Odor-Reduced HDPE-Lignin Blends by Use of Processing Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Formulation and Preparation of Masterbatches and Blends
2.3. Sensory Analyses
2.4. Olfactometric Instrumental Analyses
2.4.1. GC-O and OEDA
2.4.2. GC-MS/O and 2D-GC-MS/O
3. Results
3.1. Sensory Analysis of Odor Characteristics
3.1.1. Kraft Blends
3.1.2. Soda Blends
3.2. Instrumental Analysis of Odorous Compounds
3.2.1. Odorants in Kraft HDPE-Lignin Blends
Sulfur-Containing Odorants
Phenolic Odorants
Minor Compound Classes and Individual Odorants
3.2.2. Odorants in Soda HDPE-Lignin Blends
Phenolic Odorants
Sulfur-Containing Odorants
Aldehydes
Minor Compound Classes and Individual Odorants
4. Discussion
4.1. Comparison of Kraft and Soda HDPE-Lignin Blends and Correlation of Odor Profiles with Main Odorants
4.2. Influence of Processing on Odor—Kneader vs. Extruder
4.3. Odor Reduction Potency of Used Additives
4.3.1. Activated Carbon
4.3.2. Stripping Agent
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Reference Compounds and Chemicals
Appendix A.2. Formulation and Preparation of Masterbatches and Blends
Material | Master-Batch 1 | Master-Batch 2 | Kraft HDPE-Lignin Blend | Kraft HDPE-Lignin Blend with Activated Carbon | Kraft HDPE-Lignin Blend with Stripping Agent | Soda HDPE-Lignin Blend | Soda HDPE-Lignin Blend with Activated Carbon | Soda HDPE-Lignin Blend with Stripping Agent |
abbreviation | MB 1 | MB 2 | kraft blends | soda blends | ||||
untreated kraft blend | kraft blend AC | kraft blend SA | untreated soda blend | soda blend AC | soda blend SA | |||
HDPE | 90 | 88.5 | ||||||
compatibilizer | 10 | 9.5 | ||||||
stripping agent | - | 2 | ||||||
activated carbon | - | 5 | - | - | 5 | - | ||
kraft lignin | 30 | 29 | 30 | - | - | - | ||
soda lignin | - | - | - | 30 | 29 | 30 | ||
MB 1 | 70 | 66 | 35 | 70 | 66 | 35 | ||
MB 2 | - | - | 35 | - | - | 35 |
References
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin Biosynthesis. Annu. Rev. Plant Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef] [PubMed]
- Lucia, L.A.; Argyropoulos, D.S.; Adamopoulos, L.; Gaspar, A.R. Chemicals and energy from biomass. Can. J. Chem. 2006, 84, 960–970. [Google Scholar] [CrossRef] [Green Version]
- Stewart, D. Lignin as a base material for materials applications: Chemistry, application and economics. Ind. Crops Prod. 2008, 27, 202–207. [Google Scholar] [CrossRef]
- Whetten, R.; Sederoff, R. Lignin Biosynthesis. Plant Cell 1995, 7, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Upton, B.M.; Kasko, A.M. Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective. Chem. Rev. 2016, 116, 2275–2306. [Google Scholar] [CrossRef] [PubMed]
- Doherty, W.O.S.; Mousavioun, P.; Fellows, C.M. Value-adding to cellulosic ethanol: Lignin polymers. Ind. Crops Prod. 2011, 33, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Strassberger, Z.; Tanase, S.; Rothenberg, G. The pros and cons of lignin valorisation in an integrated biorefinery. RSC Adv. 2014, 4, 25310–25318. [Google Scholar] [CrossRef] [Green Version]
- Thakur, V.K.; Thakur, M.K.; Raghavan, P.; Kessler, M.R. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustain. Chem. Eng. 2014, 2, 1072–1092. [Google Scholar] [CrossRef]
