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Abstract: In this research, eco-friendly material represented by maize stalk (MS) obtained after acid
treatment was employed for simultaneous removal of Cu2+, Pb2+, Ni2+, Cd2+, Cr3+ and Fe3+ (MX+)
from simulated textile aqueous matrix and tannery wastewater produced by the leather industry.
The acid treatment of MS was done with 4 M HCl. The influence of experimental parameters was
evaluated in order to optimize the adsorption process for simulated textile matrix. The contact time
10–60 min and initial concentration of 0.5–1 mg/L MX+ influence were studied by batch method.
Additionally, the adsorption data of MX+ onto MS was fitting by kinetic and isotherm models. The
results obtained showed that the 60 min was necessary to reach adsorption equilibrium of the MS.
The adsorption capacity of MS was 0.052 mg Cu2+/g of MS, 0.024 mg Pb2+/g of MS, 0.042 mg Ni2+/g
of MS, 0.050 mg Cd2+/g of MS, 0.056 mg Fe3+/g of MS and 0.063 mg Cr3+/g of MS at pH = 4.2. The
Langmuir model described the adsorption process very well. The MS showed huge selectivity for
Cr3+ and Fe3+ in the presence of Cu2+, Pb2+, Ni2+ and Cd2+. The adsorption of MX+ from liquid
phases were analyzed by spectrometric adsorption method (AAS). The solid phases of MS before and
after adsorption by TG and SEM analysis were characterized. When MS was used for removal of
MX+ from tannery wastewater, two major issues were investigated: First, the decrease of MX+ content
from highly polluted and difficult to treat tannery wastewaters by improve its quality and in the
second part, specific recovery of MX+ from MS mass increasing the economic efficiency of metals
production based on green technology.

Keywords: copper; lead; nickel; iron; chromium; cadmium; natural polymer; low cost treatment

1. Introduction

Nowadays, the textile and leather industry produces significant volumes of wastew-
ater with high concentrations of metals. Heavy metals are used in the production of
pigments [1]. Over time, the demand for clothing and footwear has increased considerably.
Thus, these industries contribute positively to the well-being of mankind but also have
a negative effect on the environment if proper treatment operations are not applied [2].
Therefore, the monitoring of organic compounds and metal ions must be done before
wastewater is discarded in an environmental aquatic medium [3]. For this, development
of environmentally ecofriendly technologies could solve this problem. Biomaterials are
a valuable alternative for the retention of metal ions and other organic compounds from
effluents resulting from the painting and tannery process, respectively. Recently, several
papers reported the capacity of bioadsorbents to remove heavy metals and other pollutants
from polluted wastewater [4–11]. Biomaterials have been explored raw and after chemical
modifications in order to enhance adsorption proprieties. Modifications of bio- materials
can improve adsorption proprieties but can produce a secondary pollution if the dangerous
chemical is applied for this aim. Taking into consideration this aspect is necessary to search
for chemicals which induce a minimum impact to aquatic lives. Additionally, the most
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accessible pretreatment methods should be considered. The acid treatment enhances the
adsorption characteristics of agricultural waste, mainly by the hydrolysis reactions. The
influence of an activation process with HCl was investigated by BET analysis on untreated
and treated Aloji clay. For this, the optimum conditions for height Pb2+ removal at 0.5 M
HCl, T = 100 ◦C for 120 min was studied. By applying the above conditions, BET analysis
highlighted the increase of surface area at 214.80 m2/g, pore volume of 0.1210 (cc/g) and
pore size of 1.43 nm of HCl-activated Aloji clay compared with raw Aloji clay that has
138.7 m2/g, 0.0711 (cc/g) and 1.7 nm [12]. Vafakhah et al. studied Cu2+ removal from
electroplating effluent solutions by corn cob and corn stalk raw and after being treated
with 1 M HNO3 solutions. The corn stalk 40 g (70 mesh) was obtained after being oxidized
with 200 mL HNO3 for 2 h. Corn stalk obtained after acid treatment has higher adsorption
capacity reported at corn cob and corn stalk rested raw [13]. At the same time, alkaline
treatment can be conducted. Bulgariu et al. studied the influence of alkaline treatment
on the marine green algae for improving adsorption characteristics for removal of Zn2+,
Co2+ and Pb2+. For this, a simple alkaline treatment was performed by mixing 5 g of algae
bioadsorbent with solutions of 0.2–1 M NaOH for 24 h. The best removal of metal ions was
obtained on algae treated with 0.6 M NaOH [14]. In this study, the adsorption behavior of
the MS was studied in the presence of metal ions that is possible to be found in the effluents
produced by the textile industry. Therefore, it is known that agricultural bioadsorbents are
composed by lignin, cellulose and hemicellulose as major components and other functional
groups, phenolic, carboxylic, alcohols, ketone and aldehyde [13]. These functional groups
can ionize in aqueous solutions and act as a behavior of weak cation exchanger. Some
possible theoretical explications for materials that can have low ion exchange behavior
can be formulated as: If the solutions are concentrated in MX+, the adsorbent material
has affinity for metal ions with low ionic radius and high charge. This behavior can be
explained as follows: the higher ionic radius of MX+ decreases the speed of movement
through the solution to the mass of the material. For metallic ions investigated in this paper:
Fe3+ and Cr3+ have the lowest ionic radius, i.e., 0.55 and 0.62 Å followed by 0.69 Å Ni2+,
0.73 Å Cu2+, 0.95 Å Cd2+ and 1.19 Å Pb2+. The major goal of this research was to study
the simultaneous removal of MX+ from simulated textile matrix onto modified maize stalk
obtained after acid treatment. The kinetics of the adsorption process by pseudo-first-order
and pseudo-second-order models was fitted. Additionally, the adsorption data obtained at
equilibrium has been evaluated using Langmuir and Freundlich isotherm models. The sur-
face morphology of MS by SEM images was evaluated. Thus, the MS adsorption behavior
was investigated by a highly polluted tannery wastewater.

