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Abstract: Thermoset polymer composites have increased in use across multiple industries, with
recent applications consisting of high-complexity and large-scale parts. As applications expand,
the emphasis on accurate process-monitoring techniques has increased, with a variety of in situ
cure-monitoring sensors being investigated by various research teams. To date, a wide range of
data analysis techniques have been used to correlate data collected from thermocouple, dielectric,
ultrasonic, and fibre-optic sensors to information on the material cure state. The methods used in
existing publications have not been explicitly differentiated between, nor have they been directly
compared. This paper provides a critical review of the different data collection and cure state correla-
tion methods for these sensor types. The review includes details of the relevant sensor configurations
and governing equations, material combinations, data verification techniques, identified potential
research gaps, and areas of improvement. A wide range of both qualitative and quantitative analysis
methods are discussed for each sensing technology. Critical analysis is provided on the capability
and limitations of these methods to directly identify cure state information for the materials under
investigation. This paper aims to provide the reader with sufficient background on available analysis
techniques to assist in selecting the most appropriate method for the application.

Keywords: composite manufacturing; thermosetting polymers; cure behaviour; process monitoring;
in situ cure monitoring; sensors

1. Introduction

Advanced thermoset polymer composites are implemented in a variety of indus-
tries, such as in civil [1,2] and energy [3–5] and in recreational and naval marine appli-
cations [6–10] as well as in performance automobiles [11,12] and in aerospace applica-
tions [13–15]. The adoption of thermoset materials has increased in recent years due to the
tailorability of part properties and wide variety of manufacturing techniques and achievable
geometries. Thermosets can be formed as unreinforced plastics or reinforced composites
via injection and compression moulding [16] and resin infusion [17] or using automated
laydown techniques [18]. The parts must then go through a cure cycle, commonly under
elevated temperature and/or pressure conditions, such as in an as autoclave or oven [19,20].
Recently, research on fibre-reinforced polymer (FRP) composites has trended towards the
development of high-quality parts that are up to tens of metres long [21] and more than
2 cm thick [22], with emphasis on optimising the processing conditions when making these
complex parts [23].

Composite parts are susceptible to a variety of quality issues, such as fibre displace-
ments, voids and porosity, geometric deformations, and inconsistent chemical reactions or
polymerisations [24]. These final-part variations are frequently a result of manufacturing
uncertainty stemming from either variation in the raw materials or in the processing con-
ditions and environment [25]. In advanced composite applications, it is a critical quality
objective to achieve a specified resin cure state, as the completion of the polymer conversion

Polymers 2022, 14, 2978. https://doi.org/10.3390/polym14152978 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14152978
https://doi.org/10.3390/polym14152978
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-8720-2497
https://orcid.org/0000-0002-4812-0285
https://doi.org/10.3390/polym14152978
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14152978?type=check_update&version=2


Polymers 2022, 14, 2978 2 of 28

process is directly linked to the mechanical performance of the final product [26]. To capture
the effects of this variability, it becomes necessary to monitor the cure process for each
individual part.

The final cure state of a thermoset part is typically evaluated using either a quantifiable
degree of cure, specified as a percentage of the chemical reaction that has been completed,
or by reaching a threshold value for the glass transition temperature (Tg) [27,28]. The
degree of reaction or polymerisation can be analysed off-line, where testing is conducted
externally to the manufacturing process, or in-line, where a sensor is integrated directly
into the manufacturing process and captures live data [29]. The advantages of the in-line
or in situ monitoring of composite processing are the ability to monitor the process in real
time [30] and the potential to actively control the process as it occurs [31,32]. Further, some
major limitations of off-line cure evaluation are that it may require destructive testing,
cannot perfectly replicate the process conditions during part of the cure, and cannot be
used to update the process conditions in real time.

This paper will briefly review the established off-line cure-monitoring techniques
such as Dynamic Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), and
Dynamic Rheometry. A deeper evaluation of direct sensing technologies for in-line curing
is then presented, specifically of thermocouple, dielectric, ultrasonic, and fibre-optic sensors.
Extensive reviews have been completed regarding the capabilities and limitations of these
sensors for composite process and cure monitoring [33,34]; however, a critical review of
the correlation methods of these techniques has not been carried out to date. Each type of
sensor monitors different parameters, and data analysis must be conducted to convert these
parameters into information pertaining to the material cure state, with an example of the
data flow and analysis procedure being shown in Figure 1. In this paper, a critical review
of correlation processes for four in-line sensing technologies is presented. Special focus
has been placed on the specific sensor type and material configuration, the results of the
correlation analysis, and how the analysis has been verified for accuracy. The technologies
are then evaluated for how effectively they monitor composite cure processes and how
appropriate they may be for high-performance applications.
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2. Off-Line Cure Analysis

Off-line cure analysis techniques are frequently used to characterise new material
systems or as a quality control evaluation of an existing cured part. Material characterisation
enables researchers to build a model of the material that can then be used in process
simulations. For example, a research team characterised Hexcel RTM6 using DSC [35] and
rheometric [36] analysis to develop a kinetic and a chemosviscosity model of the tested
epoxy. Three common off-line analysis techniques are discussed here, including their
governing equations and identification principles for cure state information. Other analysis
techniques, such as Fourier Transform Infrared (FTIR) [37] and Raman spectroscopy [38],
are used for polymer analysis; these will not be discussed further.

2.1. Dynamic Scanning Calorimetry (DSC)

DSC measures heat flow in a sample when it is subjected to isothermal or non-
isothermal temperature conditions. By integrating the peak of the heat flow (H) versus the
time curve and dividing it by the total heat of reaction (HR), we can calculate the degree of
cure (α), as shown in Equation (1).

α =

∫ t
0 Hdt
HR

(1)

There is an extensive amount of literature on the use of DSC to characterise cure
reactions [39–42], and the procedure for kinetic parameter determination is detailed in stan-
dards such as ASTM E 2070, which contains methods for kinetic parameters by differential
scanning calorimetry using isothermal methods [43]. DSC can also be used to measure
thermoset cure reactions [44] and to calculate the degree of cure of an existing cured part.
The residual heat of reaction can be measured for a cured sample, which allows for the
calculation of the actual degree of cure of the part based on a known total heat of reaction
for the material. DSC analysis is used to validate the results of new sensing technologies
and will be mentioned throughout this paper as one of the main verification techniques.

