacturing process of Tencel®/LMPET nonwoven fabrics,
adapted from [32], SAGE Publications, 2014.

2.3. Preparation of Tencel®/LMPET/TPU Matrices for Antibacterial Membranes

In the production of TPU/Triclosan antibacterial membranes, the content of triclosan
was 0, 0.01, 0.05, 0.1, and 0.2 wt% (Figure 2). To start with, TPU pellets and triclosan
powders were melt-blended at successive temperatures of 160, 170, and then 180 ◦C with
a single-screw granulator, after which the blends were placed in a cooling bath to shape
the TPU/Triclosan pellets. Finally, the pellets were dissolved in a TPU dissolution reaction
tank and subsequently formed into TPU/Triclosan membranes with a thickness of 20 µm
using a laminator. The Tencel®/LMPET nonwoven fabric and TPU/Triclosan composite
heat pressing temperature was 160 ◦C.
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Figure 2. Schematic diagram of the melt blending process for TPU pellets and TCS powders via a
single-screw granulator.

2.4. Characterizations

The air permeability of the fabrics was measured using an air permeability tester
(TEXTEST FX 3300-IV, Libero Technology Co., Ltd., Guangzhou, China) as specified in
the ASTM D737-04 test standard. The tearing strength of samples was measured using a
universal strength testing machine (HT-2402, Hong Ta Co., Ltd., Taiwan, China) as specified
in the CNS 12915 test standard; five samples of 150 mm × 75 mm for each specification
were taken along the machine direction (MD) and the cross-machine direction (CD) for
an average. The bursting strength of samples (130 mm × 130 mm) was measured at a
test rate of 10 mm/min using a universal strength testing machine (HT-2402, Hong Ta
Co., Ltd., Taiwan) as specified in the CNS 12915 test standard. The tensile strength of the
samples (180 mm × 250 mm) was measured at a test rate of 305 ± 13 mm/min using a
universal strength testing machine (HT-2402, Hong Ta Co., Ltd., Taiwan) as specified in the
CNS 12915 test standard. The distance between clamps was 7.6 cm, and six samples for
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each specification were taken along the MD and CD. Afterwards, the average, standard
deviation, and coefficient of variation were computed accordingly. The stiffness test was
conducted using the cantilever method as specified in the CNS 12915 test standard, and
the stiffness is presented in centimeters. The antibacterial measurement was conducted as
specified in the JIS1902-2002 test standard with S. aureus (ATCC 25923) and E. coli (ATCC
25922). The presence and the size of the inhibition zone (Figure 3) were observed and
determined using Equation (1) [33]. The material structure, morphology, and element
analysis of the fabricated materials were characterized by field-emission scanning electron
microscopy (Hitachi SEM 4800, Tokyo, Japan).

Inhibition zone = T − D (1)

where D means the diameter of the circular sample (i.e., 6-mm), and T shows whether the
sample exhibits an inhibition zone. When (T − D) > 0 is true, it means that the sample has
antibacterial efficacy.

Polymers 2022, 14, 2514 5 of 12 
 

 

specification were taken along the machine direction (MD) and the cross-machine 
direction (CD) for an average. The bursting strength of samples (130 mm × 130 mm) was 
measured at a test rate of 10 mm/min using a universal strength testing machine (HT-2402, 
Hong Ta Co., Ltd., Taiwan) as specified in the CNS 12915 test standard. The tensile 
strength of the samples (180 mm × 250 mm) was measured at a test rate of 305 ± 13 mm/min 
using a universal strength testing machine (HT-2402, Hong Ta Co., Ltd., Taiwan) as 
specified in the CNS 12915 test standard. The distance between clamps was 7.6 cm, and 
six samples for each specification were taken along the MD and CD. Afterwards, the 
average, standard deviation, and coefficient of variation were computed accordingly. The 
stiffness test was conducted using the cantilever method as specified in the CNS 12915 
test standard, and the stiffness is presented in centimeters. The antibacterial measurement 
was conducted as specified in the JIS1902-2002 test standard with S. aureus (ATCC 25923) 
and E. coli (ATCC 25922). The presence and the size of the inhibition zone (Figure 3) were 
observed and determined using Equation (1) [33]. The material structure, morphology, 
and element analysis of the fabricated materials were characterized by field-emission 
scanning electron microscopy (Hitachi SEM 4800, Tokyo, Japan). Inhibition zone ൌ T െ D   (1)

where D means the diameter of the circular sample (i.e., 6-mm), and T shows whether the 
sample exhibits an inhibition zone. When (T − D) > 0 is true, it means that the sample has 
antibacterial efficacy. 