2. Materials and Methods
2.1. Chemicals

Standard solutions of 1000 mg/L Ni(NO3)2, Cd(NO3)2, Pb(NO3)2, Cu(NO3)2, Cr(NO3)2
and Fe(NO3)3 in HNO3 0.5 mol/L, 37% HCl (density 1.16 g/mL) and 65% HNO3. Ad-
ditionally, for calibration curves, the ICP multi-element standard containing XXI ele-
ments of 100 mg/L: As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Mo, Ni, Sb, Se,
Sr, Tl, Ti, V CertiPUR®was used and were purchased from Merck, Darmstadt, Ger-
many. Acid Blue 113 (disodium; 8-anilino-5-[[4-[(3-sulfonatophenyl) diazenyl]naphthalen-1-
yl]diazenyl]naphthalene-1-sulfonate) was purchased from Sigma Aldrich, Shanghai, China.

2.2. Equipment

In this study, atomic absorption spectrometer PinAAcle 900T (Perkin Elmer, Norwalk,
CT, USA) has been used for determination of metal ion concentrations using air-acetylene
flame mode. Concentrations of samples were detected after calibration with the spec-
trometer, with standards specific for each of the metal ions in the concentration range of
0.1–0.5 mg/L.

Thermal analysis of solid MS mass before and after contact with simulated textile
effluent were done on a STA 409 PC Luxx simultaneous thermogravimeter-differential
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scanning calorimeter TG/DSC (Netzsch, Selb, Wunsiedel, Germany). Additionally, solid
phases of MS were quantified using scanning electron microscope (SEM) Quanta FEG 250
Fei, Eindhoven, The Netherlands.

The XT220A Precise Gravimetrics scale, Dietikon, Switzerland was employed to weigh
the MS masses.

The pH of supernatant solutions before and after adsorption was monitored with the
HI 255 pH meter, Hanna Instruments, Nijverheidslaan, Belgium.

Ultrapure water of 18 MΩ/cm was obtained, with an Ultra-Clear system, Bremen, Germany.