2.2. Dynamic Mechanical Analysis (DMA)

The DMA of composite parts utilises a dual cantilever beam configuration in which a
sample is oscillated at a set frequency through a set temperature range. The elastic modulus
is evaluated throughout the test; specifically, the storage modulus (E′) component, the
loss modulus component (E′′), and the tanδ, which is calculated as the ratio of the loss
to the storage moduli, are considered. The main output of a DMA test is the Tg, which
is calculated as the midpoint of the drop in the storage modulus. ASTM D 7028, which
provides methods for Tg determination in Polymer Matrix Composites via DMA [45] details
the process for the calculation of Tg by identifying the intersection of the tangent lines
around the drop in E′, as shown in Figure 2.
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DMA has been used to identify the cure state of many materials, such as phenolics [47]
and epoxies [48]. Such as with DSC, DMA testing is used throughout this paper to verify
the Tg calculations of the in-line sensing techniques.

2.3. Dynamic Rheometry

The dynamic rheometry of thermoset composites typically occurs in a parallel-plate
oscillating configuration, with the purposes of monitoring the change in the shear modulus
under a set temperature range. Like DMA, rheometric testing evaluates the shear storage
modulus (G′), the loss modulus (G′′), and tanδ, which is once again the ratio of loss to
the storage moduli. From these values, the complex viscosity (η*) can be calculated by
Equation (2) using the complex modulus (G*) and oscillating frequency (ω):

η∗ =
G∗

ω
(2)

While this does not specifically relate to the final cure state of a thermoset polymer,
resin viscosity can be a critical parameter during processing.

Regarding the cure state, the gel point can be defined in multiple ways in accordance
with the rules of ASTM D 7750, which contains methods for evaluating cure behaviour of
thermosetting resins [49], an example of which is displayed in Figure 3. Depending on the
interactions of fibre and resin, the gel point can be defined as the intersection of G′ and G′′,
the peak of G′′, the peak of tanδ, a sudden rapid increase in G′, or a sudden drop in tanδ.

1 
 

 
Figure 3. Example of how gel time can be determined by identifying where G′ and G′′ cross. Reprinted
with permission from Ref. [50]. 2019, Elsevier.

The main challenge of rheometric cure monitoring is that during the crosslinking
and solidification process, the viscosity trends towards infinite, so later step cure stages
cannot be monitored. Despite this, rheometry has been used to evaluate viscosity and
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cure progression for several thermoset polymers [42,51] and is also used as a verification
technique for the sensors discussed in this paper.

3. In-Line Cure Monitoring Sensor Correlations
3.1. Thermocouple Sensors
3.1.1. Sensor Background and Governing Equations

There are a variety of sensors that are capable of monitoring the thermal properties
of composite cure processing, including thermocouples (TCs), infrared thermographers
(IRT) [52], heat flux sensors [22], and resistance temperature detectors (RTDs) [53]. While
this paper specifically focuses on thermocouples, alternative temperature sensors have
been reviewed [29], including details on their functionality, capabilities, and limitations.

Temperature is one of the most common parameters to measure during composite
processing, as the time–temperature–transformation relationship of thermosetting polymers
is well established [54], and most thermoset resins are cured under the application of a
specific heating cycle [55]. Temperature monitoring of both the environmental conditions,
for example, the oven or autoclave air temperature, and the material of choice is extremely
important. Most composite processes include an air TC to account for environmental
uncertainty, such as the natural fluctuations in the equipment over time. Additionally,
the actual temperature experienced by the part is critical for cure monitoring, as many
thermoset polymers tend to experience exothermic events, or a temperature increases due
to the release of heat energy during the chemical reaction. Material uncertainties such as
slight variations in the raw material; the initial degree of cure; and the material age, storage
conditions, and resin content can all impact the likelihood and peak temperature of an
exotherm [25]. For this reason, simply monitoring the equipment temperature may not be
sufficient to identify and predict the exact temperature profile that the part is experiencing.
Thermocouples are commonly placed in one or more representative locations: in the part,
on or in the tool, and in the air, to monitor the environmental conditions. These locations
and an overview of the parameter’s monitoring process is shown in Figure 4.
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Thermocouples comprise two different metal wires with known Seebeck voltages,
which are welded or twisted into a junction at one end and separated at the other. The
monitoring temperature (Tm) at the welded junction can be calculated using Equation (3)
using the Seebeck coefficient (S), measured voltage (V), and reference temperature at the
open junction (Tr).

Tm =
V
S
+ Tr (3)
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This equation is used to reliably calculate the temperature being experienced by the
material in question. Using this temperature profile, the material properties can then be
predicted according to the methods detailed in the following section.

3.1.2. Correlation Functions

An overwhelming amount of literature exists on the use of thermocouples and tem-
perature devices to monitor the progression of thermoset cure. For example, TCs and IRTs
have been used to monitor temperature distributions and exotherms of carbon fibre–epoxy
composites and other polymers [56,57] and to monitor part cure as a method to validate
simulation results [22]. Thermocouples are used to monitor processing and part tempera-
tures in most composite cure studies, including in almost every paper mentioned in this
review, due to their fundamental nature.

The most reliable method of directly correlating the measured temperature to the
material degree of cure (α) is by evaluating the thermo-kinetic model of the material, which
roughly follows the formula in Equation (4):

dα

dt
= K(T) f (α) (4)

in which dα
dt indicates the change in the degree of cure with respect to time, the component

K(T) represents the temperature dependency component, and f (α) represents the reaction
model component. K(T) follows an Arrhenius dependence and can be calculated using
Equation (5) using the pre-exponential factor (A), activation energy (E), universal gas
constant (R), and the temperature:

K(T) = Ae
−E
RT (5)

The reaction model component, f (α), is specific to the material in question. Many
reaction models have been proposed, with a comprehensive overview published by
Yousefi et al. [44]. Examples include a simple nth-order rate equation [58], the autocat-
alytic model [59], or model-free kinetic analysis [60]. While some models can be broadly
applied to material classes such as epoxies or polyesters, it is also best to conduct a kinetic
analysis of each specific material component to increase the accuracy of the results.

