Influence of Electrical Heating Metal Mesh and Power Density on Resistance Welding of Carbon Fiber/PEEK Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Heating Element
2.3. Welding Equipment Setup and Welding Process
2.4. Characterization
3. Results and Discussion
3.1. Effect of Power Density on Resistance Welding Process
3.2. Effect of Metal Mesh Type on Resistance Welding Process
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Chen, E.J.; Hsiao, B.S. The effects of transcrystalline interphase in advanced polymer composites. Polym. Eng. Sci. 1992, 32, 280–286. [Google Scholar] [CrossRef]
- Stewart, R. Thermoplastic composites—Recyclable and fast to process. Reinf. Plast. 2011, 55, 22–28. [Google Scholar] [CrossRef]
- Ageorges, C.; Ye, L.; Hou, M. Advances in fusion bonding techniques for joining thermoplastic matrix composites: A review. Compos. Part A Appl. Sci. Manuf. 2001, 32, 839–857. [Google Scholar] [CrossRef]
- Stavrov, D.; Bersee, H.E.N. Resistance welding of thermoplastic composites—An overview. Compos. Part A Appl. Sci. Manuf. 2005, 36, 39–54. [Google Scholar] [CrossRef]
- McKnight, S.H.; Holmes, S.T.; Gillespie, J.W., Jr.; Lambing, C.L.T.; Marinelli, J.M. Scaling issues in resistance-welded thermoplastic composite joints. Adv. Polym. Technol. 1997, 16, 279–295. [Google Scholar] [CrossRef]
- Dubé, M.; Hubert, P.; Yousefpour, A.; Denault, J. Resistance welding of thermoplastic composites skin/stringer joints. Compos. Part A Appl. Sci. Manuf. 2007, 38, 2541–2552. [Google Scholar] [CrossRef]
- Ageorges, C.; Ye, L.; Hou, M. Experimental investigation of the resistance welding for thermoplastic-matrix composites. Part I: Heating element and heat transfer. Compos. Sci. Technol. 2000, 60, 1027–1039. [Google Scholar] [CrossRef]
- Ageorges, C.; Ye, L.; Hou, M. Experimental investigation of the resistance welding for thermoplastic-matrix composites. Part II: Optimum processing window and mechanical performance. Compos. Sci. Technol. 2000, 60, 1191–1202. [Google Scholar] [CrossRef]
- Dubé, M.; Chazerain, A.; Hubert, P.; Yousefpour, A.; Bersee, H.E. Characterization of resistance-welded thermoplastic composite double-lap joints under static and fatigue loading. J. Thermoplast. Compos. Mater. 2015, 28, 762–776. [Google Scholar] [CrossRef]
- Yan, J.C.; Wang, X.L.; Qin, M.; Zhao, X.Y.; Yang, S.Q. Resistance welding of carbon fibre reinforced polyetheretherketone composites using metal mesh and PEI film. China Weld. 2004, 13, 71–75. [Google Scholar]
- Kilroy, J.P.; O’Brádaigh, C.M.; Semprimoschnig, C.O.A. Mechanical and physical evaluation of new carbon fibre/PEEK composites for space applications. SAMPE J. 2008, 44, 23–24. [Google Scholar]
- Dubé, M.; Hubert, P.; Gallet, J.N.A.H.; Stavrov, D.; Bersee, H.E.N.; Yousefpour, A. Metal mesh heating element size effect in resistance welding of thermoplastic composites. J. Compos. Mater. 2012, 46, 911–919. [Google Scholar] [CrossRef]
- Rohart, V.; Laberge, L.L.; Dubé, M. Improved adhesion between stainless steel heating element and PPS polymer in resistance welding of thermoplastic composites. Compos. Part B Eng. 2020, 188, 107876. [Google Scholar] [CrossRef]
- Xiong, X.; Zhao, P.; Ren, R.; Zhang, Z.; Cui, X.; Ji, S. Effect of chemical etching of resistance wire surface on the strength and failure mechanism of the resistance-welded joint of polyetherimide composites. J. Appl. Polym. Sci. 2019, 136, 47879. [Google Scholar] [CrossRef]
- Li, X.K.; Sun, M.C.; Song, J.P.; Zhang, T.; Zhao, Y.; Wang, K. Enhanced adhesion between PEEK and stainless-steel mesh in resistance welding of CF/PEEK composites by various surface treatments. High Perform. Polym. 2021, 33, 892–904. [Google Scholar] [CrossRef]
- Attwood, T.; Dawson, P.; Freeman, J.; Hoy, L.; Rose, J.; Staniland, P. Synthesis and properties of polyaryletherketones. Polymer 1981, 22, 1096–1103. [Google Scholar] [CrossRef]
- Jar, P.Y.; Mulone, R.; Davies, P.; Kausch, H.H. A study of the effect of forming temperature on the mechanical behaviour of carbon-fibre/PEEK composites. Compos. Sci. Technol. 1993, 46, 7–19. [Google Scholar] [CrossRef]
- Sung, C.Y.; Weiss, R.A. Thermal behavior of poly(ether ketone ketone)/thermoplastic polyimide blends. J. Appl. Polym. Sci. 2004, 94, 1227–1235. [Google Scholar] [CrossRef]
- Dubé, M.; Hubert, P.; Yousefpour, A.; Denault, J. Current leakage prevention in resistance welding of carbon fibre reinforced thermoplastics. Compos. Sci. Technol. 2008, 68, 1579–1587. [Google Scholar] [CrossRef] [Green Version]