- Bass, G.F.; Epps, T.H. Recent developments towards performance-enhancing lignin-based polymers. Polym. Chem. 2021, 12, 4130–4158. [Google Scholar] [CrossRef]
- Parit, M.; Jiang, Z. Towards lignin derived thermoplastic polymers. Int. J. Biol. Macromol. 2020, 165, 3180–3197. [Google Scholar] [CrossRef]
- Erdmann, J.; Engelmann, G.; Ganster, J. Thermoplastic Polymer Compounds with Low Molecular Weight Lignins, Process for their Preparation, Moldings and Uses. WIPO WO2014122089A1Pl, 7 January 2016. [Google Scholar]
- Erdmann, J.; Engelmann, G.; Ganster, J. Micro-Structured Composite Material, Method for Producing Same, Mouldings Made of Same, and Uses Thereof. WIPO WO2014121967 (A1), 14 September 2014. [Google Scholar]
- Treimanis, A.; Laka, M.; Chernyavskaya, S.; Ganster, J.; Erdmann, J.; Ziegler, L.; Birska, I. Microcrystalline cellulose fillers for use in hybrid composites with polyethylene and lignin. Cellul. Chem. Technol. 2016, 50, 117–125. [Google Scholar]
- Reynolds, W.; Baudron, V.; Kirsch, C.; Schmidt, L.M.; Singer, H.; Zenker, L.; Zetzl, C.; Smirnova, I. Odor-Free Lignin from Lignocellulose by Means of High Pressure Unit Operations: Process Design, Assessment and Validation. Chem. Ing. Tech. 2016, 88, 1513–1517. [Google Scholar] [CrossRef]
- Karnofski, M.A. Odor generation in the kraft process. J. Chem. Educ. 1975, 52, 490–492. [Google Scholar] [CrossRef]
- Yoon, S.H.; Chai, X.S.; Zhu, J.Y.; Li, J.; Malcolm, E.W. In-digester reduction of organic sulfur compounds in kraft pulping. Adv. Environ. Res. 2001, 5, 91–98. [Google Scholar] [CrossRef]
- Kouisni, L.; Gagné, A.; Maki, K.; Holt-Hindle, P.; Paleologou, M. LignoForce System for the Recovery of Lignin from Black Liquor: Feedstock Options, Odor Profile, and Product Characterization. ACS Sustain. Chem. Eng. 2016, 4, 5152–5159. [Google Scholar] [CrossRef]
- Kalliola, A.K.; Savolainen, A.; Ohra-aho, T.; Faccio, G.; Tamminen, T. Reducing the content of VOCs of softwood kraft lignins for material applications. BioResources 2012, 7, 2871–2882. [Google Scholar]
- Holladay, J.E.; White, J.F.; Bozell, J.J.; Johnson, D. Top Value-Added Chemicals from Biomass—Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin; Technical Report; Pacific Northwest National Laboratory: Richland, WA, USA, 2007.
- Lok, B.; Mueller, G.; Ganster, J.; Erdmann, J.; Buettner, A.; Denk, P. Odor and Constituent Odorants of HDPE-Lignin Blends of Different Lignin Origin. Polymers 2022, 14, 206. [Google Scholar] [CrossRef] [PubMed]
- Peace, E.; Albers, R. Lignin Composites Comprising Activated Carbon for Odor Reduction. WIPO WO 2017/165960 A1, 5 October 2017. [Google Scholar]
- Chiang, Y.-C.; Chiang, P.-C.; Huang, C.-P. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 2001, 39, 523–534. [Google Scholar] [CrossRef]
- Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M. Adsorption of phenolic compounds by activated carbon—A critical review. Chemosphere 2005, 58, 1049–1070. [Google Scholar] [CrossRef]
- Magne, P.; Walker, P.L. Phenol adsorption on activated carbons: Application to the regeneration of activated carbons polluted with phenol. Carbon 1986, 24, 101–107. [Google Scholar] [CrossRef]
- Tomani, P.; Alvarado, F. Method of Producing Lignin with Reduced Amount of Odorous Substances. USPTO. US9617393B2, 11 April 2017. [Google Scholar]