In practice, the temperature profile of a composite part can be verified against the
kinetic model or against a simulation that incorporates the kinetic model [61]. Once the
temperature profile is verified to produce an acceptable degree of cure, it is typical to simply
verify that the temperature parameters are met for each process cycle. For applications that
may not have the capacity, need, or interest in completing such a process verification, it is
common to follow the manufacturers’ recommended cure cycle as found in the technical
data sheet for most commercial thermosets or for composite materials, such as for Solvay
Cycom® 5320-1 Prepreg [62]. The material manufacturer typically specifies one or more
recommended cure cycles that will ensure that the part reaches a fully cured state. In this
case, a temperature reading is taken from a representative location that is either in or on the
part, on the tool, or elsewhere in the oven. The main verification method for quality control
is to check the temperature as a function of time compared to the recommended cure cycle
requirements, as shown in Figure 5, rather than to calculate a specific degree of cure for
each individual part. This quality control step ensures that the cured material meets the
minimum threshold for mechanical performance, as the required engineering properties
can only be met in fully cured parts [63]. It should be noted that the definition of “fully
cured” varies based on the specific material and application.
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3.1.3. Summary and Future Work

Thermocouples are the most common and widely used sensing technology for compos-
ite curing and process monitoring. They monitor not only the cure state, which is measured
as the degree of cure, but are also able to monitor other critical process events such as
temperature overshoots caused by exothermic events. Additionally, they are frequently
required to be used in coordination with other sensing devices, such as those detailed in the
below sections, to normalise for temperature effects [64,65] or as a supplemental monitoring
technique for data collection. Thermocouples have also been used to monitor resin filling
for infusion processes [66] and are commonly used to monitor temperature applications
during process optimisation activities [23,67,68]. A major challenge of thermocouples is
that to directly measure the material state, they must be embedded into the part, and some
applications (such as those which require specific surface finishes) are unable to accept
embedded sensors.

3.2. Dielectric Sensors
3.2.1. Sensor Background and Governing Equations

In recent decades, dielectric sensors have been investigated as a new method of in situ
cure monitoring for thermoset composite materials due to their versatility and range of
available configurations, both when purchased off the shelf and when custom-designed.
The three most common types of dielectric sensors are parallel-plate, interdigital, and tool-
mounted. Each of these has benefits and limitations, which have been discussed in depth
elsewhere [33,34]. For example, parallel-plate dielectrics can detect through-thickness mea-
surements that would otherwise require interdigital sensors to be embedded throughout
the thickness of a part. Interdigital and tool-mounted sensors only take measurements of
the surface that they are directly in contact with; however, interdigital sensors are com-
monly used invasively, making them less optimal for industries with stringent quality
requirements.

Dielectric sensors work on the principle of monitoring dipole and ion movement
within a material under a time-varying electric field (E). The alignment and relaxation
of the charged particles within the sample are monitored by the sensor in the form of
a capacitive (C) and resistive (R) response [69]. These values are used to calculate the
dielectric parameters to be referenced throughout this paper. Thermoset curing can be
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evaluated using these parameters due to the time-, temperature-, and frequency-dependent
response of the dielectric sensor. The dielectric sensor captures the change in ion mobility,
which directly relates to the cure state of the material as it crosslinks. It should be noted
that some of the variable representations in this paper may differ from the cited sources
to maintain the consistency of the variable meanings used in the following governing
equations and correlations.

Permittivity (ε′) is calculated in Equation (6) using capacitance, electrode spacing
(L), the electrode area (A), and the permittivity of free space (ε0 = 8.854 × 10−12 F/m), as
derived from [70]:

ε′ =
CL
ε0 A

(6)

Dielectric loss (ε′′) is calculated in Equation (7) using resistance, the electrical excitation
frequency (ω), electrode spacing and area, and the permittivity of free space, as derived
from [70]:

ε′′ =
L

RωAε0
(7)

Impedance (Z) is calculated in Equation (8) with the resistance, excitation frequency,
and conductance, with j as the imaginary component [71]:

Z =
1

1
R + jωC

(8)

Ion conductivity (σ), which is related to the inverse relationship of ion viscosity
and frequency-independent resistivity (ρ), is calculated in Equation (9) using resistance,
electrode spacing, and electrode area [71]:

ρ =
1
σ
=

RA
L

(9)

The dissipation factor (D), also known as tanδ, can be calculated in Equation (10)
using the permittivity and dielectric loss or the resistance, capacitance, and excitation
frequency [72]:

D = tanδ =
ε′′

ε′
=

1
ωRC

(10)

While the dielectric response provides a great deal of information, it does not directly
relate to information about the cure state of a thermoset polymer. A correlation function is
needed to relate the dielectric properties to the state of the chemical reaction, specifically the
degree of cure and glass transition temperature. The data may be interpreted qualitatively
by evaluating artefacts from a graph or quantitatively by deriving equations. The data
must also be corroborated using techniques that are currently known to provide insight
into the cure state of a thermoset polymer: typically thermochemical or rheometric testing.
Examples of these methods are provided in the following section, with an overview shown
in Figure 6.

3.2.2. Correlation Functions

There are many methods for correlating dielectric signals with the degree of chemical
reaction that has occurred in the resin or composite. Common methods and their variants
will be discussed in this section, including the correlation functions and the supplemental
testing techniques.

Dielectric Loss Correlation

Fournier et al. [73] used a dielectric loss correlation through their work evaluating
neat epoxy resin using parallel-plate dielectric sensors. The dielectric loss factor (ε′′), which
can be calculated from Equation (7), was used to predict vitrification by identifying the
time of maximum loss for each experimental frequency. Dielectric loss correlations have
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also been used to identify the gel point and have been verified through comparison to
rheology data [74]. Using neat RTM6 epoxy monitored by a tool-mounted dielectric sensor,
the glass transition temperature was determined as the local maximum of the dielectric
loss graph. Additionally, the crossover point between the permittivity and dielectric loss
can be demonstrated to indicate the gel point. This has been correlated to rheology test
data and specifically to the crossover point of the storage modulus and the loss modulus,
G′ and G′′, as seen in Figure 7.
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From a quantitative perspective, Hardis et al. proposed an equation for the degree
of cure based on the progression of dielectric loss during the cure of an epoxy monitored
with parallel-plate dielectrics [75]. The equation for degree of cure (α) with respect to time
is stated in Equation (11):

α(t) =
log ε

′′
0 − log ε

′′
t

log ε
′′
0 − log ε

′′
∞

(11)

where the subscripts ε′′ represent the dielectric loss at start of cure (ε0
′′), at time t (εt

′′), and
at cure completion (ε∞

′′). The degree of cure generated from this equation aligned well
with degree of cure measurements determined from DSC and Raman spectroscopy.

