Photothermal Thin Films with Highly Efficient NIR Conversion for Miniaturized Liquid-Crystal Elastomer Actuators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design Strategy of Photothermal Actuation
2.2. Fabrication
3. Results and Discussion
3.1. Influences of PTFs on LCE Thermal Behaviors
3.2. Demonstration of LCE Crawling Devices with PTFs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, L.; Tong, X.; Zhang, H.; Chen, M.; Zhao, Y. Near-infrared light-driven locomotion of a liquid crystal polymer trilayer actuator. Mater. Chem. Front. 2018, 2, 1383–1388. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, J.; Li, H.; Shi, Z.; Meng, Q.; Liu, S.; Chen, J.; Liu, X. Toward Application of Liquid Crystalline Elastomer for Smart Robotics: State of the Art and Challenges. Polymers 2021, 13, 1889. Available online: https://www.mdpi.com/2073-4360/13/11/1889 (accessed on 25 September 2021). [CrossRef] [PubMed]
- Ikeda, T.; Mamiya, J.-I.; Yu, Y. Photomechanics of Liquid-Crystalline Elastomers and Other Polymers. Angew. Chem. Int. Ed. 2007, 46, 506–528. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Cheng, Q.; Li, K.; Yu, Y. A Light-Powered Liquid Crystal Elastomer Spring Oscillator with Self-Shading Coatings. Polymers 2022, 14, 1525. Available online: https://www.mdpi.com/2073-4360/14/8/1525 (accessed on 12 May 2022). [CrossRef]
- Hwang, I.; Mun, S.; Shin, H.; Yun, S. A NIR-Light-Driven Twisted and Coiled Polymer Actuator with a PEDOT-Tos/Nylon-6 Composite for Durable and Remotely Controllable Artificial Muscle. Polymers 2022, 14, 432. Available online: https://www.mdpi.com/2073-4360/14/3/432 (accessed on 2 March 2022). [CrossRef]
- Da Cunha, M.P.; Ambergen, S.; Debije, M.G.; Homburg, E.F.G.A.; Toonder, J.M.J.D.; Schenning, A.P.H.J. A Soft Transporter Robot Fueled by Light. Adv. Sci. 2020, 7, 1902842. [Google Scholar] [CrossRef] [Green Version]
- Wermter, H.; Finkelmann, H. Liquid crystalline elastomers as artificial muscles. e-Polymers 2001, 1, 111–123. [Google Scholar] [CrossRef]
- Schuhladen, S.; Preller, F.; Rix, R.; Petsch, S.; Zentel, R.; Zappe, H. Iris-Like Tunable Aperture Employing Liquid-Crystal Elastomers. Adv. Mater. 2014, 26, 7247–7251. [Google Scholar] [CrossRef]
- McConney, M.E.; Martinez, A.; Tondiglia, V.P.; Lee, K.M.; Langley, D.; Smalyukh, I.I.; White, T.J. Topography from Topology: Photoinduced Surface Features Generated in Liquid Crystal Polymer Networks. Adv. Mater. 2013, 25, 5880–5885. [Google Scholar] [CrossRef]
- Ji, Y.; Marshall, J.E.; Terentjev, E.M. Nanoparticle-Liquid Crystalline Elastomer Composites. Polymers 2012, 4, 316–340. Available online: https://www.mdpi.com/2073-4360/4/1/316 (accessed on 25 September 2021). [CrossRef]
- Lin, B.-Y.; Liao, Y.-P.; Yang, Y.-J. A Miniaturized Light-Driven Soft Crawler Based On Liquid Crystal Elastomer with High-Efficient Photothermal Thin-Film. In Proceedings of the 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, Japan, 9–13 January 2022; pp. 628–631. [Google Scholar]
- Wang, Z.; He, Q.; Wang, Y.; Cai, S. Programmable actuation of liquid crystal elastomers via “living” exchange reaction. Soft Matter 2019, 15, 2811–2816. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Biggins, J.; Ji, Y.; Terentjev, E. Mechanical bistability in liquid crystal elastomer-wire composite actuators. J. Appl. Phys. 2010, 107, 083515. [Google Scholar] [CrossRef]