2.3. Procedure for Obtained Shredded Maize Stalk Acid Treatment of MS

MS was collected from Romanian Plain, after harvesting the corn. To obtain shredded
maize stalk, the following steps were conducted. After collecting the stem, all the leaves
were removed in the first step. Only the stem was processed to obtain biomass for adsorp-
tion studies. Subsequently, the stem was cut in small pieces and milled with an electric
grinder. The procedure to obtaining shredded and acid treatment of MS are presented
in Figure 1. The stalk was washed several times with tap water in order to remove dust,
impurities and all accumulated microorganisms. Then, to obtain particle size to 1 mm, an
electric grinder was used. The acid treatment of shredded MS was done by transferring the
MS into 4 M HCl solutions in the proportion of 1–40 w/v and stirring at 100 rpm at room
temperature for 8 h in a Berzelius glass. Subsequently, the maize stalk mass was washed
with ultrapure water until the pH of supernatant became neutral (pH ≈ 6.5). The MS
obtained was dried at room temperature (25 ± 2 ◦C) and kept in a desiccator throughout
the experiments.

Figure 1. Schematic images for obtained shredded maize stalk applied for acid treatment.

2.4. Metal Ions Used in Adsorption Studies

For experimental studies, the retention of Cu2+, Pb2+, Ni2+, Cd2+, Cr3+ and Fe3+ were
selected. Those MX+ induce a toxic effect to the aquatic environment and living organisms.
Table 1 shows the main physical and chemical characteristics of the MX+ studied [15].

Table 1. Characteristics of MX+ studied.

Metal Copper Lead Nickel Iron Chromium Cadmium

Atomic number 29 82 28 26 25 48
Atomic mass (g/mol) 63.5 207.2 58.7 55.8 51.9 121.4

Oxidation states +2, +1 +2, +4 +2, +3 +3, +2 +6, +3 +2
Atomic radius (Å) 1.57 1.81 1.62 1.72 1.85 1.71

Ionic radius (Å) 0.73 (+2) 1.19 (+2) 0.69 (+2) 0.55 (+3) 0.62 (+3) 0.95 (+2)

2.5. Validation Parameters of AAS Method

From the stock solution of 100 mg/L of 21 metallic elements by dilution with 3%
HNO3 solution, the standard solutions of 0.1, 0.2, 0.3, 0.4 and 0.5 mg/L were prepared.
The absorbance corresponding to each metallic element were read at the wavelengths (λ)
presented in Table 2 and the calibration curves were drawn based on the absorbances
obtained against the concentration for each of the MX+ standard solutions.
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Table 2. Linearity parameters of AAS method.

MX+ λ (nm) Calibration Curves R2 LOQ (µg/L)

Cu2+ 232.75 y = 0.1376x + 0.0012 0.9999 3.5
Pb2+ 283.31 y = 0.0203x − 0.0015 0.999 4
Ni2+ 232 y = 0.0753x − 0.0042 0.9998 2.7
Fe3+ 248.33 y = 0.0772x − 0.0016 0.9995 6.5
Cr3+ 358.87 y = 0.0181x − 0.00009 0.9991 2.3
Cd2+ 228.8 y = 0.4324x − 0.002 0.9998 3.1

LOQ (µg/L) represents limit of quantification of AAS method determined by applying methodology described in
previous research [16].

2.6. Preparation of Simulated Textile Matrices for Adsorption Studies

For adsorption studies, simulated textile matrices that contained metal ions in the
range of 0.5–1 g/L and synthetic Acid Blue 113 dye in concentration of 100 mg/L in each
sample were used. Metal ions existing in simulated textile samples were prepared from
mono-element standard solutions by dilution with ultra-pure water to obtain concentrations
of MX+. Only adsorption of MX+ was evaluated onto MS.

2.7. Kinetic of Adsorption Experiments

Samples of 0.5 g MS were subjected to mechanical agitation for established optimum
contact time into 250 mL Erlenmeyer flask. For this, the contact time was studied in the
range of 10, 20, 30, 40, 50, 60, 70, 80 and 90 min, respectively. MS was shaken with 0.04 L of
0.5 mg/L solution that contained the studied MX+ and 100 mg/L Acid Blue 113, at 175 rpm
(25 ± 2 ◦C) in Erlenmeyer flask. After every 10 min, the metal ion concentration from
supernatant solutions by AAS was evaluated. All experiments were performed in duplicate
and the value presented is the average of those.

