Experimental Study of Yield Surface in Polypropylene Considering Rate Effect: Stress Path Dependence
Abstract
:1. Introduction
2. Experimental
2.1. Specimen
2.2. Experimental Method
2.3. Results
2.4. Stress Oscillation
3. Discussion
3.1. Effect of Pulse Width
3.2. Influence of Strain Rate Effect
3.3. Effect of Stress Path on Yield Surface Development
4. Conclusions
- (1)
- In terms of mechanical response, PP under combined compression-shear loading was of visco-elastic plasticity. The deformation of PP underwent a three-stage transition, namely “unyield→yield→failure”, in which the yield was sensitive to the strain rate.
- (2)
- The use of the Hu–Pae yield criterion could more accurately and reasonably describe the yield behavior of PP. The model parameters of the Hu–Pae yield criterion were obtained by fitting the SCS experimental data so that the relationship between PP yield surface development and the strain rate was ascertained.
- (3)
- The combined compression-shear loading experiment on the SCS contributes to deepening the research on the mechanical response characteristics of PP-based materials, ascertaining that the yield characteristics of PP are not only affected by the hydrostatic pressure, but also by the stress path.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ward, I.M.; Sweeney, J. Mechanical Properties of Solid Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Eyring, H. Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates. J. Chem. Phys. 1936, 4, 283–291. [Google Scholar] [CrossRef]
- Mears, D.R.; Pae, K.D.; Sauer, J.A. Effects of Hydrostatic Pressure on the Mechanical Behavior of Polyethylene and Polypropylene. J. Appl. Phys. 1969, 40, 4229–4237. [Google Scholar] [CrossRef]
- Silano, A.A.; Bhateja, S.K.; Pae, K.D. Effects of Hydrostatic Pressure on the Mechanical Behavior of Polymers: Polyurethane, Polyoxymethylene, and Branched Polyethylene. Int. J. Polym. Mater. Polym. Biomater. 1974, 3, 117–131. [Google Scholar] [CrossRef]
- Ghorbel, E. A viscoplastic constitutive model for polymeric materials. Int. J. Plast. 2008, 24, 2032–2058. [Google Scholar] [CrossRef]
- Rittel, D.; Brill, A. Dynamic flow and failure of confined polymethylmethacrylate. J. Mech. Phys. Solids 2008, 56, 1401–1416. [Google Scholar] [CrossRef]
- Duan, Y.; Saigal, A.; Greif, R.; Zimmerman, M.A. A uniform phenomenological constitutive model for glassy and semicrystalline polymers. Polym. Eng. Sci. 2001, 41, 1322–1328. [Google Scholar] [CrossRef]
- Jeridi, M.; Chouchene, H.; Keryvin, V.; Sai, K. Multi-mechanism modeling of amorphous polymers. Mech. Res. Commun. 2014, 56, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Tebeta, R.T.; Fattahi, A.M.; Ahmed, N.A. Experimental and numerical study on HDPE/SWCNT nanocomposite elastic properties considering the processing techniques effect. Microsyst. Technol. 2020, 26, 2423–2441. [Google Scholar] [CrossRef]
- Fattahi, A.M.; Safaei, B.; Qin, Z.; Chu, F. Experimental studies on elastic properties of high density polyethylene-multi walled carbon nanotube nanocomposites. Steel Compos. Struct. 2021, 38, 177–187. [Google Scholar]