Impedance Correlation

Mijovic et al. used an impedance correlation to calculate the resistivity of a sample
based on the monitored impedance signal (Z) calculated in Equation (8). Impedance was
used to calculate resistivity (ρ), and then boundary conditions were evaluated to derive
Equation (12) for the degree of cure [71,76]:

α

αm
=

log ρ− log ρo

log ρm − log ρo
(12)

in which αm represents the maximum degree of cure, and ρ0 and ρ∞ represent the initial and
maximum values of resistivity. The cure progression of neat epoxies was evaluated using
this function, and graphs of the degree of cure versus time were compared successfully to
those produced by HPLC and FTIR analysis, as shown in Figure 8. Further, the vitrification
point was identified at the onset of the second step on the graph showing imaginary
impedance (Z′′) versus time, and this point was successfully correlated to the storage
modulus (G′′) peak from the corresponding rheological data.
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of reaction (%) versus time (minutes), with curves indicated at various temperatures. Reprinted with
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This method has recently been used for determining the vitrification point of an RTM6
epoxy reinforced with carbon fibre [77,78]. In this method, the imaginary impedance (Z′′), a
component of Equation (8), is evaluated across multiple frequencies to eliminate the impact
of the constant phase element, the second term of Equation (13):

Z′′ =
ωCR2

1 + ω2C2R2 +
2

(Aeω)n (13)



Polymers 2022, 14, 2978 11 of 28

in which Ae and n are coefficients of the constant phase element. The first term of
Equation (13) provides Zm

′′, or the material impedance, and a plot such as the one in
Figure 9 has been overlaid on a graph of degree of cure derived from the material cure
model. This qualitative comparison shows similar trends between the term Zm

′′ and the
degree of cure. Furthermore, the second step or shoulder region on the graph of Zm

′′ versus
time indicates the vitrification point. Studies by this research group were conducted using
both a customized woven sensor for the cure monitoring and a lineal sensor for the flow
monitoring of the resin infusion process. Interestingly, the lineal sensor configuration was
also able to produce a cure signal that was reasonably similar to that produced by the cure
sensor [78].
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′′ and degree of cure generated from cure kinetics model [77].

Similarly, evaluating the frequency spectra of the imaginary impedance has been
used to draw a direct correlation to the degree of cure [79]. By applying linear regression
to the graph of degree of cure versus log(Z′′max) at temperature T, the c coefficients in
Equation (14) can be determined:

log Z′′max = (c11 + c12T)α + c2 (14)

This equation was used to successfully model an isothermal cure cycle of RTM6 epoxy
using an interdigitated dielectric sensor and a degree of cure prediction from the cure
kinetics model. Figure 10 shows a comparison of this model to the experimental data of
Z′′. Furthermore, a non-isothermal cure was shown to fit the model quite closely, although
with slightly more errors in the progression of the model.
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Ion Conductivity Correlation

Ion conductivity correlations have been used the most frequently due to the connection
of ion conductivity, and therefore ion viscosity, to the bulk polymer viscosity. In this section,
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various approaches are used based on whether the ion conductivity or ion viscosity, which
is also known as the polymer resistivity (ρ), are being monitored.

Starting with ion conductivity, McIlhagger et al. determined the Tg of an epoxy
matrix reinforced by both glass and carbon fibres using signals generated from parallel-
plate dielectric sensors [53,80]. The derivative of the log of the ionic conductivity, known
as the DLIC, approaches zero as the sample approaches full cure. This cure point has
been compared to DMA and DSC results in addition to being verified by tension and
flexure mechanical performance tests to identify the peak of material performance, which
occurs at full cure [80]. Additional critical points have been determined using a plot of
the ionic conductivity. The maximum conductivity occurs at the point of minimum resin
viscosity, which can be a critical point for out-of-autoclave and resin infusion processing,
and as seen in Figure 11, the minimum point of DLIC indicates the onset of gelation [53].
McIlhagger et al. determined the minimum viscosity, gel point, and point of full cure with
the data corroborated using DMA and DSC testing [53].
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This correlation method has also been employed elsewhere, specifically in assigning
the maximum value of ionic conductivity to the point of minimum polymer viscosity, the
inflection point of the LIC after the peak viscosity relating to the onset of gel, and the
maximum of dielectric loss corresponding to the onset of vitrification [56,81,82].

Yang et al. proposed Equation (15) as a method to calculate the Tg of an epoxy resin
using a miniature interdigital sensor to monitor ionic conductivity:

Tg =
log G0(T)− log G(t)

log G0(T)− log G∞(T)
Tg∞(T) (15)

where G0(T) and G∞(T) are the temperature-dependent initial and final conductance, G(t) is
the time-dependent conductance, and Tg∞(T) is the Tg calculation based on a cure kinetics
model [83]. Through this in situ calculation of Tg and use of the DiBenedetto equation, the
degree of cure can be calculated as in Equation (16):

α =
Tg − Tg0

Tg − λTg − Tg0 + λTg∞
(16)

which uses the Tg values calculated from Equation (15) and λ, which is a ratio of the heat
capacities as calculated during cure kinetics characterisation. This prediction has indi-
cated a consistent trend, however an error of approximately 5–10% exists when compared
with DSC.
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Ion viscosity correlations are related to ion conductivity through the inverse relation-
ship ρ = 1/σ and is then correlated to polymer viscosity values through Equation (17):

ρ =
6πηr
q2n

(17)

which uses polymer viscosity (η), ion particle size (r), ion charge (q), and ion concentration
(n) [84]. As the ion viscosity thus has a direct relationship to polymer matrix viscosity, it is
possible to understand key information regarding thermoset cure based on our knowledge
of viscosity progression.

Boll et al. evaluated a carbon fibre/epoxy composite using a miniature embedded
dielectric sensor by estimating that cure completion occurs when ρ reaches a plateau [84].
The cure state was then verified by completing a DSC evaluation of the cured part and by
determining the degree of cure from the residual enthalpy. This method was also used by
Moghaddam et al. when evaluating the effectiveness of their micro interdigitated sensor
compared to current commercial sensors [85].