The performance of the adsorption process was evaluated based on the adsorption
capacity Qt (mg/g) which represents the mass of MX+ retained by one gram of MS at a
time, t [17–27]:

Qt =
(Ci − Ct)V

m
(1)

where Ci and Ct (mg/L) represent the concentrations of the supernatant before and after at
time t of the adsorption process, V (L) the volume of samples to be tested, m (g) is the mass
of the MS.

The Lagergren kinetic model was modulated by the following equation:

log(Qe − Qt)= logQe −
(

k1

2303

)
t (2)

and the second-order kinetic model, proposed by Ho and McKay, 1998 [18], was applied
using the following equation:

t
Qt

=
1

k2Qe2
+

t
Qe

(3)

where k1 is rate constant of Lagergren kinetic model and k2 is the pseudo-second-order rate
constant of the Mx+ adsorption onto MS mass.

2.8. Batch Adsorption Experiments

Samples of 0.5 g MS were stirred with 0.04 L simulated textile aqueous samples of
metal ions that contained 0.5, 0.6, 0.7, 0.8, 0.9 and 1 mg/L Cu2+, Pb2+, Ni2+, Cd2+, Cr3+ and
Fe3+ and 100 mg/L AB 113 in each metal ions concentration at 175 rpm (25 ± 2 ◦C) for
60 min in Erlenmeyer flask. The obtained mixtures were subjected to mechanical stirring
for 60 min. After stirring, each sample was filtered and the concentrations of metal ions
from supernatant were determined by AAS. All experiments were performed in duplicate
and the value presented is the average of those.
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The degree of pollutant removal R (%) was calculated with the following formula:

R (%) =
Ci − Ce

Ci
× 100 (4)

where Ci and Ce (mg/L) are the concentrations of the MX+ before and after adsorption process.
The quantity of the MX+ adsorption (Qe) by one gram of MS mass was determined by

the Formula (5):

Qe =
(Ci − Ce)V

m
(5)

2.9. Adsorption Experiments

Data obtained at equilibrium regarding adsorption of MX+ onto MS was studied
by Langmuir and Freundlich isotherm models. The linear formula of the Langmuir and
Freundlich models are:

Langmuir
Ce

Qe
=

1
bQ0

+
Ce

Q0
(6)

RL =
1

1 + bC0
(7)

Freundlich
lnQe = lnK f +

1
n

lnCe (8)

where Ce (mg/L) is the equilibrium concentration of MX+, Qe are the adsorption capacity of
MS at equilibrium and Qo (mg/g) is the maximum adsorption capacity of MS. RL are the
separation factor and indicates if the adsorption of MX+ onto MS is: favorable 0 < RL < 1,
unfavorable RL > 1, linear RL = 1 or irreversible RL = 0. The b (L/mg) and KF (mg/g) are the
Langmuir and Freundlich constants, and 1

n is an empirical parameter regarding intensity
of adsorption.

2.10. Procedures for MX+ from Tannery Wastewater onto MS

Wastewater resulting from the tanning of raw hides was depolluted using MS for the
absorption of studied metal ions. For tannery wastewater, MX+ concentration and pH were
determined before batch experiments. The experiments were carried out with 0.5 g MS
(1 mm) that was added into Erlenmeyer flask and stirred with 0.04 L tannery wastewater at
175 rpm (25 ± 2 ◦C) for 60 min. At the end of the experiments, the mixture was filtered
from which were determined the MX+ rezidual from liquid phases. All experiments were
performed in duplicate and the value presented is the average of those.

2.11. Procedures for Desorption Experiments

Desorption studies was conducted by adding 0.04 L of 4 M HCl over solid samples of
MS obtained and described in Section 2.10. MX+ adsorption was from tannery wastewaters.
The mixture was stirred 60 min at 175 rpm and then filtered. The liquid acid solutions were
collected and Cu2+, Pb2+, Ni2+, Cd2+, Cr3+ and Fe3+ were determined by AAS. The MX+

desorption (D (%)) was evaluated using Formula (9).

D (%) =
A
B
× 100 (9)

where A is the MX+ amount (mg) desorbed in liquid phases after desorption studies and B
is the MX+ remaining (mg) onto MS mass after desorption studies. All experiments were
performed in duplicate and the value presented is the average of those.
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2.12. Characterization of Solid Phases by TG and SEM

TG curves were recorded using STA 409 PC Luxx thermogravimeter. Approximately
equal quantity of samples was used for MS before and after adsorption and the analysis
was performed in aluminum crucibles from ambient temperature 25 ◦C up to 1200 ◦C using
a gradient speed of 10 ◦C/min.