- Brassard, D.; Dubé, M.; Tavares, J.R. Resistance welding of thermoplastic composites with a nanocomposite heating element. Compos. Part B Eng. 2019, 165, 779–784. [Google Scholar] [CrossRef]
- Li, X.K.; Zhang, T.Y.; Li, S.; Liu, H.S.; Zhao, Y.; Wang, K. The effect of cooling rate on resistance-welded CF/PEEK joints. J. Mater. Res. Technol. 2021, 12, 53–62. [Google Scholar] [CrossRef]
- Vacogne, C.; Wise, R. Joining of high performance carbon fibre/PEEK composites. Sci. Technol. Weld. Join. 2011, 16, 369–376. [Google Scholar] [CrossRef]
- Yousefpour, A.; Simard, M.; Octeau, M.A.; Hojjati, M. Process optimization of resistance welded thermoplastic composites using metal mesh heating elements. Int. SAMPE Symp. Exhib. 2005, 50, 1289–1301. [Google Scholar]
- ASTM D5868-2014. Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding; American Society for Testing and Materials: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Stavrov, D.; Bersee, H.; Beukers, A. The influence of the heating element on resistance welding of thermoplastic composite materials. In Proceedings of the International Conference on Composite Materials (ICCM-14), San Diego, CA, USA, 14–18 July 2003. [Google Scholar]
- Ageorges, C.; Ye, L.; Mai, Y.-W.; Hou, M. Characteristics of resistance welding of lap shear coupons. Part I: Heat transfer. Compos. Part A Appl. Sci. Manuf. 1998, 29, 899–909. [Google Scholar] [CrossRef]
- Shi, H.; Villegas, I.F.; Bersee, H.E.N. Strength and failure modes in resistance welded thermoplastic composite joints: Effect of fibre–matrix adhesion and fibre orientation. Compos. Part A Appl. Sci. Manuf. 2013, 55, 1–10. [Google Scholar] [CrossRef]
- Hou, M.; Yang, M.; Beehag, A.; Mai, Y.W.; Ye, L. Resistance welding of carbon fibre reinforced thermoplastic composite using alternative heating element. Compos. Struct. 1999, 47, 667–672. [Google Scholar] [CrossRef]
- Villegas, I.F.; Bersee, H.E. Characterisation of a metal mesh heating element for closed-loop resistance welding of thermoplastic composites. J. Thermoplast. Compos. Mater. 2015, 28, 46–65. [Google Scholar] [CrossRef]
Type of Stainless Steel Mesh | A | B | C |
---|---|---|---|
Mesh number, n (mm−1) | 100 | 200 | 200 |
Wire diameter, dw (μm) | 80 | 40 | 50 |
Open gap width, φw (μm) | 174 | 87 | 77 |
Open area fraction, Fo (%) | 46.9 | 46.9 | 36.8 |
Electrical resistance per unit length, k (Ω/m) | 0.868 | 1.976 | 0.942 |
Power Density /(kW/m2) | Time When T2 Reached 340 °C/(s) | Time When T1 Reached 420 °C/(s) | Temperature of T5 When T2 Reached 340 °C/(°C) | Difference between T1 and T2 When T2 Reached 340 °C/(°C) |
---|---|---|---|---|
51 | 279 | / | 291 | 26 |
58 | 201 | 300 | 285 | 33 |
66 | 140 | 223 | 271 | 32 |
74 | 55 | 74 | 244 | 44 |
82 | 48 | 60 | 232 | 47 |
Power Density /(kW/m2) | Time When T2 Reached 340 °C/(s) | Time When T1 Reached 420 °C/(s) | Difference between T1 and T2 When T2 Reached 340 °C/(°C) |
---|---|---|---|
29 | / | / | / |
36 | / | / | / |
44 | 241 | 320 | 44 |
49 | 160 | 222 | 36 |
53 | 121 | 165 | 35 |
Power Density /(kW/m2) | Time When T2 Reached 340 °C/(s) | Time When T1 Reached 420 °C/(s) | Difference between T1 and T2 When T2 Reached 340 °C/(°C) |
---|---|---|---|
31 | / | / | / |
44 | 156 | 230 | 32 |
45 | 139 | 202 | 30 |
48 | 114 | 162 | 29 |
53 | 91 | 124 | 32 |
58 | 78 | 101 | 35 |
Type of Heating Element | Power Density/ (kW/m2) | Time When T2 Reached 340 °C/(s) | Time When T1 Reached 420 °C/(s) | Difference between T1 and T2 When T2 Reaches 340 °C/(°C) |
---|---|---|---|---|
A | 49 | 160 | 222 | 36 |
B | 66 | 140 | 223 | 32 |
C | 44 | 156 | 230 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, D.; Gu, Y.; Zhu, H.; Li, M.; Wang, S. Influence of Electrical Heating Metal Mesh and Power Density on Resistance Welding of Carbon Fiber/PEEK Composite. Polymers 2022, 14, 2563. https://doi.org/10.3390/polym14132563
Wei D, Gu Y, Zhu H, Li M, Wang S. Influence of Electrical Heating Metal Mesh and Power Density on Resistance Welding of Carbon Fiber/PEEK Composite. Polymers. 2022; 14(13):2563. https://doi.org/10.3390/polym14132563
Chicago/Turabian StyleWei, Donglu, Yizhuo Gu, Hanrui Zhu, Min Li, and Shaokai Wang. 2022. "Influence of Electrical Heating Metal Mesh and Power Density on Resistance Welding of Carbon Fiber/PEEK Composite" Polymers 14, no. 13: 2563. https://doi.org/10.3390/polym14132563
APA StyleWei, D., Gu, Y., Zhu, H., Li, M., & Wang, S. (2022). Influence of Electrical Heating Metal Mesh and Power Density on Resistance Welding of Carbon Fiber/PEEK Composite. Polymers, 14(13), 2563. https://doi.org/10.3390/polym14132563