- Koenig, S.; Bremer, M.; Appelt, J.; Bansleben, A.C.; Schellenberg, I.; Unbehaun, H.; Kerns, G.; Wilhelm, C. Characterisation of volatile organic compounds (VOC) in different lignin and their reduction by enzymatic modification for the production of fibre-reinforced biopolymers. J. Biotechnol. 2010, 150, 380–381. [Google Scholar] [CrossRef]
- Sallem-Idrissi, N.; Vanderghem, C.; Pacary, T.; Richel, A.; Debecker, D.P.; Devaux, J.; Sclavons, M. Lignin degradation and stability: Volatile organic compounds (VOCs) analysis throughout processing. Polym. Degrad. Stab. 2016, 130, 30–37. [Google Scholar] [CrossRef]
- Soulestin, J.; Quiévy, N.; Sclavons, M.; Devaux, J. Polyolefins–biofibre composites: A new way for an industrial production. Polym. Eng. Sci. 2007, 47, 467–476. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, H.J. Influence of the zeolite type on the mechanical–thermal properties and volatile organic compound emissions of natural-flour-filled polypropylene hybrid composites. J. Appl. Polym. Sci. 2008, 110, 3247–3255. [Google Scholar] [CrossRef]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent assisted flavour evaporation—A new and versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Bemelmans, J.M.H. Review of isolation and concentration techniques. Prog. Flavour Res. 1979, 8, 79–98. [Google Scholar]
- Grosch, W. Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem. Senses 2001, 26, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Buettner, A.; Schieberle, P. Application of a comparative aroma extract dilution analysis to monitor changes in orange juice aroma compounds during processing. ACS Symp. Ser. 2001, 782, 33–45. [Google Scholar] [CrossRef]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- McGorrin, R.J. The Significance of Volatile Sulfur Compounds in Food Flavors. In Volatile Sulfur Compounds in Food; Qian, M.C., Fan, X., Mahattanatawee, K., Eds.; American Chemical Society: Washington, DC, USA, 2011; pp. 3–31. [Google Scholar]
- Wasserman, A.E. Organoleptic Evaluation of Three Phenols Present in Wood Smoke. J. Food Sci. 1966, 31, 1005–1010. [Google Scholar] [CrossRef]
- Fiddler, W.; Doerr, R.C.; Wasserman, A.E.; Salay, J.M. Composition of Hickory Sawdust Smoke. Furans and Phenols. J. Agric. Food. Chem. 1966, 14, 659–662. [Google Scholar] [CrossRef]
- Frauendorfer, F.; Christlbauer, M.; Chetschik, I.; Schaller, J.-P. Chapter 100—Elucidation of Ashtray Odor. In Flavour Science; Ferreira, V., Lopez, R., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 547–551. [Google Scholar]
- Levins, P.L.; Kendall, D.A.; Caragay, A.B.; Leonardos, G.; Oberholtzer, J.E. Chemical Analysis of Diesel Exhaust Odor Species. SAE Trans. 1974, 83, 985–995. [Google Scholar]
- Arnarp, J.; Bielawski, J.; Dahlin, B.-M.; Dahlman, O.; Enzell, R.C.; Pettersson, T. Tobacco smoke chemistry. 2. Alkyl and alkenyl substituted guaiacols found in cigarette smoke condensate. Acta Chem. Scand. 1989, 43, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerny, C. The Aroma Side of the Maillard Reaction. Ann. N. Y. Acad. Sci. 2008, 1126, 66–71. [Google Scholar] [CrossRef]