3. Results and Discussion
3.1. Effect of Contact Time

As can be seen in Figure 2, the MX+ adsorption increased in the first 40 min. From
40 up to 60 min, the adsorption process becomes slower and the adsorption values (Qt)
increase insignificantly until equilibrium is reached. Based on these results and taking into
account the porous structure of the MS, a contact time of 60 min was selected to evaluate
the MX+ adsorption on the MS mass for the next adsorption experiments.
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Figure 2. Influence of contact time on the retention of metal ions onto MS mass, 0.04 L of MX+

(Ci = 0.5 mg/L), contact time 10–60 min, 0.5 g MS, 175 rpm (25 ± 2 ◦C), pH = 4.2.

Similar results regarding influence of contact time by maize husk pretreated with
tartric acid methanoic and phenol for Cu2+ removal were carried out. Applying batch
adsorption experiments, the maximum removal of Cu2+ was obtained in 20–25 min for
all materials pretreated [28]. Additionally, adsorption of Cr3+, Cd2+, Ni2+ and Cu2+ onto
activated Teff Straw was investigated at different contact times. It was observed that the
adsorption rate is faster at the beginning process and efficient removal was obtained in
60 min [1].

3.2. Effect of Initial Concentration

The affinity of adsorption materials is defined as its ability to have a preference for cer-
tain ions in the presence of others found in the mixture solution. The adsorption isotherms
of MX+ onto MS were determined using synthetic solutions of different concentrations that
varied in the range of 0.5–1 g using a material dose of 0.5 g and a contact time of 60 min.
Following these experiments, it was found that the adsorption capacity of MS increases
with increasing concentration of MX+ (Figure 3). Thus, at higher concentrations than 0.8 mg
Cu2+ and Ni2+, 0.9 mg/L Fe3+ and Cr3+ and 1 mg/L Pb2+ and Cd2+, the saturation level
of the tested MS mass began to be observed. Thus, the adsorption capacity of MS was
0.052 mg Cu2+/g of MS, 0.024 mg Pb2+/g of MS, 0.042 mg Ni2+/g of MS, 0.050 mg Cd2+/g
of MS, 0.056 mg Fe3 +/g of MS and 0.063 mg Cr3+/g of MS. As one can observe, good
adsorption was obtained for Cr3+ and Fe3+.
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tions: Ci = 0.5–1 mg/L MX+, contact time 60 min, 175 rpm (25 ± 2 ◦C), 0.5 g of MS, pH = 4.2.

Moreover, the experimental data shows that with the increase of the metal ions con-
centration in the range studied, a decrease of the percent removal (R, %) was observed
(Figure 4). As one can observe, R (%) decreased as: from 82% up to 65% for Cu2+, from
40% up to 30% for Pb2+, from 94% up to 70% for Fe3+, from 70% up to 53% for Ni2+, from
98% up to 79% for Cr3+ and from 74% up to 63% for Cu2+, respectively. This behavior
can be explained as follows: the increase of MX+ quantity is dependent on the increase of
MX+ initial concentration. Additionally, the percentages of MX+ retained on MS decrease
as the number of functional groups are involved in the adsorption process. According to
Ruchi et al., Cd(II) was removed by the modified Cucumis sativus peel (CSP) with HCl
treatment. The removal efficiency at pH = 5 was obtained to be 85% for 20 mg/L Cd(II) [29].
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The obtained data revealed that the MS material has efficient adsorption capacity for
MX+ removal from simulated textile wastewater for concentrations in the range studied
and in applying previously experimental conditions.

3.3. Kinetic Studies

The experimental results regarding the correlation of the adsorption capacity (Qt
(mg/g) according to the contact time (t (min)) were processed based on the pseudo-first-
order and pseudo-second-order kinetics models [30]. Thus, if the adsorption process of MX+

onto MS is subjected to the pseudo-first-order kinetic model, the plot of ln(Qe − Qt) against
t (min) is linear. Based on the linear regression studies (Figure 5), the kinetic constants of
the pseudo-first-order kinetic model were calculated and are presented in Table 3. The
height value of R2 suggest that the adsorption process take places at the interface between
liquid and solid phases.
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Table 3. Pseudo-first-order model constants for adsorption of MX+ onto MS.