For a glass–epoxy prepreg monitored with a surface-mounted interdigitated electrode,
Park established that the log of the ion viscosity had a linear relation to the cure temper-
ature [86]. This enabled the calculation of Equation (18) for the degree of cure through a
derivation of the DiBenedetto equation:

log ρ− log ρ0

log ρ∞ − log ρ0
=

Tg − Tg0

Tg∞ − Tg0
=

λα

1− (1− λ)α
(18)

in which the subscript 0 indicates the initial condition, and ∞ indicates the fully cured
condition. A comparison of the degree of cure calculated from Equation (18) to that derived
from DSC and FTIR analysis is shown in Figure 12, with the DEA results being comparable
to those of the other methods.
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to DSC and FTIR analysis. Reprinted with permission from Ref. [86] 2017, John Wiley and Sons.

A similar equation for degree of cure was calculated from the ion viscosities in accor-
dance with Equation (19):

α =
log ρ− log ρmin

log ρmax − log ρmin
(19)

in which the subscripts indicate the minimum and maximum ion viscosities measured
during the cure. Franieck et al. evaluated Equation (19) for a silica-filled epoxy in which
cure was monitored using a tool-mounted monotrode dielectric sensor [87]. The results
from this analysis were compared to the degree of cure calculated from DSC, with limited
success. While the DEA and DSC graphs follow similar trends, the DEA results are limited
by the onset of vitrification, where the DSC results appear to better capture conversion
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during the diffusion-controlled period of cure. Figure 13 shows the differences in the results,
with the DEA-calculated cure index operating on a shorter time scale than the DSC results.

Polymers 2022, 14, x FOR PEER REVIEW 14 of 29 
 

 

[86]. This enabled the calculation of Equation (18) for the degree of cure through a derivation 

of the DiBenedetto equation: 

log 𝜌 − log 𝜌0

log 𝜌∞ − log 𝜌0
=

𝑇𝑔 − 𝑇𝑔0

𝑇𝑔∞ − 𝑇𝑔0
=

𝜆𝛼

1 − (1 − 𝜆)𝛼
 (18) 

in which the subscript 0 indicates the initial condition, and ∞ indicates the fully cured condi-

tion. A comparison of the degree of cure calculated from Equation (18) to that derived from 

DSC and FTIR analysis is shown in Figure 12, with the DEA results being comparable to those 

of the other methods. 

 

Figure 12. Comparison of degree of cure calculated from dielectric-monitored ion viscosity compared to 

DSC and FTIR analysis. Reprinted with permission from Ref. [86] 2017, John Wiley and Sons. 

A similar equation for degree of cure was calculated from the ion viscosities in accord-

ance with Equation (19): 

𝛼 =
log 𝜌 − log 𝜌𝑚𝑖𝑛

log 𝜌𝑚𝑎𝑥 − log 𝜌𝑚𝑖𝑛
 (19) 

in which the subscripts indicate the minimum and maximum ion viscosities measured during 

the cure. Franieck et al. evaluated Equation (19) for a silica-filled epoxy in which cure was 

monitored using a tool-mounted monotrode dielectric sensor [87]. The results from this anal-

ysis were compared to the degree of cure calculated from DSC, with limited success. While 

the DEA and DSC graphs follow similar trends, the DEA results are limited by the onset of 

vitrification, where the DSC results appear to better capture conversion during the diffusion-

controlled period of cure. Figure 13 shows the differences in the results, with the DEA-calcu-

lated cure index operating on a shorter time scale than the DSC results. 

 

Figure 13. Comparison between cure index derived from DEA (a) and conversion derived from DSC (b) 

[87]. 

Figure 13. Comparison between cure index derived from DEA (a) and conversion derived from DSC
(b) [87].

Interestingly, Franieck et al. did not limit their investigation into dielectric cure moni-
toring and instead used the dielectric results to develop a kinetic model. The focus of this
paper was to compare both the model-free and model-based kinetic equations derived from
dielectric analysis with those derived from DSC results. In this they determined that the
dielectric kinetic model aligned with the experimental data; however, as stated previously,
the dielectric model and DSC model showed differences around the vitrification point.

Dissipation Factor Correlation

Kim and Lee used a dissipation factor correlation, in which the dissipation factor
was normalised for temperature effects, and an equation for the degree of cure was de-
rived [64,88]. An interdigital dielectric sensor was used to monitor the resistance (R) and
capacitance (C) of polyester–fibreglass and epoxy–fibreglass composites. The resistance and
capacitance were used to calculate the dissipation factor following Equation (10). As the
dissipation factor is a function of both the temperature and degree of cure of the matrix, the
elimination of the temperature component will allow for the degree of cure to be calculated.
The degree of cure determined from D was compared to that of DSC and demonstrated fair
accuracy up to a cure level of approximately 70%, as seen in Figure 14.
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Using the same method of eliminating the temperature effects, Equation (20) was
derived to determine the degree of cure:

α = −1
s

log
[(

log D− log Do

q(T − To)

)
− p

q

]
(20)
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in which the material parameters Do, To, p, q, and s can be determined experimentally by
following the procedure stated in [88].

Another method for evaluating the dissipation factor was calculated from an interdigi-
tal dielectric sensor reading and then used to determine the start and end points of cure
for a carbon–epoxy composite [89]. The derivative of the dissipation factor was taken with
respect to time, enabling the cure start time to be identified as the maximum of dD/dt, and
the cure end time to be identified as dD/dt = 0.

3.2.3. Summary and Future Work

Dielectric analysis shows much promise for the in-line cure monitoring of thermoset
composites. There are many methods of correlating dielectric data to material transitions,
such as the gel and vitrification points, and physical properties, such as Tg and the degree
of cure. Currently, a major gap in our understanding of dielectric cure analysis is which
of these methods is the most accurate, and whether these methods are consistent with
one another. The implementation of each technique may be dependent on the fidelity and
specificity of data needed for the application, but up until now, the methods have not been
compared to ensure if they can be used agonistically or not.