- Schreiner, L.; Loos, H.M.; Buettner, A. Identification of odorants in wood of Calocedrus decurrens (Torr.) Florin by aroma extract dilution analysis and two-dimensional gas chromatography–mass spectrometry/olfactometry. Anal. Bioanal. Chem. 2017, 409, 3719–3729. [Google Scholar] [CrossRef]
- Schreiner, L.; Bauer, P.; Buettner, A. Resolving the smell of wood-identification of odour-active compounds in Scots pine (Pinus sylvestris L.). Sci. Rep. 2018, 8, 8294. [Google Scholar] [CrossRef]
- Ghadiriasli, R.; Wagenstaller, M.; Buettner, A. Identification of odorous compounds in oak wood using odor extract dilution analysis and two-dimensional gas chromatography-mass spectrometry/olfactometry. Anal. Bioanal. Chem. 2018, 410, 6595–6607. [Google Scholar] [CrossRef]
- Guadagni, D.G.; Buttery, R.G.; Okano, S.; Burr, H.K. Additive effect of sub-threshold concentrations of some organic compounds associated with food aromas. Nature 1963, 200, 1288–1289. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cell. Chem. Technol. 2010, 44, 353. [Google Scholar]
- Alekhina, M.; Ershova, O.; Ebert, A.; Heikkinen, S.; Sixta, H. Softwood kraft lignin for value-added applications: Fractionation and structural characterization. Ind. Crops Prod. 2015, 66, 220–228. [Google Scholar] [CrossRef]
- Hwang, Y.; Matsuo, T.; Hanaki, K.; Suzuki, N. Removal of odorous compounds in wastewater by using activated carbon, ozonation and aerated biofilter. Water Res. 1994, 28, 2309–2319. [Google Scholar] [CrossRef]
- Sano, Y.; Choi, K.-H.; Korai, Y.; Mochida, I. Adsorptive removal of sulfur and nitrogen species from a straight run gas oil over activated carbons for its deep hydrodesulfurization. Appl. Catal. B Environ. 2004, 49, 219–225. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, N.; Chu, W.; Li, C. Removal of phenol by powdered activated carbon adsorption. Front. Env. Sci. Eng. 2013, 7, 158–165. [Google Scholar] [CrossRef]
- Tessmer, C.H.; Vidic, R.D.; Uranowski, L.J. Impact of oxygen-containing surface functional groups on activated carbon adsorption of phenols. Environ. Sci. Technol. 1997, 31, 1872–1878. [Google Scholar] [CrossRef]
- Li, L.; Liu, S.; Liu, J. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J. Hazard. Mater. 2011, 192, 683–690. [Google Scholar] [CrossRef]
- Barandiaran, M.J.; Asua, J.M. Removal of Monomers and VOCs from Polymers. In Handbook of Polymer Reaction Engineering; Meyer, T., Keurentjes, J., Eds.; Wiley-VCH: Weinheim, Germany, 2005; pp. 971–994. [Google Scholar]
- Cabanes, A.; Valdés, F.J.; Fullana, A. A review on VOCs from recycled plastics. Sustainable Mater. Technol. 2020, 25, e00179. [Google Scholar] [CrossRef]
- De San Luis, A.; Santini, C.C.; Chalamet, Y.; Dufaud, V. Removal of Volatile Organic Compounds from Bulk and Emulsion Polymers: A Comprehensive Survey of the Existing Techniques. Ind. Eng. Chem. Res. 2019, 58, 11601–11623. [Google Scholar] [CrossRef]
Material | Trade Name | Provider | Material Specifications According to Provider |
---|---|---|---|
HDPE | HDPE M80064 | Sabic | HDPE injection molding grade with narrow molecular weight distribution; melt flow rate = 8.0 g/10 min |
compatibilizer | Fusabond E-MB 100D | DuPont | maleic anhydride grafted HDPE; melt flow rate = 2.0 g/10 min |
