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Abstract: The connector is an essential component in the solid rocket motor case (SRMC), and its
weight and performance can directly affect the blasting performance of SRMC. Considering the
lightweight design of these structures, fiber-reinforced composite materials are used for the major
components. In this study, the finite element analysis of the SRMC connector was performed. The
lay-up design and structure optimum design of the connector were studied. Furthermore, the strain
distribution on the composite body was compared with experimental measurements. The results
demonstrate that the calculated value of the final preferred solution was within the allowable range,
and at least 31% weight loss was achieved, suggesting that the performance of the optimum design
was optimized. The comparison between the finite element calculation and the test results suggests
that the design was within the allowable range and reasonable.

Keywords: solid rocket motor case (SRMC) connector; carbon fiber; lay-up; mechanical properties;
finite element

1. Introduction

Composite materials can be classified according to the type of strengthening ma-
terial into particle-reinforced and fiber-reinforced composite materials. Furthermore,
fiber-reinforced composite materials can be divided into short fiber-reinforced and long
fiber-reinforced composite materials [1]. A solid rocket composite shell is a kind of long
fiber-reinforced composite material, which is pre-impregnated with carbon fiber (or glass
fiber) and wound around the core mold layer by layer, before solidification at a certain
temperature. The solid rocket motor case (SRMC) is mainly composed of a tube structure,
head, insulation layer, and skirt, and it has been widely applied in space vehicles, missile
weapons, and other fields as a crucial part of the rocket motor. An SRMC connector is
employed to connect the engine nozzle and ignition device, as shown in Figure 1. The
design of the case connector structure significantly contributes to the development of the
composite case. Moreover, its performance directly affects the blasting performance of the
composite case. Due to their light weight, high strength, and high stiffness, fiber-reinforced
composites can efficiently decrease the structure mass of the SRMC and increase the range
of the rocket, providing great military and economic benefits [2]. For example, the range of
a strategic missile can be increased by 16 km if the mass of the third structure of the solid
rocket engine is reduced by 1 kg [3].

At present, carbon fiber-reinforced composites are widely used for strategic mis-
siles and delivery systems, with several related papers published in this field. Raman-
janeyulu et al. [4] explored the SRMC using the finite element method, revealing that the
hoop stress was gradually increased from the outer layer to the inner layer in all parts of the
SRMC. Özaslan et al. [5] designed and analyzed a filament wound composite SRMC with

Polymers 2022, 14, 2596. https://doi.org/10.3390/polym14132596 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14132596
https://doi.org/10.3390/polym14132596
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-1077-4486
https://orcid.org/0000-0001-6017-2371
https://doi.org/10.3390/polym14132596
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14132596?type=check_update&version=1


Polymers 2022, 14, 2596 2 of 12

finite element analysis and compared burst tests regarding the fiber direction strain distri-
bution through the outer surface of the motor case to verify the analysis. Niharika et al. [6]
used the simulation software ANSYS (R 18.0, ANSYS Inc., Canonsburg, PA, USA) to design
a composite rocket motor casing. Hossam et al. [7] proposed that filament winding was
the best technique for the production of composite pressure vessels (CPVs) in a short time,
and different materials (including conventional and composite materials) were suitable for
the design of SRMC structures. They also studied and summarized the optimum design
of SRMC structures. Shaheen et al. [8] developed a 3D model of SRMC using CATIA
V5R16 software (V5R16, Dassault Systems, Waltham, MA, USA) and conducted static
structural analysis and linear buckling analysis for different stack-ups of a unidirectional
carbon–epoxy composite and D6AC steel material rocket motor casing to specify the more
efficient material. Prakash et al. [9] successfully designed and developed VEGA SRMC
and discussed the effect of material mismatch on the static behavior of the flex seal, which
contributed imperatively to the development of composite rocket motor casings.
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Figure 1. Schematic of SRMC connector and shell: (a) the connector to the shell body (b) the shell
body of the rocket.