 
Figure 3. Diagram of the inhibition zone. 

3. Results and Discussion 
3.1. Tearing Strength and Stiffness of Tencel®/LMPET Nonwoven Fabrics 

Figure 4a,b show the tensile strength along the CD and MD of Tencel®/LMPET 
nonwoven fabrics. The nonwoven process involves a needle punch that contributes 
mechanical reinforcement of the resulting nonwoven fabrics as the fibers are entangled 
and bonded in the fiber mesh. Based on the test results, a rise in the LPET fiber content 
had a positive influence on the tensile strength of Tencel®/LMPET nonwoven fabrics. In 
particular, with a blending ratio of 60/40 wt%, Tencel®/LMPET nonwoven fabrics 
exhibited a maximal tensile strength of 52.3 N, the result of which can be attributed to the 
presence of LMPET fibers. When hot-pressed, the sheath of LMPET fibers melted to form 
thermal bonding points; the more LMPET fibers, the more thermal bonding points, which 
in turn mechanically reinforces Tencel®/LMPET nonwoven fabrics to a certain degree. On 
the other hand, Figure 4c,d indicate that Tencel®/LMPET nonwoven fabrics showed a 
decreasing trend in stiffness when composed of more Tencel® fibers. Without any special 
treatment, nonwoven fabrics consisting of LMPET fibers exhibit less comfort than those 
consisting of natural fibers. Hence, the presence of LMPET fibers has a negative influence 
on the air permeability and stiffness of Tencel®/LMPET nonwoven fabrics. Contrastingly, 

Figure 3. Diagram of the inhibition zone.

3. Results and Discussion

3.1. Tearing Strength and Stiffness of Tencel®/LMPET Nonwoven Fabrics

Figure 4a,b show the tensile strength along the CD and MD of Tencel®/LMPET non-
woven fabrics. The nonwoven process involves a needle punch that contributes mechanical
reinforcement of the resulting nonwoven fabrics as the fibers are entangled and bonded
in the fiber mesh. Based on the test results, a rise in the LPET fiber content had a positive
influence on the tensile strength of Tencel®/LMPET nonwoven fabrics. In particular, with
a blending ratio of 60/40 wt%, Tencel®/LMPET nonwoven fabrics exhibited a maximal
tensile strength of 52.3 N, the result of which can be attributed to the presence of LMPET
fibers. When hot-pressed, the sheath of LMPET fibers melted to form thermal bonding
points; the more LMPET fibers, the more thermal bonding points, which in turn mechan-
ically reinforces Tencel®/LMPET nonwoven fabrics to a certain degree. On the other
hand, Figure 4c,d indicate that Tencel®/LMPET nonwoven fabrics showed a decreasing
trend in stiffness when composed of more Tencel® fibers. Without any special treatment,
nonwoven fabrics consisting of LMPET fibers exhibit less comfort than those consisting
of natural fibers. Hence, the presence of LMPET fibers has a negative influence on the
air permeability and stiffness of Tencel®/LMPET nonwoven fabrics. Contrastingly, the
subsequent lamination process and hot pressing also adversely affect the stiffness, which
illustrates the uncomfortable texture of current medical protective clothing. In this study,
the Tencel®/LMPET ratio of 50/50 wt% was also employed, but the resulting nonwoven
fabrics were composed of an excessive amount of LMPET fibers, which means that there
were equally too many LMPET fibers forming too many thermal bonding points. Eventu-
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ally, the stiffness of the nonwoven fabrics was compromised too much, and the 50/50 group
was thus excluded.
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3.2. Air Permeability of Tencel®/LMPET Nonwoven Fabrics

The air permeability of nonwoven fabrics is dependent on the size and quantity of
the voids among fibers. The voids are correlated with the fiber traits, fabric structure,
fabric thickness, and fabric finishing. The nonwoven air permeability mechanism means
that, being isolated by the fabric, the air with a higher pressure passes through the fabric
from one specified side to the opposite side. Figure 5 compares the air permeability of
Tencel®/LMPET nonwoven fabrics when they were produced using a needle punch depth
of 13 mm and 14 mm, and the air permeability fell in the range of 144.75~175 cm3/s/cm2.
Tencel® fibers have a smooth and sleek surface and feature excellent moisture repelling, air
permeability, and cooling properties. Hence, Tencel®/LMPET nonwoven fabrics showed a
higher air permeability when consisting of more Tencel® fibers.
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Moreover, a higher needle punch depth also showed a negative influence on the air
permeability of the Tencel®/LMPET nonwoven fabrics because the fibers were entangled
to a greater extent when they were needle punched by barbed fibers at a greater depth.
By comparison, the 60/40 blending ratio provided nonwoven fabrics with a marginally
lower strength than the 100/0 blending ratio, yet the 60/40 group still outperformed the
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other groups with different blending ratios in terms of mechanical properties. As a result,
the optimal Tencel®/LMPET nonwoven fabrics were produced with a blending ratio of
60/40 wt% and a needle punch depth of 14 mm, and this specified group of nonwoven
fabrics was combined with the antibacterial TPU/triclosan membranes afterwards.