kraft lignin | BioPiva 100 | UPM Biochemicals | kraft softwood lignin from different softwoods; sulfur content <3% |
soda lignin | Protobind 1000 | PLT Innovations | lignin from agricultural fibrous feedstocks (wheat straw/Sarkanda grass); sulfur free (>90%) |
activated carbon | Norit D Ultra | Cabot Norit | powdered activated carbon; total surface area of 1050 m2/g; particle sizes of D10: 7.4 μm; D50: 34 μm; D90: 110 μm; apparent density of 500 kg/m3; ash content of 11 mass-%; chloride 0.001 mass-%; alkaline pH; methylene blue adsorption min. 20 g/100 g; moisture max. 10 mass-%; filtration time max. 12 min |
stripping agent | BYK-P 4200 | BYK-Chemie GmbH | processing additive for PE/PP for reduction of odor and VOC; aqueous solution of polymeric, surface-active substances adsorbed onto a PP carrier |
Parameter | Master- Batch 1 | Master- Batch 2 | Kraft HDPE-Lignin Blend | Kraft HDPE-Lignin Blend with Activated Carbon | Kraft HDPE-Lignin Blend with Stripping Agent | Soda HDPE-Lignin Blend | Soda HDPE-Lignin Blend with Activated Carbon | Soda HDPE-Lignin Blend with Stripping Agent |
---|---|---|---|---|---|---|---|---|
abbreviation | MB 1 | MB 2 | kraft blends | soda blends | ||||
untreated kraft blend | kraft blend AC | kraft blend SA | untreated soda blend | soda blend AC | soda blend SA | |||
twin screw [rpm] | 300 | 300 | 400 | 400 | 400 | 400 | 400 | 400 |
dosing rate [kg/h] doser A | 4.5 | 2.5 | 1.26 | 1.21 | 1.26 | 1.26 | 1.21 | 1.26 |
dosing rate [kg/h] doser B | - | - | 0.54 | 0.61 | 0.54 | 0.54 | 0.61 | 0.54 |
temperature profile of barrel segments: | ||||||||
zone 1 [°C] | 180 | 130 | 130 | 130 | 130 | 130 | 130 | 130 |
zone 2 [°C] | 190 | 160 | 170 | 170 | 170 | 170 | 170 | 170 |
zone 3 [°C] | 190 | 180 | 170 | 170 | 170 | 170 | 170 | 170 |
zone 4 [°C] | 190 | 180 | 170 | 170 | 170 | 170 | 170 | 170 |
zone 5 [°C] | 190 | 180 | 190 | 190 | 190 | 190 | 190 | 190 |
zone 6 [°C] | 180 | 180 | 210 | 210 | 210 | 210 | 210 | 210 |
zone 7 [°C] | 170 | 180 | 250 | 250 | 250 | 250 | 250 | 250 |
zone 8 [°C] | 170 | 175 | 230 | 230 | 230 | 230 | 230 | 230 |
zone 9 [°C] | 160 | 170 | 200 | 200 | 200 | 200 | 200 | 200 |
nozzle [°C] | 180 | 170 | 200 | 200 | 200 | 200 | 200 | 200 |
melt temperature [°C] | 180 | 180 | 208 | 208 | 208 | 208 | 208 | 208 |
melt pressure [bar] | 10 | 3 | 1 | 3 | 1 | 1 | 1 | 1 |
pressure zone 9 [mbar] | - | - | 8 | 8 | 8 | 8 | 8 | 8 |
No. a | Odorant b | Odor Quality c | RI d | OD e | ||||||
---|---|---|---|---|---|---|---|---|---|---|
DB-FFAP | DB-5 | Kraft HDPE-Lignin Blend | Soda HDPE-Lignin Blend | |||||||
No Additive | Activated Carbon | Stripping Agent | No Additive | Activated Carbon | Stripping Agent | |||||
1 | 2,3-butanedione | butter-like | 984 | 601 | <1 | 3 | <1 | 1 | 1 | 1 |
2 | unknown | blackcurrant-like | 1004 | n.d.g | <1 | <1 | 3 | <1 | <1 | <1 |
3 | thiophene | onion-like, sulfurous | 1010 | 667 | 1 | 1 | 3 | <1 | <1 | <1 |
4 | unknown | blackcurrant-like | 1046 | 824 | 1 | <1 | 3 | <1 | <1 | <1 |
5 | dimethyl disulfide | cabbage-like | 1077 | 756 | 3 | <1 | <1 | <1 | <1 | <1 |
6 | 2-methyl-3-hexanethiol f | burned | 1109 | 937 | 3 | 1 | 9 | <1 | <1 | <1 |
7 | 1-(methylthio)pentane f | garlic-like, sulfurous | 1116 | 917 | 81 | 3 | 27 | 1 | 1 | 3 |
8 | unknown | sulfurous | 1181 | n.d.g | 1 | <1 | <1 | <1 | <1 | <1 |