A large number of studies related to CERP have been carried out in other sectors.
Juan [10] accurately modeled the winding layer of composite pressure vessels using the fiber
winding pressure vessel plug-in WCM, as well as carried out a finite element simulation
and blasting test verification on a type IV high-pressure hydrogen storage cylinder with the
designed pressure of 70 MPa. Johansen et al. [11] designed a fiber winding analysis program
and realized the winding analysis of any axisymmetric rotating body and its combination
through an integrated CAD/CAE/CAM design method. Ambach [12] combined CFRP
with steel and applied it to the manufacturing of an automobile roof, revealing that the
mechanical properties of the material achieved good performance in terms of the crushing
resistance of the automobile roof. Wang [13] explored the use of carbon fiber composite
materials in biomedical science. Using barium titanate–hydroxyapatite (BT–HA) composite
material as the matrix, Cf/BT–HA composite material was prepared to improve the artificial
bone due to poor mechanical properties. Liang [14] studied the application of carbon fiber
composite materials in bogies of rail transit vehicles, considering the properties of carbon
fiber composite materials, such as high strength, high toughness, fatigue resistance, high
temperature resistance, corrosion resistance, and light weight; he proposed a rectification
plan for the use of carbon fiber composite material as a safety support in current vehicles.
In terms of the spinning process, Kovarskii et al. [15] analyzed the structure of carbon fibers
such as T800HB using EPR spectroscopy and X-ray diffraction, and they found that the
microstructure of carbon fibers is directly related to their mechanical properties.

To date, many theoretical models related to SRMCs have been reported [16–19]. How-
ever, research on SRMC connectors is still insufficient. Generally, the case connector is the
main force component, and the loading condition is complex. Meanwhile, the case con-
nector is extremely sensitive to internal imperfections, necessitating methods to effectively
improve its mechanical properties and dimensional accuracy. As is known, the SRMC
connector operates in a high-temperature environment. Although the connector’s external
layer is protected by an insulating layer, the surface temperature can still reach up to a
maximum of 250 ◦C. Furthermore, the dimensional stability of the connector is another
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basic item, and titanium alloy with excellent comprehensive properties has been broadly
used in the connector. However, titanium alloy is expensive with high density, making it a
single component with a large mass. The metal connector accounts for more than 15% of
the total mass of the case. Furthermore, the process of manufacturing the metal connector is
rather complex with a long cycle and high cost. Thus, it is urgent to develop a new material
that can replace the metal material in the SRMC connector.

In this study, finite element analysis of the SRMC connector was performed. The lay-
up and optimum structure designs of the connector were exported. The FEM simulation
results were shown to be similar to experimental results. Thus, the performance of the
optimum design was successfully improved.

2. Experimental Analysis

The SRMC connector RS05A was made by using the mold pressing process with
carbon fiber T300 fabric prepreg (Toray Inc., Lacq, France). The thickness and density of
the single layer were 0.235 mm and 1.55 g/cm3, respectively. Toray T700SC (12K, Toray
Inc., Lacq, France)) carbon fiber was employed to produce a motor case with fiber winding
technology. The fiber winding shell of the solid rocket motor was made of T700 fiber/epoxy
resin composite material (Kosan Inc., Tokyo, Japan)„ with a resin content of 32% and
fiber content of 150 g, a viscosity of 300 mPa·s at room temperature, an opening period of
8–12 h, a curing temperature of 150 ◦C for 4 h, and a glass transition temperature of 170 ◦C.
The bushing was embedded in the composite made of aluminum (AL7075-T6, Moju Inc.,
Shanghai, China) material, as shown in Figure 2b. The mechanical properties of carbon
fiber, P700-1M resin, and AL are presented in Table 1.
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Figure 2. Profile of the RS05A front connector: (a) primary front connector (b) after first-round
optimization.

Table 1. Mechanical properties of the materials.

Property Items Lamina Property Resin AL7075-T6

Tensile strength (MPa) 0◦ 665
70 57090◦ 552

Tensile modulus (GPa)
0◦ 55.7

3.6 7290◦ 56.3

Compression strength (MPa) 0◦ 500
90◦ 500

Compression modulus (GPa) 0◦ 55.7
90◦ 56.3
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3. Structural Design

The primary connector structure of the RS05A front connector is illustrated in Figure 1a.
After the first round of optimization using the finite element method, the length of the
connector was adjusted to make the street longer, so as to fit more closely with the shell
wall, as exhibited in Figure 1b. The primary front connector was 10 mm from the opening
cut, while the optimized one was 20 mm from the opening cut.