Pseudo-First-Order Model

Metal Ion Cu2+ Pb2+ Ni2+ Cd2+ Cr3+ Fe3+

Qe (mg/g) 17.140 44.460 24.333 18.828 14.870 16.508
k1 (min−1) 0.021 0.014 0.024 0.017 0.019 0.022

R2 0.9855 0.9454 0.9769 0.9430 0.9628 0.9333

In 1995, Ho describes the sorption of divalent ions on peat. The divalent metal ions
were chemically bound by the functional groups of peat, such as aldehydes, ketones, acids
and phenolic groups giving cation exchange properties of the peat. The adsorption process
can be described by a second-order reaction, when the rate-limiting step is controlled by the
ion exchange process between the functional groups of the tested material and the divalent
metal ions. The sorption rate depends on the quantity of divalent ions adsorbed by the peat
surface at time t and at equilibrium [18,31,32]. The pseudo-second-order constants (Table 4)
were determined from linear regression line obtained representing the experimental data
of Qt/t (min g/mg) against t (min). Recently, pseudo-second-order model has been used
to describe the pollutants’ adsorption in corn silk/zeolite-Y adsorbent with R2 = 0.9991
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and chemisorption controlling rate of the adsorption process [33]. Rice straw biochar
was obtained after being modified with FeCl3·6H2O and FeSO4·7H2O for improving Cr6+

adsorption efficiency. Pseudo-second-order expressed the best fitting experimental data
with a higher R2 = 0.996. The kinetic data expressed that the Cr6+ onto modified green
adsorbent surface was governed by chemisorption process [34].

Table 4. Pseudo-second-order constants for adsorption of the MX+ onto MS.

Pseudo-Second-Order Kinetic Model

Metal Ion Cu2+ Pb2+ Ni2+ Cd2+ Cr3+ Fe3+

Qe (mg/g) 0.096 0.040 0.060 0.570 0.230 0.200
k2 (g/mg min) 0.051 0.320 0.210 0.002 0.015 0.021

R2 0.2915 0.7411 0.9390 0.2000 0.2769 0.2484

The height values of correlation coefficients (R2) obtained for pseudo-first-order in
contrast with low R2 obtained for the pseudo-second-order kinetic model indicates that
adsorption of MX+ onto MS is described very well by the pseudo-first-order kinetic model.

3.4. Adsorption Studies

Adsorption of MX+ onto MS was evaluated with Langmuir and Freundlich isotherm
models [33,35,36]. The Langmuir isotherm model starts from the hypothesis that the surface
of the adsorbent material is homogeneous and the adsorption of pollutants was conducted
in a single layer. The Freundlich model starts from the hypothesis that the surface of the
adsorbent material is heterogeneous and the adsorption of pollutants was carried out in
multilayers. The high values of R2 obtained for the Langmuir model (Table 5) compared
to R2 values of the Freundlich model (Table 6) suggest that the adsorption of MX+ was
achieved in a single monolayer. Moreover, it is observed that the maximum adsorption
capacities values Qm (mg/g) are closer to the experimentally determined values of Qe
(mg/g) shown in Section 3.2.

Table 5. Langmuir constants for adsorption of the MX+ onto MS.

Langmuir Isotherm Model

Metal Ion Cu2+ Pb2+ Ni2+ Cd2+ Cr3+ Fe3+

R2 0.9712 0.9828 0.9376 0.9992 0.9998 0.9985
Qm (mg/g) 1.258 0.085 0.526 0.346 8.058 4.405

b 0.048 0.484 0.102 0.240 0.008 0.013
RL 0.9970 0.9890 0.9960 0.9880 0.9992 0.9990

Table 6. Freundlich constants for adsorption of the MX+ onto MS mass.