- Farrokh, B.; Khan, A.S. A strain rate dependent yield criterion for isotropic polymers: Low to high rates of loading. Eur. J. Mech. 2010, 29, 274–282. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, S.; Shan, J.; Liu, Y.; Wang, P. Heterogeneity in deformation of granite under dynamic combined compression/shear loading. Mech. Mater. 2018, 123, 1–18. [Google Scholar] [CrossRef]
- Zhou, Z.; Su, B.; Wang, Z.; Li, Z.; Shu, X.; Zhao, L. Shear-compression failure behavior of PMMA at different loading rates. Mater. Lett. 2013, 109, 151–153. [Google Scholar] [CrossRef]
- Meyer, L.W.; Staskewitsch, E.; Burblies, A. Adiabatic shear failure under biaxial dynamic compression/ shear loading. Mech. Mater. 1994, 17, 203–214. [Google Scholar] [CrossRef]
- Andrade, U.; Meyers, M.A.; Vecchio, K.S.; Chokshi, A.H. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. Acta Metall. Et Mater. 1994, 42, 3183–3195. [Google Scholar] [CrossRef]
- Rittel, D.; Lee, S.; Ravichandran, G. A shear-compression specimen for large strain testing. Exp. Mech. 2002, 42, 58–64. [Google Scholar] [CrossRef]
- Zhao, J.; Knauss, W.G.; Ravichandran, G. A New Shear-Compression-Specimen for Determining Quasistatic and Dynamic Polymer Properties. Exp. Mech. 2009, 49, 427–436. [Google Scholar] [CrossRef]
- Alkhader, M.; Knauss, W.; Ravichandran, G. Experimental arrangement for measuring the high-strain-rate response of polymers under pressures. In Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; Springer: New York, NY, USA, 2011; Volume 3, pp. 139–144. [Google Scholar]
- Jin, T.; Zhou, Z.; Wang, Z.; Wu, G.; Liu, Z.; Shu, X. Quasi-static failure behaviour of PMMA under combined shear–compression loading. Polym. Test. 2015, 42, 181–184. [Google Scholar] [CrossRef]
- Jin, T.; Zhou, Z.; Shu, X.; Wang, Z.; Wu, G.; Zhao, L. Experimental investigation on the yield loci of PA66. Polym. Test. 2016, 51, 148–150. [Google Scholar] [CrossRef]
- Qiu, J.; Jin, T.; Su, B.; Shu, X.; Li, Z. Experimental investigation on the yield behavior of PMMA. Polym. Bull. 2018, 75, 5535–5549. [Google Scholar] [CrossRef]
- Zhigang, W.; Yongchi, L.; Jianrong, L.; Shisheng, H. Formation mechanism of adiabatic shear band in tungsten heavy alloys. Acta Metall. Sin. 2000, 36, 1263–1268. [Google Scholar]
- Zheng, H.; Tang, Z. Experimental study on yield behavior of polypropylene under compression and shear composite loading. J. Exp. Mech. 2019, 34, 200–208. [Google Scholar]
- Dorogoy, A.; Rittel, D. Numerical validation of the shear compression specimen. Part I: Quasi-static large strain testing. Exp. Mech. 2005, 45, 167–177. [Google Scholar] [CrossRef]
Material | Density | Tg | Tm | Crystallinity Ratio |
---|---|---|---|---|
Polypropylene | 0.907 g/cm3 | 263 K | 438 K | 64.6% |
Inclination θ° | Length (mm) | h (mm) | a = (L-h*canθ-R*tanθ)/2 (mm) |
---|---|---|---|
5 | 25 | 2.01 | 10.88 |
15 | 25 | 2.07 | 9.59 |
30 | 25 | 2.31 | 7.30 |
45 | 25 | 2.83 | 4.09 |
60 | 32 | 4.0 | 1.88 |
Diameter | Length | Material | Gauge | |
---|---|---|---|---|
Bullet | 20 mm | 600 mm | Ly12 | |
Incident bar | 20 mm | 1000 mm | Ly12 | Constantan strain gauge |
Transmitted bar | 20 mm | 1000 mm | Ly12 | Semiconductor strain gauge |
Angle | Velocity m/s | Max Load N | Max Disp mm | MPa | MPa | Remarks |
---|---|---|---|---|---|---|
5 | 1.70 | 1666 | 0.005 | |||
1.74 | 1734 | 0.006 | 41.5 | 3.63 | ||
1.84 | 1979 | 0.019 | 46.9 | 4.1 | ||