Aside from the capability of the technology to successfully monitor cure, there is other
work to be carried out to successfully implement the technology into a production environ-
ment. For example, embedded sensors must not impact the integrity of the surrounding
part [56]. One strategy is to use extremely small sensors to minimise the performance
impact [84,85]. It has also been noted that a tool-mounted sensor can impact the heat
transfer through a composite part depending on the tool’s material, which can potentially
cause a gradient in the degree of cure [90]. Finally, there are a number of opportunities for
dielectric sensors to be used for the flow monitoring of resin-infused composite parts in
addition to cure monitoring. A great deal of research has been carried out to show that
dielectrics can successfully capture resin arrival during an infusion process [77,78,91]. This
suggests that a dielectric sensor could be used to characterise multiple process steps with a
single device.

3.3. Ultrasonic Sensors
3.3.1. Sensor Background and Governing Equations

Ultrasonic sensor technology is commonly used for the non-destructive inspection
of composite part quality and has only recently been viewed as a potential method of
monitoring the cure reaction of a thermoset polymer. The main principle of ultrasonic
sensor cure monitoring is that as ultrasonic waves are transmitted through the material,
the propagation behaviour of these waves is impacted by the progression of the chemical
reaction [92,93]. As the polymer continues to react, the density and elastic behaviour
change and thus impact the velocity and attenuation of the sound waves. Multiple wave
propagation models have been proposed to understand the polymer cure state [94]. All
ultrasonic devices function under these principles; however, there are multiple types of
transducer and receiver configurations, which are depicted in Figure 15.

The different sensor types each produce an ultrasonic wave with a measured velocity
(v) and attenuation (a) characteristics, the governing equations for which are provided
below. It should be noted that in literature, attenuation is commonly represented as alpha
(α); however, here, it will be indicated by (a) to differentiate it from the definition of the
degree of cure being used throughout this paper.

Longitudinal velocity (cL) is calculated in Equation (21) using the elastic modulus (E),
velocity, and density (ρ) [33]:

cL =

√
E(1− v)

ρ(1 + v)(1− 2v)
(21)
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The shear velocity (cs) is calculated in Equation (22) using the elastic modulus, density,
and velocity [33]:

cS =

√
E

2ρ(1 + v)
(22)

Attenuation is calculated in Equation (23) using the ratio of the amplitude of the
incident wave (A) to the change of amplitude from the incident (∆A) [33]:

a = − A
π∆A

(23)

The longitudinal storage modulus (L′) is calculated in Equation (24) using the density,
longitudinal velocity, attenuation, and wavelength (λ) [95]:

L′ =
ρc2

L

(
1−

(
aλ
2π

)2
)

(
1 +

(
aλ
2π

)2
)2 (24)

The longitudinal bulk modulus (L′′) is calculated in Equation (25) using density,
longitudinal velocity, attenuation, and wavelength [95]:

L′′ =
ρc2

L

(
aλ
2π

)
(

1 +
(

aλ
2π

)2
)2 (25)
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The loss factor, or tanδ, is calculated as the ratio of the longitudinal storage and bulk
moduli in Equation (26) [96]:

tanδ =
L′

L′′
(26)

Like dielectric cure monitoring, the parameters listed in the governing equations in
this section do not correlate directly to information on material state or properties. The
following section provides an overview of the correlation functions and analysis techniques
that have been demonstrated in the literature to date.

3.3.2. Correlation Functions

Data taken from ultrasonic sensors are commonly interpreted qualitatively, with
graphic artefacts indicating polymer phase transitions that appear very similar to a DMA
curve. Some varieties of ultrasonic monitoring have been referred to as ultrasonic dynamic
mechanical analysis [97]. The sound waves cause molecular movement, which becomes
restricted as the material becomes cross-linked. The following section is a summary of
the methods that have been used in literature and includes information on the type of
ultrasonic transducers and what parameters can be monitored with them.

One of the more comprehensive methods for isolating phase transitions was suggested
by Lionetto et al. [97] and has been used to evaluate a polyester resin with through trans-
mission ultrasonic monitoring. In this method, the features of the velocity versus time
curve are separated into three segments:

1. Velocity is constant when the resin is liquid, but the reaction is still slow;
2. At the gel point, the velocity begins to increase, and the reaction progresses rapidly;
3. The velocity reaches a plateau at the vitrification point, indicating the slowdown of

the reaction.

The distinction between these phases is shown in Figure 16, with the vertical lines
indicating the approximate gel point and vitrification point.
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This method of evaluating cure was also applied to the one-sided air-coupled ul-
trasound monitoring of polyesters [98,99] and was verified by rheological testing. This
viscoelastic interpretation of phase change has also been used for the cure monitoring of
epoxies using fibre-optic ultrasound sensors [100].

Ghodhbani et al. [101] used a similar method to identify the different stages of the
reaction; however, this was achieved by identifying the key features of the evolution of
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the complex’s c33 viscoelastic coefficient throughout the curing process, with c33 being
calculated by the following equation, Equation (27):

c33 = ρc2
L(1 + j

2aLvL
ω

) (27)

in which ρ is the density, and aL and vL are the longitudinal attenuation and velocity. Once
c33 can be plotted with time, the tangent method can be applied to isolate the three phases
of cure:

1. The liquid viscous stage;
2. The glass transition stage;
3. The saturation solid stage.

The transition points of tgel and tsaturation are indicated in Figure 17. It should be further
noted that the vitrification point can be assigned to the peak of the mechanical loss (δm),
which also roughly correlates to the inflection point of c33.
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Figure 17. Different stages of the cure reaction based on a tangent evaluation of the complex
viscoelastic coefficient, c33. Reprinted with permission from Ref. [101] 2016, Elsevier.

Furthermore, Ghodhbani et al. proposed a degree-of-cure model based on a Weibull
distribution model of c33. The equation for the degree of cure is indicated by Equation (28):

α(t) =
c33(t)− c33,0

c33,∞ − c33,0
(28)

in which the 0 and ∞ subscripts for c33 indicate the initial and maximum values. This
model compared to the Kamal chemical reaction model well.

Schmachtenberg et al. measured the sound velocity during the infusion and cure
of epoxy-reinforced fibreglass and compared it to the degree of cure calculated off-line
using the DSC measurements [102]. The inflection point of the sound velocity curve was
correlated to approximately 65% conversion, as shown in Figure 18.

