N-(2-Arylethyl)-2-methylprop-2-enamides as Versatile Reagents for Synthesis of Molecularly Imprinted Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Reagents
2.1.2. Synthesis of N-(2-arylethyl)-2-methylprop-2-enamides
2.1.3. Preparation of Polymers
2.1.4. Binding Studies
2.1.5. Physicochemical Characterization
3. Results and Discussion
3.1. Synthesis and Identification of N-(2-arylethyl)-2-methylprop-2-enamides
3.2. Preparation of Polymer
3.3. Characterization of Material
3.3.1. Adsorption Behavior
3.3.2. Morphology Characterization
3.3.3. Structural Evaluation
3.3.4. Porosity Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janczura, M.; Luliński, P.; Sobiech, M. Imprinting technology for effective sorbent fabrication: Current state-of-art and future prospects. Materials 2021, 14, 1850. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Wu, H.; Nie, J.; Ahmad, S.; Muhammad, I.; Zeeshan, M.; Khan, R.; Asim, M. Application, advancement and green aspects of magnetic molecularly imprinted polymers in pesticide residue detection. Sci. Total Environ. 2022, 804, 150293. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Nie, J.; Cheng, Y.; Bacha, S.A.S.; Chang, W. Selective extraction of fungicide carbendazim in fruits using β-cyclodextrin based molecularly imprinted polymers. J. Sep. Sci. 2020, 43, 1145–1153. [Google Scholar] [CrossRef]
- Farooq, S.; Nie, J.; Cheng, Y.; Yan, Z.; Li, J.; Bacha, S.A.S.; Mushtaq, A.; Zhang, H. Molecularly imprinted polymers’ application in pesticide residue detection. Analyst 2018, 143, 3971–3989. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef]
- Wulff, G.; Sarhan, A.; Zabrocki, K. Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett. 1973, 44, 4329–4332. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Alexander, C.; Vulfson, E.N. Imprinted polymers: Versatile new tools in synthesis. Synlett 2000, 6, 911–923. [Google Scholar]
- Hashim, S.N.N.S.; Boysen, R.I.; Schwarz, L.J.; Danylec, B.; Hearn, M.T.W. A comparison of covalent and non-covalent imprinting strategies for the synthesis of stigmasterol imprinted polymers. J. Chromatogr. A 2014, 1359, 35–43. [Google Scholar] [CrossRef]
- Tang, Y.-W.; Fang, G.-Z.; Wang, S.; Li, J.-L. Covalent imprinted polymer for selective and rapid enrichment of ractopamine by a non-covalent approach. Anal. Bioanal. Chem. 2011, 401, 2275–2282. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, R.; Li, Y.; Li, G. Investigation of ractopamine-imprinted polymer for dispersive solid-phase extraction of trace β-agonists in pig tissues. J. Sep. Sci. 2010, 33, 2017–2025. [Google Scholar] [CrossRef]
- Hu, X.; Guo, Y.; Wang, T.; Liu, C.; Yang, Y.; Fang, G. A selectivity-enhanced ratiometric fluorescence imprinted sensor based on synergistic effect of covalent and non-covalent recognition units for ultrasensitive detection of ribavirin. J. Hazard. Mater. 2022, 421, 126748. [Google Scholar] [CrossRef] [PubMed]