Since the connector was fixed on the case using bolts, the primary RS05A metal
connector was designed with M28 × 1.5 threaded hole in the middle. The bushing made
of AL-7075-T6 was embedded in the composite connector to solve the problem of the
composite being difficult to use as the metal connector.

According to the actual prepreg lay-up effect, the RS05A composite connector was
designed to reduce the number of multilayer step structures during the production process,
facilitating the insertion of the prepreg in the step structures. Meanwhile, the AL bushing
embedded in the composite structure was adjusted into trapezoidal modes in order to
ensure the flatness of the inner surface of the case and the thickness of the bushing root. In
this way, an optimal design could be achieved.

4. RS05A Lay-Up Mode

Considering the operability of the actual production process, the final optimized lay-
up is illustrated in Figure 3a. The optimized lamination of the composite was cured by
a secondary co-curing process. The lamination was laid on the core die, and the lower
half of the connector was cured by a molding process after lamination was completed.
The secondary co-curing treatment was conducted when the top end face of the connector
was laid up again. After curing, the connector was machined to the theoretical shape.
Finally, the intermediate insert was embedded into the composite connector body using
an adhesive.
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The material used for the composite connector was carbon fiber T300 biaxial fabric,
which was spread as an isotropic material in the form of a patchwork butt. The prepreg
layering table of the connector structure is shown in Table 2. Given the large radian shape
of the front connector, it was necessary to shear the pavement. The cutting opening mode
is presented in Figure 3b.
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Table 2. The layering table of the connector structure.

Serial Number Lay Up Thickness
(mm) Angle (◦) Layer

Number

1 Twill weaves of carbon fiber T300 0.225 0/90 1001
2 Twill weaves of carbon fiber T300 0.225 45/−45 1002
3 Twill weaves of carbon fiber T300 0.225 0/90 1003
4 Twill weaves of carbon fiber T300 0.225 45/−45 1004
5 Twill weaves of carbon fiber T300 0.225 0/90 1005
6 Twill weaves of carbon fiber T300 0.225 45/−45 1006

. . . . . . . . . . . . . . .
163 Twill weaves of carbon fiber T300 0.225 0/90 1163
164 Twill weaves of carbon fiber T300 0.225 45/−45 1164
165 Prepreg of carbon fiber T300 0.145 0 2001
166 Prepreg of carbon fiber T300 0.145 45 2002
167 Prepreg of carbon fiber T300 0.145 −45 2003
168 Prepreg of carbon fiber T300 0.145 90 2004
169 Prepreg of carbon fiber T300 0.145 0 2005
170 Prepreg of carbon fiber T300 0.145 45 2006
171 Prepreg of carbon fiber T300 0.145 −45 2007
172 Prepreg of carbon fiber T300 0.145 90 2008
. . . . . . . . . . . . . . .
285 Prepreg of carbon fiber T300 0.145 0 2021
286 Prepreg of carbon fiber T300 0.145 45 2122
287 Prepreg of carbon fiber T300 0.145 −45 2123
288 Prepreg of carbon fiber T300 0.145 90 2124
289 Prepreg of carbon fiber T300 0.145 0 2125

Total thickness 55.025 mm

5. Finite Element Model

The shell layer was designed by grid theory [20], and the designed burst pressure
was 15 MPa. The finite element computer software, ABAQUS (V6.13, Dassault Systems,
Waltham, MA, USA), was employed for SRMC burst pressure simulation. The dimensions
of the finite element model were the actual dimensions. The SRMC and connector were
meshed with linear reduced integration solid elements (C3D8R), with a mesh size of ap-
proximately 10 mm. The model had a total of 23,355 cells and 29,020 nodes. Table 3 presents
the front connector weight of different schemes. It can be seen that the front connector
weight of the initial plan was 0.41 kg, while that of the optimized scheme was 0.408 kg;
the corresponding weights of the AL insert were 0.056 kg and 0.0613 kg, respectively. The
percentage weight loss of the optimized plan, final scheme, and experimental measurement
was 31.4%, 31.0%, and 30.6%, respectively.

Table 3. Front connector weight of different schemes.