Hudson and Yuan [103] evaluated the cure of epoxy-reinforced carbon fibres using
guided-wave ultrasonic monitoring. Specifically, the group velocity of the guided waves
was evaluated to determine the correlation to the cure points identified by the Convergent
Raven cure simulation program.
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Figure 18. Comparison of degree of cure to the sound velocity of an epoxy-reinforced composite.
Reprinted with permission from Ref. [102] 2005, Elsevier.

Samet et al. [104] used attenuation to correlate to material viscosity, which was demon-
strated for silicone oils. While the pulse echo configuration was not used with thermoset
polymers, the equation for attenuation was shown to correlate to material viscosity, which
could be used to monitor the viscosity state of a curing polymer in the future. Finding
the peak attenuation has also been used to correlate to the point of vitrification for the
through-transmission ultrasonic evaluation of epoxies [105] and polyesters [106].

Maffezzoli et al. [96] used a pulse echo ultrasonic transducer for the process monitoring
of a thin sheet of epoxy using the longitudinal velocity and attenuation to calculate the
storage and bulk moduli. The loss factor, or tanδ, calculated from Equation (26) was then
graphed, with the peak value indicating the glass transition.

3.3.3. Summary and Future Work

Ultrasonic cure monitoring may have the potential to identify cure transitions; how-
ever, this may not be sufficient for high-performance composite applications. Quality
assurance requirements in the aerospace industry, for example, commonly depend on
reaching a specific threshold of the degree of cure or Tg, and a statement on phase tran-
sitions may be insufficient for implementation. However, ultrasonics have also been
demonstrated to potentially be capable of evaluating lingering chemical reactions where
dielectrics cannot [107]. In a study comparing ultrasonics, dielectrics, and nuclear magnetic
resonance, the ultrasonic sensor continued to detect a response after the vitrification point
of the resin where dielectric monitoring showed no activity. This could potentially indicate
that ultrasonics are more sensitive, particularly in late-stage chemical reactions.

For non-destructive inspection, ultrasonics have also been demonstrated to be useful
in other areas of in-process composite inspection. Scholle and Sinapius [108] demonstrated
the use of ultrasonics for the cure monitoring of pultrusion processing. Multiple research
groups have demonstrated that ultrasonics can successfully detect the flow front and
impregnation [102,109] in addition to monitoring the thickness changes [110,111] that occur
during resin infusion processing. Ultrasonics have been embedded directly into rheometric
plates to collect simultaneous rheology and ultrasonic data [112]. Finally, evaluations have
been conducted to capture the mechanical performance impact of embedded sensors [113].
While many ultrasonic sensors are external to the part, it is critical to understand their
functional impact when they are used internally.
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3.4. Fibre-Optic Sensors
3.4.1. Sensor Background and Governing Equations

Fibre-optic sensors have gained attention for their use in monitoring residual strain
during the thermoset cure process [89,114] and for their capabilities for structural health-
monitoring in marine [115,116] and energy (wind turbine) [117] applications. The strain-
monitoring capability of fibre-optic sensors has been shown to indicate phase changes
during cure [81], and its potential for in situ cure monitoring has been reviewed in [117].
The two main types of optical fibres, those that detect optical properties and those that
detect mechanical properties, have been reviewed in [33,34]. An overview of the types of
sensing technology and their correlation techniques is show in Figure 19.
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Optical fibre refractometers (OFR) utilise a cladded core fibre, in which an open
portion of the core is in contact with the composite matrix material. The loss of the incident
light signal is monitored based on the reflection coefficient (R0) calculated using Fresnel’s
Law in Equation (29), in which n1 and n2, which are the refractive indices of the core and
cladding, respectively:

R0 =

(
n1 − n2

n1 + n2

)2
(29)

The refractive index (n) of the material under inspection can then be related to its
density (ρ) using the Lorentz–Lorenz Law in Equation (30), in which RM is the molar
refractivity, and M is the molar mass of the material:

n2 − 1
n2 + 1

=
RM
M

ρ (30)

Optical fibre interferometers (OFI), most commonly Fabry–Pérot fibres, monitor the
strain imparted to the fibre by identifying the shift in the light wavelength along a series of
reflective microsurfaces on the core of the fibre. The most common type of Fabry–Pérot
OFI is a fibre Bragg grating (FBG) optical fibre. Under applied strain, the distance (Λ)
between these grating changes, which then causes a shift in the Bragg wavelength (λB).
The initial Bragg wavelength is calculated via Equation (31) using the grating distance and
the effective index of the fibre (n0) [81]:

λB = 2noΛ (31)
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The shift in the Bragg wavelength (∆λB) can then be calculated by Equation (32) using
the initial Bragg wavelength, the strain-optic coefficient (pe), the change in strain (∆ε), the
coefficient of thermal expansion (αCTE), the thermo-optic coefficient (ξ), and the change in
temperature (∆T) [118]:

∆λB = λB(1− pe)∆ε + λB(αCTE + ξ)∆T (32)

Equation (32) is divided into a strain-induced component of the Bragg wavelength
shift and a thermal component. The decoupling of these components is an important part
of interpreting the wavelength shift, as detailed in the following section, which discusses
the correlation techniques for both optical property monitoring and strain monitoring.

3.4.2. Correlation Functions
Optical Property Correlations

Fibres that monitor optical properties such as light intensity or output have been
correlated to key cure events. An optical fibre with a section of cladding removed was used
to monitor the cure of a bismaleimide (BMI)–carbon fibre prepreg by monitoring the atten-
uation of the change in light intensity [119]. In this study, the minimum attenuation was
attributed to the minimum resin viscosity, the increase was attributed to the crosslinking
process, and the final plateau was correlated to the end of the cure reaction, each step of
which has been correlated to a numerical model.

A second study [66] used this method to evaluate the reflected light intensity of optical
fibre sensors during the cure of a resin-infused carbon fibre–epoxy composite. During
the infusion process, it was noted that a sharp drop in the sensor signal corresponded to
resin arrival. Regarding cure, the rapid increase in the light intensity was attributed to a
solidification and density increase during crosslinking, and the subsequent plateau was
correlated to the end of the reaction.