9 | unknown | sulfurous | 1197 | n.d.g | 1 | <1 | 1 | <1 | <1 | <1 |
10 | 4-methoxy-2-methyl-2-butanethiol f | blackcurrant-like | 1206 | 925 | 27 | 27 | 27 | <1 | <1 | <1 |
11 | unknown | sulfurous | 1225 | n.d.g | 9 | <1 | 3 | <1 | <1 | <1 |
12 | unknown | sulfurous | 1239 | 817 | 9 | <1 | 9 | <1 | <1 | <1 |
13 | bis(methylthio)methane | sulfurous, garlic-like | 1271 | 898 | 81 | 9 | 27 | <1 | <1 | <1 |
14 | octanal | citrus-like, soapy | 1281 | 1002 | <1 | <1 | <1 | 1 | <1 | <1 |
15 | 1-octen-3-one f | mushroom-like | 1292 | 979 | 1 | <1 | <1 | 1 | <1 | <1 |
16 | 2-methyl-3-furanthiol f | broth-like | 1304 | 870 | 81 | 27 | 81 | <1 | <1 | <1 |
17 | 1-methoxy-3-methyl-3-pentanethiol f | blackcurrant-like, sulfurous | 1324 | 1036 | 27 | 1 | 9 | <1 | <1 | <1 |
18 | dimethyl trisulfide | garlic-like, cabbage-like | 1365 | 970 | 729 | 81 | 729 | 81 | 9 | 27 |
19 | 4-mercapto-4-methyl-2-pentanone f | blackcurrant-like, sulfurous | 1374 | 943 | 27 | <1 | 243 | 1 | <1 | <1 |
20 | 1,1-bis(ethylthio)ethane f | sulfurous, burnt | 1387 | 1082 | 27 | 9 | 27 | <1 | <1 | <1 |
21 | 3,4-dimethyl-2-pentylfuran f | anise-like, fatty | 1413 | 1203 | <1 | <1 | <1 | 9 | <1 | 1 |
22 | 2-furfurylthiol (2-furanmethanethiol) | roasted coffee bean-like | 1428 | 914 | 243 | 27 | 243 | 243 | 27 | 81 |
23 | acetic acid | vinegar-like | 1445 | 619 | 1 | <1 | 1 | <1 | <1 | <1 |
24 | methional (3-(methylthio)-propanal) f | cooked potato-like | 1446 | 905 | 3 | <1 | 1 | <1 | <1 | <1 |
25 | 1,2-bis(methylthio)ethane | mushroom-like | 1472 | 1030 | 3 | <1 | 1 | <1 | <1 | <1 |
26 | 2-((methylthio)methyl)furan | cabbage-like | 1488 | 1011 | 9 | 1 | 9 | <1 | <1 | <1 |
27 | (Z)-2-nonenal f | green, fatty | 1493 | 1145 | 3 | 3 | 3 | 9 | 3 | 3 |
28 | (E)-2-nonenal | fatty, cardboard-like | 1523 | 1160 | 81 | 3 | 27 | 81 | 9 | 27 |
29 | 5-methylfurfural | flowery, caramel-like | 1564 | 957 | 3 | <1 | 3 | 3 | <1 | <1 |
30 | (E,Z)-2,6-nonadienal | cucumber-like | 1573 | 1159 | <1 | <1 | <1 | 81 | 9 | 3 |
31 | unknown | sulfurous | 1579 | n.d.g | 9 | 3 | 9 | <1 | <1 | <1 |
32 | unknown | sulfurous | 1604 | n.d.g | 3 | <1 | 3 | <1 | <1 | <1 |
33 | 3-mercapto-2-methylbutyl acetate f | burnt | 1612 | 1137 | 27 | 3 | 27 | <1 | <1 | <1 |
34 | 3-(methylthio)thiophene | cress-like, cabbage-like | 1622 | 1091 | 243 | 9 | 81 | 1 | 1 | 1 |
35 | phenylacetaldehyde | honey-like, flowery | 1638 | 1050 | <1 | <1 | <1 | 1 | 1 | <1 |
36 | 2-methyl-3-(methyldithio)furan | broth-like, meat-like | 1667 | 1178 | 27 | 27 | 27 | 9 | 9 | 3 |
37 | 1-mercapto-3-hexanyl acetate f | sulfurous, leek-like | 1686 | 1231 | 27 | 1 | 9 | <1 | <1 | <1 |
38 | unknown | coriander-like | 1689 | 1290 | <1 | <1 | <1 | 3 | 1 | 3 |
39 | (E,E)-2,4-nonadienalf | fatty | 1692 | 1212 | 1 | <1 | 1 | 3 | 1 | 1 |
40 | unknown | sulfurous | 1712 | n.d.g | 1 | <1 | <1 | <1 | <1 | <1 |
41 | unknown | sulfurous | 1723 | n.d.g | 9 | 1 | 1 | <1 | <1 | <1 |
42 | dimethyl tetrasulfide f | sulfurous, cabbage-like | 1738 | 1223 | <1 | <1 | 1 | <1 | <1 | <1 |
43 | (E)-2-undecenal | coriander-like | 1744 | 1365 | <1 | 3 | <1 | 1 | 1 | <1 |
44 | 2-acetyl-2-thiazoline f | roasty, popcorn-like | 1750 | 1107 | 3 | 1 | 3 | <1 | <1 | 1 |