Freundlich Isotherm Model

Metal Ion Cu2+ Pb2+ Ni2+ Cd2+ Cr3+ Fe3+

R2 0.6065 0.9800 0.6283 0.9962 0.944 0.7934
Kf (mg/g) 1.3 33.9 16.7 11.7 11.6 14.3

1/n 2.60 0.51 0.33 0.52 0.16 0.15
n 0.40 1.95 3.00 1.93 6.16 6.78

3.5. Applications of Maize Stalk in Tannery Wastewater Treatment

Adsorption studies of metal ions existing in tannery wastewater onto MS by the batch
method were performed. The concentrations of MX+ studied by AAS were determined to be:
0.218 mg Cu2+/L, 0.618 mg Pb2+/L, 1.073 mg Ni2+/L, 0.163 mg Cd2+/L, 1006 mg Cr3+/L
and 0.633 mg Fe3+/L. The pH of the mixture (0.5 g MS with 0.04 L tannery wastewater) was
also measured at the beginning (pH = 3.1) and after adsorption batch experiment (pH = 4.3).
The obtained results of adsorption capacity (Qe) for MX+ from tannery wastewater onto
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MS were 15.68 mg Cr3+/g of MS, 0.022 mg Fe3+/g of MS, 0.016 mg Ni2+/g of MS, 0.010 mg
Pb2+/g of MS, 0.005 mg Cu2+/g of MS and 0.002 mg Cd2+/g of MS. The selectivity of the
MS can be described as follows, taking into consideration the Qe values: Fe3+ > Cr3+ > Ni2+

> Pb2+ > Cu2+ > Cd2+. The degree of MX+ removal from tannery wastewater are presented
in Figure 6.
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Ni2+/L, 0.163 mg Cd2+/L, 1006 mg Cr3+/L and 0.633 mg Fe3+/L), contact time 60 min, 175 rpm, 0.5 g
MS, pH = 4.3.

An ideal bioadsorbent must have not only a height adsorption capacity but also
the possibility to MX+ recovery from its mass. This operation involves the desorption
of pollutants from bioadsorbent mass used in testing different striping agents [5]. The
stripping agent is recommended so as not to damage the structure of the biomaterial and
also due to a low cost of acquisitions.

Applying the desorption conditions presented in Section 2.11, it is observed that the
high concentration of desorption agent manages to desorb most of the MX+ retained onto
MS mass: up to 99.6 % Cr3+ followed by 94.5 % Fe3+, 80.8 % Pb2+, 78,1 % Ni2+ and 52.4 %
Cd2+ (see Figure 7). The desorption process was widely studied on various exhausted
materials as follows. Basu et al. studied the influence of five stirring agents for lead
recovery from exhausted biomass of cucumber peel. For this, 0.1 g of biomass loaded
up to saturation with Pb2+ was mixed with 0.02 L of EDTA, alkaline salt (Na2CO3) and
inorganic acid HCl, HNO3 and H2SO4, for 3h (30 ◦C) at 120 rpm. Efficient desorption of
Pb2+ from biomass was observed as HCl > HNO3 > EDTA > H2SO4 > Na2CO3 [27]. The
desorption potential of 1M HCl was tested by Akpomie et al. for Mn2+ recovery and Ni2 +

from low-cost montmorillonite. Marin et al. studied regeneration of maize stalk exhausted
with Cu2+ and Fe3+ with 3M HNO3. The metals were easy eluted from loaded maize and
reused for five adsorption/desorption studies [37].

3.6. Characterization of MS before and after Adsorption
3.6.1. Thermal Analysis

Numerous literature studies have presented the importance of thermal analysis to
predict the mechanism of thermal degradation reported to mass losses for adsorbent mate-
rials and pollutants [38–40]. In this experiment, TG studies were performed in an oxidant
atmosphere under dynamic conditions using a heating rate of 10 ◦C/min. Following
the thermogravimetric analysis (TG), the significant mass losses can be observed for the
basic macro-components of the MS. Thus, the first mass losses in the temperature range
of 25–200 ◦C are attributed to the water existing in the porous structure as well as to the
compounds without thermal stability. In the next step that occurred, a new degradation in
the range 200–400 ◦C can be attributed to hemicellulose. Another mass loss was obtained
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between 400–600 ◦C and can be attributed to the degradation of cellulose. Lignin pyrolysis
can be seen in the range of 600–800 ◦C [17].
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Figure 7. Desorption of MX+ from MS after adsorption process.