- Effting, L.; Prete, M.C.; Urbano, A.; Effting, L.M.; Cano Gonzalez, M.E.; Bail, A.; Teixeira Tarley, C.R. Preparation of magnetic nanoparticle-cholesterol imprinted polymer using semi-covalent imprinting approach for ultra-effective and highly selective cholesterol adsorption. React. Funct. Polym. 2022, 172, 105178. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, J.; Liu, X.; Gao, X.; Ma, T.; Lu, X.; Li, J. Ultrasensitive detection of clenbuterol by a covalent imprinted polymer as a biomimetic antibody. Food Chem. 2017, 228, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Pan, Z.; Rong, J.; Mao, K.; Yang, D.; Zhang, T.; Xu, J.; Qiu, F.; Pan, J. Boronate affinity surface imprinted polymers supported on dendritic fibrous silica for enhanced selective separation of shikimic acid via covalent binding. J. Mol. Liq. 2021, 337, 116408. [Google Scholar] [CrossRef]
- Luliński, P.; Maciejewska, D. Effective separation of dopamine from bananas on 2-(3,4-dimethoxyphenyl)ethylamine imprinted polymer. J. Sep. Sci. 2012, 35, 1050–1057. [Google Scholar] [CrossRef]
- Sobiech, M.; Giebułtowicz, J.; Luliński, P. Application of magnetic core−shell imprinted nanoconjugates for the analysis of hordenine in human plasma-preliminary data on pharmacokinetic study after oral administration. J. Agric. Food Chem. 2020, 68, 14502–14512. [Google Scholar] [CrossRef]
- Burchett, S.A.; Hicks, T.P. The mysterious trace amines: Protean neuromodulators of synaptic transmission in mammalian brain. Prog. Neurobiol. 2006, 79, 223–246. [Google Scholar] [CrossRef]
- D’Andrea, G.; Nordera, G.; Pizzolato, G.; Bolner, A.; Colavito, D.; Flaibani, R.; Leon, A. Trace amine metabolism in Parkinson’s disease: Low circulating levels of octopamine in early disease stages. Neurosci. Lett. 2010, 469, 348–351. [Google Scholar] [CrossRef]
- Hasanah, A.N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors affecting preparation of molecularly imprinted polymer and methods on finding template-monomer interaction as the key of selective properties of the materials. Molecules 2021, 26, 5612. [Google Scholar] [CrossRef]
- Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934, 56, 658–666. [Google Scholar] [CrossRef]
- Freundlich, H. Über die Adsorption in Lösungen. Zeit. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Weiner, B.-Z.; Tahan, M.; Zilkha, A. Polymers containing phenethylamines. J. Med. Chem. 1972, 15, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Rathelot, P.; Vanelle, P.; Gasquet, M.; Delmas, F.; Crozet, P.M.; Timon-David, P.; Maldonado, P. Synthesis of novel functionalized 5-nitroisoquinolines and evaluation of in vitro antimalarial activity. Eur. J. Med. Chem. 1995, 30, 503–508. [Google Scholar] [CrossRef]
- Ruowen, W.; Yu, C. Phenoxy-Containing Acryloylphosphoramidite as Well as Preparation Method and Application Thereof. China Patent CN108203446, 26 June 2018. [Google Scholar]