3.3. Bursting Strength of Tencel®/LMPET/TPU/Triclosan Composites

Figure 6a shows that the Tencel®/LMPET/TPU/Triclosan composites had an optimal
bursting strength of 83 ± 7 N, while Figure 6b shows the test results of water vapor trans-
mission that indicates how efficiently the composites release moisture and sweat vapor to
keep wearers comfortable and dry without locking in heat around the skin. Based on EN
14126:2003 and GB 19082-2003 (specifications for verification of disposable one-piece medi-
cal protective clothing), the water vapor transmission of Tencel®/LMPET/TPU/Triclosan
composites was measured and found to be better than the requirement of the test standard
(1500 g/m2/24 h) [34–37]. Furthermore, Figure 6c shows that the tensile strength along
the MD was 53.2 N for the composites without triclosan. When the composites were
composed of a greater amount of triclosan, the tensile strength showed a declining trend.
With 0.2 wt% of triclosan, the tensile strength along the CD of the composites was 33.5 N.
Figure 6d compares the influence of the MD and the CD on the tensile strength of the
Tencel®/LMPET/TPU/Triclosan composites. The tensile strength along the MD was lower
and was only 20.1 N. Similarly, with a rise in the triclosan content, the tensile strength of
the composites also decreased. Due to the presence of triclosan, the membranes contained
more impurities, which in turn jeopardized the tensile strength.
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3.4. SEM Observation of Tencel®/LMPET/TPU/Triclosan Composites

Figure 7a is the SEM image showing the trimmed Tencel®/LMPET/TPU/Triclosan
composites with a thickness of 1.88 mm, while the original thickness of the composites was
3 mm. Figure 7b shows that the TPU/Triclosan antibacterial membranes had a thickness of
20 ± 0.12 µm, which changed marginally after undergoing the lamination process. Figure 7c
shows the SEM image of fractured composites after the bursting strength test. The bursting
strength performance of the TPU/Triclosan antibacterial membranes correlated with the
presence of triclosan at diverse contents except for 0.1%. Consecutive cracking is absent in
the resulting TPU/Triclosan antibacterial membranes that consist of 0.1 wt% of triclosan.
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3.5. Antibacterial Efficacy of Tencel®/LMPET/TPU/Triclosan Composites

In this study, triclosan was used as an antibacterial agent, and S. aureus (Gram-positive
bacteria) and E. coli (Gram-negative bacteria) were used in the qualitative antimicrobial
testing. The antibacterial measurement results are shown in Table 1. Figure 8 indicates
that the antibacterial efficacy was proportional to the triclosan content. Specifically, the
inhibition zone against S. aureus was 5.9 ± 0.3 mm when the antibacterial membranes
consisted of 0.1 wt% of triclosan, showing a stabilized trend. In Figure 8b, the antibacterial
membranes exhibit greater antibacterial efficacy against S. aureus than E. coli. Triclosan
and silver ions share the same antibacterial mechanism, and the surface of both items
carries positive charges that can draw the negative charges of the bacteria, thereby dam-
aging the cell walls of the bacteria as well as preventing the fatty acids from synthesizing.
Subsequently, the growth and function of biological cells are hampered, which eventu-
ally causes the death of the bacteria. In addition, the most significant difference between
Gram-positive bacteria and Gram-negative bacteria is the thickness of the cell walls, which
means that S. aureus possesses a lower thickness and is vulnerable to the penetration of
triclosan. Hence, TPU/Triclosan membranes can prevent the synthesis of fatty acids inside
the cytoplasm, attaining antibacterial efficacy or even achieving a sterilization effect.