- Xiao, Y.; Jiang, Z.; Tong, X.; Zhao, Y. Biomimetic Locomotion of Electrically Powered “Janus” Soft Robots Using a Liquid Crystal Polymer. Adv. Mater. 2019, 31, 1903452. [Google Scholar] [CrossRef]
- Petsch, S.; Rix, R.; Reith, P.; Khatri, B.; Schuhladen, S.; Ruh, D.; Zentel, R.; Zappe, H. A thermotropic liquid crystal elastomer micro-actuator with integrated deformable micro-heater. In Proceedings of the 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USA, 26–30 January 2014; pp. 905–908. [Google Scholar]
- Finkelmann, H.; Shahinpoor, M. Electrically controllable liquid crystal elastomer-graphite composite artifical muscles. In Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD); SPIE: Bellingham, WA, USA, 2002; Volume 4695, pp. 459–464. [Google Scholar]
- Peng, X.; Kuang, X.; Roach, D.J.; Wang, Y.; Hamel, C.M.; Lu, C.; Qi, H.J. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit. Manuf. 2021, 40, 101911. [Google Scholar] [CrossRef]
- Chambers, M.; Zalar, B.; Remskar, M.; Finkelmann, H.; Zumer, S. Piezoresistivity and electro-thermomechanical degradation of a conducting layer of nanoparticles integrated at the liquid crystal elastomer surface. Nanotechnology 2008, 19, 155501. [Google Scholar] [CrossRef] [PubMed]
- Kent, T.A.; Ford, M.J.; Markvicka, E.J.; Majidi, C. Soft actuators using liquid crystal elastomers with encapsulated liquid metal joule heaters. Multifunct. Mater. 2020, 3, 025003. [Google Scholar] [CrossRef]
- Deng, X.; Chen, G.; Liao, Y.; Lu, X.; Hu, S.; Gan, T.; Handschuh-Wang, S.; Zhang, X. Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites. Polymers 2022, 14, 2259. Available online: https://www.mdpi.com/2073-4360/14/11/2259 (accessed on 8 June 2022). [CrossRef]
- Minori, A.; Jadhav, S.; He, Q.; Cai, S.; Tolley, M.T. Reversible actuation of origami inspired composites using liquid crystal elastomers. In Smart Materials, Adaptive Structures and Intelligent Systems; American Society of Mechanical Engineers: New York, NY, USA, 2017; Volume 58257, p. V001T08A015. [Google Scholar]
- Zeng, H.; Wani, O.M.; Wasylczyk, P.; Kaczmarek, R.; Priimagi, A. Self-Regulating Iris Based on Light-Actuated Liquid Crystal Elastomer. Adv. Mater. 2017, 29, 1701814. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Lo, C.-W.; Jiang, H. Reversible white-light actuation of carbon nanotube incorporated liquid crystalline elastomer nanocomposites. Soft Matter 2011, 7, 7511–7516. [Google Scholar] [CrossRef]
- Zeng, H.; Wani, O.M.; Wasylczyk, P.; Priimagi, A. Light-Driven, Caterpillar-Inspired Miniature Inching Robot. Macromol. Rapid Commun. 2017, 39, 1700224. [Google Scholar] [CrossRef]
- Rogóż, M.; Zeng, H.; Xuan, C.; Wiersma, D.S.; Wasylczyk, P. Light-Driven Soft Robot Mimics Caterpillar Locomotion in Natural Scale. Adv. Opt. Mater. 2016, 4, 1689–1694. [Google Scholar] [CrossRef]
- Liu, X.; Wei, R.; Hoang, P.T.; Wang, X.; Liu, T.; Keller, P. Reversible and Rapid Laser Actuation of Liquid Crystalline Elastomer Micropillars with Inclusion of Gold Nanoparticles. Adv. Funct. Mater. 2015, 25, 3022–3032. [Google Scholar] [CrossRef]