- Sharma, U.K.; Sharma, N.; Kumar, Y.; Singh, B.K.; van der Eycken, E.V. Domino carbopalladation/C-H functionalization sequence: An expedient synthesis of bis-heteroaryls through transient alkyl/vinyl–palladium species capture. Chem. Eur. J. 2016, 22, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Vachhani, D.D.; Butani, H.H.; Sharma, N.; Bhoya, U.C.; Shah, A.K.; van der Eycken, E.V. Domino Heck/borylation sequence towards indolinone-3-methyl boronic esters: Trapping of the σ-alkylpalladium intermediate with boron. Chem. Commun. 2015, 51, 14862–14865. [Google Scholar] [CrossRef] [PubMed]
- Mayes, A.G.; Whitcombe, M.J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Adv. Drug Deliv. Rev. 2005, 57, 1742–1778. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Swenson, H.; Stadie, N.P. Langmuir’s Theory of Adsorption: A Centennial Review. Langmuir 2019, 35, 5409–5426. [Google Scholar] [CrossRef] [Green Version]
Amine | Substituents | Product | Yield (%) | M.p. (°C) |
---|---|---|---|---|
1a | 2a | 90 | 74–75 | |
1b | 2b | 81 | 103–104 | |
1c | 2c | 92 | 104–105 | |
1d | 2d | 46 | 114–115 | |
1e | 2e | 96 | 74–75 | |
1f | 2f | 63 | 63–64 |
Compound, 1H, 13C NMR, IR and MS Data | |
---|---|
2a | N-(2-(4-fluorophenyl)ethyl)-2-methylprop-2-enamide: 1H NMR (300 MHz, CDCl3) δ (ppm) = 7.19-7.13 (m, 2H, H2, H6), 7.04-6.96 (m, 2H, H3, H5), 5.78 (s, 1H, NH), 5.60 (bt, 1H, H3′a), 5.29 (quint, 1H, H3′b), 3.55 (m, 2H, H8), 2.83 (t, 2H, H7, J = 6.9 Hz), 1.92 (dd, 3 H, H4′, J1 = 1.2 Hz, J2 = 1.5 Hz); 13C NMR (75 MHz, CDCl3) δ (ppm) = 168.86 (C1′), 162.17 (C4), 140.56 (C2′), 135.05 (C1), 130.66 (C2,C6), 119.84 (C3′), 115.94 (C3,C5), 41.32 (C8), 35.31 (C7), 19.09 (C4′); IR (cm−1) 3342 (NH), 1656 (C=O), 1615 (C=C); MS (m/z, 70 eV) 207.11 [M+] (calc. 207.20). |
2b | N-(2-(4-chlorophenyl)ethyl)-2-methylprop-2-enamide: 1H NMR (300 MHz, CDCl3) δ (ppm) = 7.31-7.26 (m, 2H, H3,H5), 7.15-7.11 (m, 2H, H2,H6), 5.81 (bs, 1H, NH), 5.60 (bt, 1H, H3′a), 5.30 (quint, 1H, H3′b, J = 1.5 Hz), 3.54 (q, 2H, H8, J = 6.9 Hz), 2.83 (t, 2H, H7, J = 6.9 Hz), 1.92 (dd, 3H, H4′, J1 = 1.2 Hz, J2 = 1.5 Hz); 13C NMR (75 MHz, CDCl3) δ (ppm) = 168.87 (C1′), 140.51 (C2′), 137.86 (C1), 132.87 (C4), 130.59 (C3,C5), 129.24 (C2,C6), 119.89 (C3′), 41.15 (C8), 35.48 (C7), 19.09 (C4′); IR (cm−1) 3316 (NH), 1652 (C=O), 1615 (C=C); MS (m/z, 70 eV) 223.08 [M+] (calc. 223.66). |
2c | N-(2-(2,4-dichlorophenyl)ethyl)-2-methylprop-2-enamide: 1H NMR (300 MHz, CDCl3) δ (ppm) = 7.38 (d, 1H, H3, J = 1.8 Hz), 7.19 (m, 1H, H5, J1 = 8.1 Hz, J2 = 1.8 Hz), 7.16 (m, 1H, H6, J = 8.1 Hz), 5.96 (bs, 1H, NH), 5.63 (bs, 1H, H3′a), 5.30 (quint, 1H, H3′b, J = 1.5 Hz), 3.56 (q, 2H, H8, J = 7 Hz), 2.98 (t, 2H, H7, J = 7 Hz), 1.93 (dd, 3H, H4′, J1 = 1.2 Hz, J2 = 1.5 Hz); 13C NMR (75 MHz, CDCl3) δ (ppm) = 168.95 (C1′), 140.39 (C2′), 135.73 (C1), 135.19 (C2), 133.52 (C4), 132.25 (C6), 129.85 (C3), 127.71 (C5), 119.97 (C3′), 39.68 (C8), 33.19 (C7), 19.08 (C4′); IR (cm−1) 3299 (NH), 1654 (C=O), 1616 (C=C); MS (m/z, 70 eV) 257.09 [M+] (calc. 258.10). |