The residual masses of MS samples were 6.01% for MS blank and 3.73% for MS
obtained after adsorption process, see Figures 8 and 9. Additionally, the total mass loss for
MS obtained after adsorption process was 96.27% which was larger than 94.2% obtained
for MS before adsorption (Table 7). This suggested quantitative retention of MX+ onto
MS mass.
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Table 7. Thermal weight loss for maize stalk before and after adsorption.

Thermal Behavior of Maize Stalk
Before Adsorption After Adsorption

T ◦C Weight (%) T ◦C Weight (%)

Ti–35 –* Ti–35 0.03
35–130 5.5 35–130 4.0
130–350 61.2 130–350 60.4
350–520 27.4 350–540 31.9
Ti–1200 94.2 ** Ti–1200 96.3 **

Weight (%) = weight loss during the thermal degradation, –* no mass loss recorded, ** (%) = total mass loss during
the thermal degradation, Ti = initial temperature. TG curve was recorded as mass loss (%) against the T (◦C).

3.6.2. SEM Analysis

The surface morphologies of maize stalk before and after MX+ adsorption were evalu-
ated with a scanning electron microscope. The SEM images of MS at 1147 × (Figure 10a),
886 × (Figure 10b) revealed the porous structure of maize stalk before acid treatment. Thus,
the porous structure favors the adsorption of the studied pollutants (Figure 10a,b). As can
be seen in the MS image after adsorption, the surface of the material becomes smoother
which suggests the retention of pollutants in the structure of the MS shown in Figure 10c,d.
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4. Conclusions

In this paper, MS obtained after acid treatment was used as a natural polymer and an
environmental eco-friendly material for removal of, i.e., Cu2+, Pb2+, Ni2+, Cd2+, Cr3+ and
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Fe3+ hazardous metal ions from simulated textile and tannery wastewater. For evaluating
the adsorption of MX+ onto MS, 60 min was sufficient to reach the saturation of MS using
the following conditions: 0.04 L of 0.5 mg/L each MX+ and 0.5 g MS at 175 rpm (25 ± 2 ◦C),
pH = 4.2. Fitting the experimental data obtained at influence of contact time by pseudo-
first-order and pseudo-second-order models shows that the MX+ adsorption is obeyed
to pseudo-first-order model taking into consideration R2 values obtained. Based on the
experimental data for MS adsorption when it is used as a solution that contained MX+ by
the same concentration (1 mg/L MX+), the MS affinity was: Cr3+ > Fe3+ > Cu2+ > Cd2+

> Ni2+ > Pb2+. The Langmuir and Freundlich isotherm models of MX+ adsorption onto
MS were evaluated. The R2 values were in accordance with the Langmuir model and
predict that adsorption was achieved in a monolayer by the MS surface. In addition, TG
analysis showed good stability of MS material if the adsorption process took place at
various temperatures and also in the presence of pollutants in the mass of the MS obtained
after the adsorption process. MS removed from tannery wastewater of all MX+ studied in
different proportions in special Cr3+ represents the major pollutant of aqueous matrices
studied. Even if the adsorptive capacity of maize stalk is not very high for Cu2+, Pb2+, Ni2+,
Cd2+, Cr3+ and Fe3+, the low cost for obtained MS, together with its adsorptive ability, can
offer a promising alternative for the treatment of wastewater. Therefore, the MS obtained
from agricultural waste is safe for the environment and is a promising green material for
removal of metal ions from polluted textile and tannery wastewater.

Funding: This work was funded by the Ministry of Education and Research of Romania through
Program Nucleu (Project code PN 19 04 03 01).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The author declare no conflict of interest.

References
1. Desta, M.B. Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto

teff straw (Eragrostis tef ) agricultural waste. J. Thermodyn. 2013, 64–71, 375830. [CrossRef]
2. Vasconcelos, M.W.; Gonçalves, S.; de Oliveira, E.C.; Rubert, S.; de Castilhos Ghisi, N. Textile effluent toxicity trend: A scientometric

review. J. Cleaner Prod. 2022, 366, 132756. [CrossRef]
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