- Braun, L.B.; Linder, T.G.; Hessberger, T.; Zentel, R. Influence of a Crosslinker Containing an Azo Group on the Actuation Properties of a Photoactuating LCE System. Polymers 2016, 8, 435. Available online: https://www.mdpi.com/2073-4360/8/12/435 (accessed on 2 September 2021). [CrossRef] [PubMed] [Green Version]
- Tian, H.; Wang, Z.; Chen, Y.; Shao, J.; Gao, T.; Cai, S. Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle. ACS Appl. Mater. Interfaces 2018, 10, 8307–8316. [Google Scholar] [CrossRef]
- Wang, Y.; Dang, A.; Zhang, Z.; Yin, R.; Gao, Y.; Feng, L.; Yang, S. Repeatable and Reprogrammable Shape Morphing from Photoresponsive Gold Nanorod/Liquid Crystal Elastomers. Adv. Mater. 2020, 32, e2004270. [Google Scholar] [CrossRef]
- Wu, Z.; Cheng, P.; Zhao, W.; Fang, J.; Xu, T.; Chen, D. Allyl sulfide-based visible light-induced dynamically reshaped liquid crystalline elastomer/SWCNT nanocomposites capable of multimode NIR photomechanical actuations. New J. Chem. 2020, 44, 10902–10910. [Google Scholar] [CrossRef]
- Wang, C.; Sim, K.; Chen, J.; Kim, H.; Rao, Z.; Li, Y.; Chen, W.; Song, J.; Verduzco, R.; Yu, C. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots. Adv. Mater. 2018, 30, e1706695. [Google Scholar] [CrossRef] [Green Version]
- Kohlmeyer, R.R.; Chen, J. Wavelength-Selective, IR Light-Driven Hinges Based on Liquid Crystalline Elastomer Composites. Angew. Chem. Int. Ed. 2013, 52, 9234–9237. [Google Scholar] [CrossRef]
- Montazami, R.; Spillmann, C.M.; Naciri, J.; Ratna, B.R. Enhanced thermomechanical properties of a nematic liquid crystal elastomer doped with gold nanoparticles. Sens. Actuators A Phys. 2012, 178, 175–178. [Google Scholar] [CrossRef]
- Ford, M.J.; Ambulo, C.P.; Kent, T.A.; Markvicka, E.J.; Pan, C.; Malen, J.; Ware, T.H.; Majidi, C. A multifunctional shape-morphing elastomer with liquid metal inclusions. Proc. Natl. Acad. Sci. USA 2019, 116, 21438–21444. [Google Scholar] [CrossRef] [Green Version]
- Yakacki, C.M.; Saed, M.; Nair, D.P.; Gong, T.; Reed, S.M.; Bowman, C.N. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Adv. 2015, 5, 18997–19001. [Google Scholar] [CrossRef]
Devices | Configurations |
---|---|
Type-1 | LCE with BAP |
Type-2 Type-3 Type-4 | LCE with BAP + LM LCE with LM LCE (only) |
Device-A | Device-B | Device-C | |
---|---|---|---|
Length (L) (mm) Height (H) (mm) Thickness (W) (mm) | 13 7.8 3 | 10 6 3 | 7 4.2 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.-Y.; Lin, B.-Y.; Liao, Y.-P.; Yang, Y.-J. Photothermal Thin Films with Highly Efficient NIR Conversion for Miniaturized Liquid-Crystal Elastomer Actuators. Polymers 2022, 14, 2997. https://doi.org/10.3390/polym14152997
Wang W-Y, Lin B-Y, Liao Y-P, Yang Y-J. Photothermal Thin Films with Highly Efficient NIR Conversion for Miniaturized Liquid-Crystal Elastomer Actuators. Polymers. 2022; 14(15):2997. https://doi.org/10.3390/polym14152997
Chicago/Turabian StyleWang, Wei-Yi, Bo-You Lin, Yen-Peng Liao, and Yao-Joe Yang. 2022. "Photothermal Thin Films with Highly Efficient NIR Conversion for Miniaturized Liquid-Crystal Elastomer Actuators" Polymers 14, no. 15: 2997. https://doi.org/10.3390/polym14152997
APA StyleWang, W. -Y., Lin, B. -Y., Liao, Y. -P., & Yang, Y. -J. (2022). Photothermal Thin Films with Highly Efficient NIR Conversion for Miniaturized Liquid-Crystal Elastomer Actuators. Polymers, 14(15), 2997. https://doi.org/10.3390/polym14152997