2d | N-(2-(4-bromophenyl)ethyl)-2-methylprop-2-enamide: 1H NMR (300 MHz, CDCl3) δ (ppm) = 7.46-7.41 (m, 2H, H3,H5), 7.10-7.06 (m, 2H, H2,H6), 5.79 (bs, 1H, NH), 5.60 (bt, 1H, H3′a, J = 1.5 Hz), 5.30 (bsextet, 1H, H3′b, J = 1.5 Hz), 3.54 (bq, 2H, H8, J = 7 Hz), 2.82 (t, 2H, H7, J = 7 Hz), 1.92 (dd, 3H, H4′, J1= 0.9 Hz, J2 = 1.5 Hz); 13C NMR (75 MHz, CDCl3) δ (ppm) = 168.88 (C1′), 140.51 (C2′), 138.39 (C1), 132.21 (C3,C5), 131.00 (C2,C6), 120.90 (C4), 119.90 (C3′), 41.10 (C8), 35.55 (C7), 19.10 (C4′); IR (cm−1) 3318 (NH), 1653 (C=O), 1611 (C=C); MS (m/z, 70 eV) 267.03 [M+] (calc. 268.12). |
2e | N-(2-(4-methoxyphenyl)ethyl)-2-methylprop-2-enamide: 1H NMR (300 MHz, CDCl3) δ (ppm) = 7.12 (m, 2H, H2,H6), 6.86 (m, 2H, H3,H5), 5.84 (bs, 1H, NH), 5.60 (bt, 1H, H3′a, J = 0.9 Hz), 5.28 (quint, 1H, H3′b, J = 1.5 Hz), 3.79 (s, 3H, H9), 3.53 (m, 2H, H8), 2.79 (t, 2H, H7, J = 6.9 Hz), 1.92 (dd, 3H, H4′, J1 = 0.9 Hz, J2 = 1.5 Hz); 13C NMR (75 MHz, CDCl3) δ (ppm) = 168.79 (C1′), 158.76 (C4), 140.59 (C2′), 131.33 (C1), 130.16 (C2,C6), 119.71 (C3′), 114.52 (C3,C5), 55.71 (C9), 41.39 (C8), 35.14 (C7), 19.07 (C4′); IR (cm−1) 3303 (NH), 1652 (C=O), 1615 (C=C); MS (m/z, 70 eV) 219.13 [M+] (calc. 219.24). |
2f | N-(2-(3,4-dimethoxyphenyl)ethyl)-2-methylprop-2-enamide: 1H NMR (300 MHz, CDCl3) δ (ppm) = 6.82 (d, 1H, H5, J = 8.4 Hz), 6.74 (dd, 1H, H6, J1 = 1.8 Hz, J2 = 8.4 Hz), 6.72 (d, 1H, H2, J = 1.8 Hz), 5.81 (s, 1H, NH), 5.61 (bt, 1H, H3′a), 5.29 (quint, 1H, H3′b, J = 1.5 Hz), 3.87 (s, 6H, H9,H10), 3.55 (q, 2H, H8, J = 6.9 Hz), 2.81 (t, 2 H, H7, J = 6.9 Hz), 1.92 (bt, 3H, H4′); 13C NMR (75 MHz, CDCl3) δ (ppm) = 168.81 (C1′), 149.56 (C3), 148.21 (C4), 140.61 (C2′), 131.90 (C1), 121.13 (C6), 119.78 (C3′), 112.41 (C2), 111.86 (C5), 56.41 (C10), 56.32 (C9), 41.36 (C8), 35.64 (C7), 19.10 (C4′); IR (cm−1) 3320 (NH), 1650 (C=O), 1618 (C=C); MS (m/z, 70 eV) 249.14 [M+] (calc. 249.27). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobiech, M.; Maciejewska, D.; Luliński, P. N-(2-Arylethyl)-2-methylprop-2-enamides as Versatile Reagents for Synthesis of Molecularly Imprinted Polymers. Polymers 2022, 14, 2738. https://doi.org/10.3390/polym14132738
Sobiech M, Maciejewska D, Luliński P. N-(2-Arylethyl)-2-methylprop-2-enamides as Versatile Reagents for Synthesis of Molecularly Imprinted Polymers. Polymers. 2022; 14(13):2738. https://doi.org/10.3390/polym14132738
Chicago/Turabian StyleSobiech, Monika, Dorota Maciejewska, and Piotr Luliński. 2022. "N-(2-Arylethyl)-2-methylprop-2-enamides as Versatile Reagents for Synthesis of Molecularly Imprinted Polymers" Polymers 14, no. 13: 2738. https://doi.org/10.3390/polym14132738
APA StyleSobiech, M., Maciejewska, D., & Luliński, P. (2022). N-(2-Arylethyl)-2-methylprop-2-enamides as Versatile Reagents for Synthesis of Molecularly Imprinted Polymers. Polymers, 14(13), 2738. https://doi.org/10.3390/polym14132738