Location
AL Front

Connector
Scheme

The Initial
Configuration

Optimized
Scheme

Experimental
Measurements

Front connector weight (kg) 0.68 0.41 0.408 0.411
AL insert weight (kg) - 0.056 0.0613 0.0613

Total weight (kg) 0.68 0.466 0.469 0.472
Percentage weight loss (%) - 31.4% 31.0% 30.6%

5.1. Lay-Up Information Table

The lay-up of the front connector of the RS05A composite was quasi-isotropic, the
lay-up of the RS05A composite connector was divided into five directions (0◦, 22.5◦, 45◦,
67.5◦, and 90◦), and the lay-up ratio was 1. In the actual lay-up, each layer was rotated by a
certain angle to disperse the lap position and angle.



Polymers 2022, 14, 2596 6 of 12

5.2. Loading and Constraints

Abaqus was used for linear loading calculation to achieve progressive failure analysis.
In the finite element analysis, at each incremental step, the first equilibrium equation was
solved, and the stress and strain of each layer of the element covered the stress and strain
of the previous step. According to the damage mode, the stiffness could be reduced by
changing the material parameters of the integral point. The equilibrium equation was
reestablished, and the next load increment step was substituted. If the structure relative
stiffness value of the current load step (the ratio of the current stiffness to the initial
stiffness) tended to zero and began to soften and enter the unloading state, the structure
was considered to have lost the bearing capacity, necessitating the progressive failure
analysis of the wound shell [21].

The RS05A Motor Case mainly bears internal pressure. Axial displacement constraints
were applied to the middle part of the shell to avoid rigid body displacement in the finite
element calculation, and cyclic symmetry conditions were applied to the sides of the
shell and joint model. Uniformly distributed pressure was applied on the inner surface
of the shell, increasing from 0 to 15 MPa. The boundary conditions for the SRMC and
connector in ABAQUS are defined below. The X-axis translation of the RS05A motor
case was constrained, in addition to the Y-direction translation of the upper and lower
surface elements and the Z-direction translation of the front and rear surface elements. In
other words, symmetric constraints were imposed on the motor case. The constraints are
illustrated in Figure 4.
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The load condition was 15 MPa of internal blasting press.
Contact: Since the front connector and the insert are two parts, there may be relative

friction between them. In this study, the contact constraint conditions were imposed on the
bottom end face, the side of the front connector, and the bushing. The friction form was set
using a friction coefficient of 1.5.

The SRMC failure criteria proposed by Hashin criteria [22] were applied to detect
the failure modes in the fiber and matrix under both tension and compression failures,
which involve four failure modes. The failure modes included in Hashin’s criteria are
expressed below.

Tensile fiber failure for σ11 ≥ 0:(
σ11

XT

)2
+

σ2
12 + σ2

13
S2

12
≥ 1. (1)

Compressive fiber failure for σ11 < 0:(
σ11

Xc

)2
≥ 1. (2)
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Tensile matrix failure for σ22 + σ33 > 0:

(σ22 + σ33)
2

Y2
T

+
σ2

23 − σ22σ33

S2
23

+
σ2

12 + σ2
13

S2
12

≥ 1. (3)

Compressive matrix failure for σ22 + σ33 < 0:[(
YC

2S23

)2
− 1

](
σ22 + σ33

YC

)
+

(σ22 + σ33)
2

4S2
23

+
σ2

23 − σ22σ23

S2
23

+
σ2

12 + σ2
13

S2
12

≥ 1. (4)

Interlaminar tensile failure for σ33 > 0:(
σ33

ZT

)2
≥ 1. (5)

(
σ33

ZC

)2
≥ 1. (6)

Here, the σij terms are components of the stress tensor, i and j are local coordinate axes
parallel and transverse to the fibers in each ply, respectively, and the z-axis coincides with
the through-thickness direction.

Statical analysis using FEM was performed for the RS05A Motor Case, where the con-
nector received complicated stress under high internal pressure. The mechanical responses
and damage morphology of the FE models were obtained.

6. Results and Discussion
6.1. Analysis Results of the RS05A Front Connector

Pressure was applied on the shell; then, the shell was enlarged and deformation
occurred in the middle of the front connector. This phenomenon was due to the existence
of the pressure exerted internally. The deformation and maximum shear stress diagrams
of the front connector under 15 MPa of blasting pressure are exhibited in Figure 5. It can
be seen that the magnitude deformation of the front connector reached 5.376 mm. The
maximum shear stress in the XY-direction was 2.57 MPa. Table 4 presents the displacement
and shear stress results of the design.
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Table 4. Finite element calculation results.