3.6. Stiffness and Water Resistance of Tencel®/LMPET/TPU/Triclosan Composites

Figure 9a shows the stiffness of Tencel®/LMPET/TPU/Triclosan composites in rela-
tion to the triclosan content. During the combination, the seepage of TPU/Triclosan reduced
the friction level of the fluffy Tencel®/LMPET nonwoven fabrics, improving the stiffness
concurrently. The seepage also expelled the air in the voids of the nonwoven fabrics, re-
sulting in a greater adhesion level between the Tencel®/LMPET nonwoven fabrics and the
TPU/Triclosan antibacterial membranes. Regardless of whether it was along the MD or CD,
the stiffness of the Tencel®/LMPET/TPU/Triclosan composites improved. Figure 9b shows
the water resistance measurement (JISL 1092 B) of the Tencel®/LMPET/TPU/Triclosan
composites as specified in EN 14126:2003 and GB 19082-2003 (specifications for verification
of disposable one-piece medical protective clothing) [37]. Samples with a water pressure
resistance as high as 140 cm/H2O meet the requirements of the test standards. Regard-
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less of the triclosan content, all of the Tencel®/LMPET/TPU/Triclosan composites are
qualified to provide a water resistance of 537–549 cm/H2O, since TPU molecular chains
contain smaller-sized molecular arrangement holes and therefore possess the waterproof
feature. At room temperature, TPU membranes have waterproof properties without being
jeopardized by water or moisture and provide the composites with an advantage that
they can be used in a high-humidity environments or in contact with water. Regarding
EN 14126:2003 and GB 19082-2003, it is stipulated that the strength of materials in key
parts of protective clothing is not less than 45 N, and the data in this study are all greater
than 45 N. The standard stipulates that the hydrostatic pressure should not be lower than
1.67 kPa (17 cm/H2O). This study found a value of 537–549 cm/H2O, which depends on
the superior performance of TPU.
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Triclosan Content (wt%)
E. coli S. aureus

Inhibition Zone (mm)
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4. Conclusions

Overall, Tencel®/LMPET nonwoven fabrics were optimal when the blending ratio was
60/40 wt% and the needle punch depth was 14 mm. Comparing to a needle punch depth of



Polymers 2022, 14, 2514 10 of 12

13 mm, the needle punch depth of 14 mm improved the tearing strength, bursting strength,
and tensile strength by 65%, 27%, and 11%, respectively. In addition, a needle punch depth
of 15 mm broke the needles, whereas a needle punch depth of 12 mm failed to entangle the
fibers effectively; thus, the optimal needle punch depth is 14 mm. As for TPU/Triclosan
antibacterial membranes with a thickness of 20 µm containing triclosan (0, 0.01, 0.05, 0.1,
and 0.2 wt%), only 0.1 wt% of triclosan helped to generate a distinctive inhibition zone
and provided the membranes with antibacterial efficacy; however, 0.2 wt% of triclosan
showed an adverse effect on the mechanical properties. Furthermore, with a trivial amount
of triclosan, TPU membranes acquired antibacterial efficacy while improving diverse
properties, which suggests that the incorporation of triclosan is one of the valuable additive
parameters. Compared with the standard as shown in Table 2 below, the tensile strength in
this study needs to be improved in the CD direction, and the moisture permeability also
needs to be improved. Tencel® has lower strength than polyester, but better comfort, and
LMPET uses recycled PET bottle slices, meaning the strength will be decreased. All other
indicators meet the standard requirements. One of the reasons for the lack of strength is
that no adhesive was used. The low melting point of LMPET was used for bonding with
nonwoven fabrics through hot-pressed bonding points.

Table 2. The results of this study are compared with the EN 14126:2003 and GB 19082-2003 standards.

Standard Specification Results of This Study

Tensile strength MD and CD ≥ 45 N MD 53.2 N, CD 33.5 N
Bursting strength ≥45 N 83 N

Strong seam ≥40 N —————–
Tear strength ≥20 N 53.5 N

Moisture permeability ≥2500 g/m2.24 h 2350 g/m2.24 h
Hydrostatic pressure ≥50 cm H2O 537–549 cm/H2O

Grade penetration ≥1 g —————–
Microbial indicators not checked obvious inhibition zone

Author Contributions: Conceptualization and methodology, P.-W.H.; software and validation L.-F.C.;
formal analysis, investigation, resources, data curation, B.-C.S.; writing—original draft preparation,
J.-H.L. (Jian-Hong Lin); writing—review and editing, supervision, project administration, J.-H.L. (Jia-
Horng Lin) and C.-W.L. All authors have read and agreed to the published version of the manuscript.
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