1.85 | 2020 | 0.02 | 48.6 | 4.25 | ||
2.64 | 3065 | 0.02 | 73.2 | 6.4 | ||
2.80 | 3386 | 0.03 | 80.6 | 7.05 | ||
2.96 | 3487 | 0.03 | 83.5 | 7.31 | ||
3.12 | 3736 | 0.03 | 89.7 | 7.84 | ||
3.22 | 4111 | 0.03 | 98.1 | 8.58 | ||
3.70 | 4433 | 0.07 | 106 | 9.27 | ||
3.97 | 4458 | 0.07 | 107 | 9.36 | ||
4.51 | 4632 | 0.07 | 110.5 | 9.67 | Failure | |
5.92 | 5926 | 0.17 | 141.4 | 12.37 | Failure | |
15 | 1.88 | 1840 | 0.02 | 37.16 | 9.96 | |
2.50 | 2563 | 0.03 | 58.8 | 15.7 | ||
3.17 | 3342 | 0.07 | 76.8 | 20.56 | ||
3.91 | 4194 | 0.14 | 97.07 | 25.68 | ||
4.11 | 5145 | 0.165 | 114.9 | 30.4 | ||
4.47 | 5119 | 0.18 | 102.9 | 27.7 | Partial failure | |
30 | 2.34 | 2650 | 0.03 | 49.7 | 28.9 | |
2.78 | 2752 | 0.03 | 51.7 | 29.8 | ||
3.55 | 4081 | 0.07 | 74.5 | 43 | ||
4.34 | 4741 | 0.097 | 92.1 | 53 | ||
5.47 | 5477 | 0.14 | 103 | 59.7 | Failure | |
45 | 1.70 | 1898 | 0.02 | 25.4 | 25.4 | |
2.14 | 2376 | 0.03 | 32.2 | 32.2 | ||
2.61 | 3002 | 0.04 | 40.5 | 40.5 | ||
2.69 | 3067 | 0.04 | 41.4 | 41.4 | ||
2.95 | 3411 | 0.04 | 45.5 | 45.5 | ||
3.04 | 3509 | 0.04 | 47.2 | 47.2 | ||
3.46 | 4010 | 0.04 | 52.1 | 52.1 | ||
4.20 | 4519 | 0.07 | 60.1 | 60.1 | ||
5.06 | 5031 | 0.09 | 68.2 | 68.2 | ||
5.64 | 5269 | 0.11 | 70.8 | 70.8 | ||
60 | 2.45 | 2524 | 0.01 | 18.4 | 31.9 | |
2.65 | 2824 | 0.02 | 20.9 | 36.2 | ||
3.64 | 3755 | 0.04 | 28.3 | 28.3 | ||
3.78 | 3480 | 0.04 | 26.1 | 26.1 | Partial failure | |
4.16 | 4155 | 0.07 | 31.0 | 31.0 | ||
4.40 | 4211 | 0.09 | 31.4 | 31.4 | Failure |
Wave to Right | Incident Bar/SCS I | SCS I/SCS II | SCS II/SCS III | SCS III/Transmit Bar |
---|---|---|---|---|
Transmission coefficient | 1.42 | 1.88 | 0.12 | 0.58 |
Reflection coefficient | −0.42 | −0.88 | 0.88 | 0.42 |
Wave to left | Incident Bar/SCS I | SCS I/SCS II | SCS II/SCS III | SCS III/Transmit Bar |
Transmission coefficient | 0.58 | 0.12 | 1.88 | 1.42 |
Reflection coefficient | 0.42 | 0.88 | −0.88 | −0.42 |
Length mm | Diameter mm | Finite Element Type | Element Number | Material | Modulus GPa | Yield Stress MPa | |
---|---|---|---|---|---|---|---|
Bullet | 600 | 20 | C3D8R | 36,600 | LY12 | 70 | 400 |
Incident bar | 1000 | 20 | C3D8R | 466,000 | LY12 | 70 | 400 |
SCS | 25 | 20 | C3D4 | 37,783 | Polypropylene | 3.6 | 90 |
Transmitted bar | 1000 | 14 | C3D8R | 61,000 | LY12 | 70 | 400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Yi, X.; Tang, Z.; Zhao, K.; Zhang, Y. Experimental Study of Yield Surface in Polypropylene Considering Rate Effect: Stress Path Dependence. Polymers 2022, 14, 3225. https://doi.org/10.3390/polym14153225
Zheng H, Yi X, Tang Z, Zhao K, Zhang Y. Experimental Study of Yield Surface in Polypropylene Considering Rate Effect: Stress Path Dependence. Polymers. 2022; 14(15):3225. https://doi.org/10.3390/polym14153225
Chicago/Turabian StyleZheng, Hang, Xiaofei Yi, Zhiping Tang, Kai Zhao, and Yongliang Zhang. 2022. "Experimental Study of Yield Surface in Polypropylene Considering Rate Effect: Stress Path Dependence" Polymers 14, no. 15: 3225. https://doi.org/10.3390/polym14153225
APA StyleZheng, H., Yi, X., Tang, Z., Zhao, K., & Zhang, Y. (2022). Experimental Study of Yield Surface in Polypropylene Considering Rate Effect: Stress Path Dependence. Polymers, 14(15), 3225. https://doi.org/10.3390/polym14153225