Final Preferred Solution Experimental Measurements

Allowable Value
[23,24]

Calculated
Value

Safety
Factor Experimental Value

Front connector deformation (mm) - 1.92 - 1.98
Tensile stress in X-direction (MPa) 500 492.0 1.24 496.4

Compressive stress in X-direction (MPa) −665 −158.9 1.02 −172.8
Tensile stress in Y-direction (MPa) 552 450.2 1.23 463.6

Compressive stress in Y-direction (MPa) −500 −212.6 3.16 −235.8
Shear stress in XY-plane (MPa) 118 2.574 45.91 6.431

Von Mises stress of AL inserts (MPa) 505 332.4 1.52 362.3

The stress distribution of the front connector is presented in Figures 6 and 7. As can
be seen, the maximal tensile and compressive stress calculated using FEM was 492 MPa
and −537 MPa, respectively. As shown in Table 4, the FEM results and experimental
measurements were in agreement with the practical values.
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Figure 8 shows that the Von Mises stress of AL inserts was 332.4MPa. As shown
in Table 4, the stress–strain values obtained from the simulations were all within the
permissible limits obtained from the experiments.
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Figure 8. Von Mises stress of AL inserts (σy = 332.4 MPa): (a) Von Mises stress (overall view); (b) Von
Mises stress (partial view).

6.2. Experimental Results

A water pressure blasting experiment is designed for the shell to monitor the strain
displacement change of the shell during blasting. Strain monitoring points were uniformly
set on the shell and front connector, as shown in Figure 9. Deformation was relatively
larger in the process of the booster, with resin shell cracking. Due to some damage of
the strain gauge, the strain value could not be displayed. The complete results of the test
points were generated, with each strain measuring point monitoring strain changes in
both directions. The strain of point 8 at the small polar hole generated a sudden change.
Two points were set for displacement change monitoring, which coincided with strain
monitoring points 2 and 5. The results of extracting the two point shifts are shown in
Figure 10. When the pressure reached 33 MPa, displacement occurred at both points.
Combined with the strain displacement test results in the experiment, it can be seen that the
actual burst pressure was 33 MPa. The hydrostatic test showed that the cylinder could meet
the internal pressure of 15 MPa in working conditions and 33 MPa in blasting conditions.
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The calculation results of typical schemes are summarized in Table 4. As shown,
the experimental measurements, such as the front connector deformation, tensile and
compressive stress in the XY-direction, shear stress in XY-plane, and Von Mises stress of
AL inserts, were preferred as the final solution.

The winding angle used in the calculation (18.5◦) was the average winding angle,
while the actual winding angle at the equator was about 26◦, i.e., the winding angle from
the middle part of the barrel to the equator of the back head changed from 18.5◦ to 26◦,
resulting in an increase in the actual torsional stiffness of the cylinder near the back head.
Therefore, the measured circumferential strain value was small. In the actual working
condition, the stress of the shell would be better than that of the proposed design, and no
damage would occur with the calculated value. Both calculated stresses were within the
range of allowable design values. The design scheme and calculation met the requirements,
and the design proposal was reasonable.

7. Conclusions

1. In this study, finite element analysis of the SRMC connector was performed. The
lay-up and optimum structure designs of the connector were investigated. An ex-
perimental design was established, and the FEM simulation value was calculated.
Loading and constrains were implemented in the FEM model. The actual experi-
mental measurements were studied for a comparison. A blasting experiment was
conducted to verify the simulation results.

2. The maximum shear stress in the XY-direction was 2.57 MPa, the maximal tensile and
compressive stress calculated using FEM was 492 MPa and −537 MPa, respectively,
and the Von Mises stress of the AL insert was 332.4 MPa. The stress–strain values
obtained from the simulations were all within the permissible limits obtained from
the experiments.

3. The results revealed that the calculated value of the final preferred solution was within
the allowable range (Table 4), and at least 31% weight loss could be achieved (Table 2).
This confirms that the performance of the optimum design was successfully improved.

4. The accuracy of the modeling method was verified by analyzing the displacement
and blasting pressure of the finite element simulation results. The comparison results
showed that the FME result of blasting was 15 MPa, while the actual blasting was
33 MPa, suggesting that the simulated shell could meet the internal pressure in
working conditions.
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