45 | 3-ethyl-2-hydroxy-2-cyclopenten-1-one | caramel-like | 1792 | 1053 | 3 | 3 | 3 | <1 | <1 | <1 |
46 | cycloten (2-hydroxy-3-methyl-2-cyclopenten-1-one) | lovage-like | 1827 | 1029 | 9 | 9 | 9 | 3 | 1 | 1 |
47 | 2-hydroxy-5-ethyl-5-methyl-2-cyclopenten-1-one | caramel-like | 1850 | 1142 | 9 | 9 | 9 | 3 | 1 | <1 |
48 | guaiacol (2-methoxyphenol) | smoky, smoked ham-like | 1862 | 1087 | ≥2187 | 243 | ≥2187 | 243 | 243 | 81 |
49 | unknown | flowery | 1892 | 1166 | 3 | <1 | <1 | 9 | 3 | 3 |
50 | unknown | lovage-like | 1929 | 1181 | 3 | <1 | 1 | 1 | <1 | <1 |
51 | 2-methoxy-5-methylphenol | smoky, clove-like | 1935 | 1191 | 27 | 3 | 27 | 9 | 3 | 3 |
52 | unknown | broth-like, meat-like | 1963 | 1403 | 243 | 81 | 243 | 3 | 1 | 3 |
53 | furaneol (4-hydroxy-2,5-dimethyl-3(2H)-furanone) | caramel-like | 2022 | 1076 | 243 | 27 | 81 | 243 | 27 | 27 |
54 | p-cresol (4-methylphenol) | horse stable-like, fecal | 2078 | 1068 | 1 | 1 | 1 | 1 | 1 | <1 |
55 | unknown | green, geranium-like | 2100 | 1388 | <1 | <1 | <1 | 9 | 3 | 3 |
56 | 2-methoxy-4-propylphenol | phenolic, clove-like | 2111 | 1375 | 27 | 3 | 3 | <1 | <1 | <1 |
57 | 2,6-dichlorophenol f | plaster-like, medical | 2114 | 1212 | <1 | <1 | <1 | 3 | 3 | 3 |
58 | 2-methoxy-3-vinylphenol f | smoky, clove-like | 2123 | 1240 | 1 | <1 | <1 | <1 | <1 | <1 |
59 | eugenol (4-allyl-2-methoxyphenol) | clove-like | 2165 | 1360 | 81 | 3 | 9 | 81 | 81 | 27 |
60 | 4-ethylphenol | fecal, phenolic | 2169 | 1171 | <1 | <1 | <1 | 1 | 1 | 1 |
61 | 2-methoxy-4-vinylphenol | smoky, clove-like | 2182 | 1317 | 243 | 27 | 243 | 729 | 729 | 243 |
62 | wine lactone f | coconut-like, dill-like | 2213 | 1422 | 9 | 1 | 9 | 9 | 3 | 9 |
63 | γ-undecalactone | peach-like | 2250 | 1581 | 9 | 3 | 3 | 9 | 9 | 9 |
64 | 2,6-dimethoxyphenol | smoked ham-like, smoky | 2260 | 1363 | <1 | <1 | <1 | 9 | 9 | 9 |
65 | isoeugenol (2-methoxy-4-(1-(E)-propenyl)phenol) | smoky, clove-like | 2345 | 1461 | 729 | 27 | 243 | 27 | 9 | 3 |
66 | γ-dodecalactone | peach-like | 2374 | 1679 | 1 | 1 | 1 | 1 | 1 | <1 |
67 | unknown | phenolic, smoky | 2425 | 1446 | 9 | 3 | 9 | 9 | 9 | 3 |
68 | unknown | phenolic, smoky | 2450 | 1495 | 243 | 81 | 243 | 27 | 27 | 9 |
69 | vanillin (4-hydroxy-3-methoxybenzaldehyde) | vanilla-like | 2563 | 1400 | ≥2187 | 243 | ≥2187 | ≥2187 | 729 | 729 |
70 | 3-phenylpropanoic acid | honey-like, flowery | 2626 | 1339 | <1 | <1 | <1 | 243 | 243 | 81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lok, B.; Mueller, G.; Buettner, A.; Bartel, M.; Erdmann, J. Odor-Reduced HDPE-Lignin Blends by Use of Processing Additives. Polymers 2022, 14, 2660. https://doi.org/10.3390/polym14132660
Lok B, Mueller G, Buettner A, Bartel M, Erdmann J. Odor-Reduced HDPE-Lignin Blends by Use of Processing Additives. Polymers. 2022; 14(13):2660. https://doi.org/10.3390/polym14132660
Chicago/Turabian StyleLok, Bianca, Gunnar Mueller, Andrea Buettner, Melanie Bartel, and Jens Erdmann. 2022. "Odor-Reduced HDPE-Lignin Blends by Use of Processing Additives" Polymers 14, no. 13: 2660. https://doi.org/10.3390/polym14132660
APA StyleLok, B., Mueller, G., Buettner, A., Bartel, M., & Erdmann, J. (2022). Odor-Reduced HDPE-Lignin Blends by Use of Processing Additives. Polymers, 14(13), 2660. https://doi.org/10.3390/polym14132660