A third study [120] also used this method to evaluate the refractive index of a tilted
fibre Bragg grating (TFBG) optical fibre to monitor a UV-cured epoxy. In this case, an
initial dip in the refractive index was attributed to the temperature response due to the
exothermic reaction of the epoxy. The signal increase and plateau were then attributed to
the onset of the reaction and cure completion, respectively. Similarly, an optical fibre was
used to monitor the power output due to light signal changes during the cure of an epoxy
resin, with the plateau of the power signal indicating the gel point [121]. The gel point was
confirmed with rheology measurements.

An alternate method was used to evaluate the reflected light intensity of an FBG
sensor during the cure of a graphite–epoxy prepreg [122]. In this study, the rapid increase
in the reflected light intensity was also attributed to the viscosity increase due to gel
and the solidification of the matrix around the fibre. However, it was noted that as the
material continued to crosslink, the increase in peak intensity slows down. It was further
suggested that the Tg can be identified as the point where the slope of the best-fit lines
for peak intensity changes. In this case, the Tg determination of 95 ◦C agreed with the
material specifications.

Mechanical Property Correlations

Optical fibres can also be used to monitor strain measurements using a variety of
methods. The most common interpretation of the cure events follows a similar trend to the
interpretation of light signals:

1. An initial dip is observed in the signal due to an increase in temperature, as the resin
is still liquid and not transmitting strain to the fibre;

2. An increase in the strain measurement is observed due to the crosslinking reaction;
3. The measurement plateaus at cure completion once the matrix has frozen the fibre

into place.
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Multiple research groups have identified that the strain signal plateaus once the resin
forms a solid matrix. An extrinsic Fabry–Pérot interferometer (EFPI) and a FBG sensor
were used to identify that the strain signals level off during the vitrification phase when
monitoring cure in a carbon fibre–epoxy laminate [123]. Additionally, FBG has been used
to monitor a 3D braided preform infused with epoxy in which the Bragg wavelength shift
was observed to plateau as the epoxy solidified [124].

An evaluation of epoxy cure with two varieties of optical fibres, a Fresnel optical
fibre and an FBG, correlated with the results of both light and strain monitoring strategies,
with a comparison of the results in Figure 20 [125]. The signal of the optical fibre was
evaluated using the three-phase evaluation detailed in the previous section, whereas the
Bragg wavelength identified the peak value as the onset of gel and the plateau of the signal,
indicating cure completion.
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Figure 20. Comparison of cure behaviour for a Fresnel optical fibre sensor signal and the Bragg
wavelength from an FBG signal [125].

A dual-period fibre Bragg grating and long-period grating (LPG) were used to monitor
RTM6 epoxy cure by isolating the thermal and strain components of the Bragg wavelength
shift [65]. By using two sets of gratings superimposed on the same fibre, it becomes possible
to decouple the temperature and strain components. During a composite cure, there are
two phases: an initial temperature ramp, at which point the resin is liquid and there is no
measurable strain, and an isothermal hold, during which there is no temperature change.
Using such a fibre can identify the Bragg wavelength shift as being dependent solely on
the temperature component during the ramp and solely on the strain component during
the dwell. Using this rationale, a 100 µε drop in strain was observed during an isothermal
cure hold. The onset of this strain drop was identified as the onset of gel, and the end point
of the strain drop was correlated to the end of cure. This was compared to dielectric sensor
measurements collected on the same sample, which were analysed using the ion viscosity
correlation, similar to the methodology used in [56] but using ion viscosity measurements.

3.4.3. Summary and Future Work

Like ultrasonic sensors, at this time, fibre optics may not have the necessary quantita-
tive output required for high-performance composite applications. While the signals can
identify phase transitions in the matrix, a specific evaluation of the degree of cure is lacking.
Further, it has been established that fibre-optic sensors are quite delicate and that both
the embedding and the cure process have the potential to cause bending and constriction,
which may negatively impact signal quality [126].

Aside from this, optical fibres show promise for residual stress measurement [122] and
structural health monitoring compared to strain gauge measurement and are sensitive to
changes in resin flow and mould closing during infusion processes [124]. Optical fibres can
also be used to identify resin arrival and flow events during infusion processing [66,127],
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commonly by monitoring changes in the light signals as the length of the fibre becomes
wetted by the resin [121].

Finally, it is possible to monitor the crystallisation process of thermoplastic polymer
by evaluating the residual strain. The processing mechanism for thermoplastic polymers is
fundamentally different from the cure processing of thermosetting polymers, as they do not
undergo a chemical reaction. For these materials, the sensor monitors the progression of
crystallization rather than the progression of cure reaction. The Bragg wavelength shift of an
FBG sensor was used to evaluate the crystallisation process for a fibreglass–polypropylene
composite and successfully identified the key crystallisation points shown in Figure 21.
These results were successfully compared to DSC.
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Figure 21. Identification of crystallisation features of a polypropylene composite using an FBG sensor
compared to DSC results. Reprinted with permission from Ref. [128] 2005, Elsevier.

4. Conclusions

A critical review of the correlation methods for different in-line composite cure-sensing
technologies has been presented. Thermocouple cure monitoring can be reliably correlated
to a degree of cure using DSC evaluation or kinetic modelling. Dielectric analysis can
produce a wide variety of cure state information, as there are many correlation methods
that can be applied to the different monitored parameters. Ultrasonics and fibre optics are
commonly used to correlate to the specific phase transitions of the polymer rather than a
quantitative measurement of cure state. While the benefits and drawbacks of implementing
each type of sensor have been evaluated elsewhere, this paper asserts that it is critical
to select a sensor and correlation method to achieve the required fidelity during cure
monitoring for the specific application. Providing a qualitative determination of cure
ending, such as fibre-optic sensors, may be appropriate for some applications. Whereas an
application which requires a degree of cure or Tg with a specific value may benefit from
thermocouple or dielectric sensing.

There are multiple areas of potential improvement for in situ cure-sensing technology.
The availability of non-invasive sensors and sensors that do not require a permanent
installation would increase the ease of implementation. The development of a quantitative
measure of cure for sensors, such as ultrasonics, would enable their use in a wider range
of applications. A comparison of the different correlation methods for each sensor type
would identify the most accurate method for evaluating cure progress, including whether
the methods are applicable across multiple materials and multiple cure cycles. Finally, a
robust evaluation of the correlation methods across repeated process cycles would indicate
if the precision was sufficient to capture manufacturing variations. Future work in these
areas would improve the fidelity of data collection and enable new sensing technologies to
be readily and confidently adopted.
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