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Abstract: Ultra-thin wearing course (UTWC) as an asphalt overlay is widely used in pavement
maintenance for extending pavement service life. Researchers focused on improving and evaluating
its performance, yet few researchers compare the performance of typical UTWCs. Moreover, some
traditional asphalt mixture tests are improper for UTWC due to the thicknesses of UTWC, which
is thinner than the traditional asphalt overlay. This study further evaluated the advantages and
disadvantages of typical UTWCs. A series of tests were conducted to compare the comprehensive
performance of three typical UWTC products, including SMA-10, Novachip-B, and GT-10. Moreover,
this study improved the rutting test to evaluate its rutting performance more accurately. Rutting
specimens of 20 mm thick and 50 mm thick composite specimens (20 mm UTWC + 30 mm Portland
cement concrete slabs) were prepared. Two types of PCC slabs were used, including unprocessed
PCC slabs and PCC slabs with preset cracks. The test results showed that Novachip-B showed the best
water stability and weakest raveling resistance, while GT-10 showed the best fatigue and anti-skid
performance. The rutting performance of UTWCs was reduced because of the influence of preset
cracks. The rutting depth of GT-10 was only 60–90% of that of others, showing the comprehensive
performance of GT-10 was better than that of others. These results provide a significant reference for
the research and application of UTWC.

Keywords: ultra-thin wearing course; comprehensive performance; rutting test

1. Introduction

Most pavements exhibit the diseases of cracking, loosening, and deformation after
3–5 years of serving, which leads to pavement service life reduction [1–4]. Researchers
have contributed to developing preventive pavement maintenance treatments to extend
pavement service life [5–8]. So far, one of the widely applied preventive maintenance
treatments is ultra-thin wearing course (UTWC). It is an asphalt overlay that improves
pavement-surface smoothness and anti-skid performance, as well as reducing noise and
repairing mild to moderate pavement diseases such as mild cracks, slight loosening, and
rutting (less than 15 mm) [9–11]. It is economic due to its thickness being usually less than
25 mm: compared with the thickness of traditional asphalt overlay pavement (40–50 mm),
UTWC saves 30–40% on material costs [12,13]. In the 1970s, UTWC was firstly applied to
maintain pavements in France [14]. Later, UTWCs were widely used in many countries
such as Germany, the United States, the United Kingdom, and China [15–18].

With the development of UTWC, it has been widely studied by scholars. They
improved UTWC performance using high-performance asphalt binders. For example,
styrene-butadiene-styrene (SBS) modified asphalt, crumb rubber modified asphalt, and
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high-viscosity and high-elasticity modified asphalt have been widely used in UTWC. These
high-performance asphalt binders improve the high-temperature performance, raveling
resistance, and crack resistance of UTWC [11,19,20]. Moreover, some researchers focused
on the influence of gradation on UTWC performance. Skeleton pattern gradation helped
improve the high-temperature rutting resistance and anti-skid performance [3,21]. Re-
searchers also added basalt fiber to improve the crack resistance and raveling resistance of
UTWC [22]. In addition, SMA-10, Novachip-B, and GT-10 gradation were widely used in
UTWC and found to have excellent comprehensive performance [15,16,18,23,24]. SMA-10
is commonly used in Germany, Novachip-B is one of the earliest UTWCs proposed by
the United States, and GT-10 is a new type of UTWC widely used in China. The thick-
ness of SMA-10, Novachip-B, and GT-10 is usually 15–25 mm, 20–25 mm, and 10–20 mm,
respectively. The cost of each UTWC product varies slightly depending on the region,
and this study mainly refers to the cost of three UTWC products in China. The usual
thickness of SMA-10 costs 8–9 $ per square meter, the usual thickness of Novachip-B costs
about 9–10 $ per square meter, and the usual thickness of GT-10 costs about 10–11 $ per
square meter. These UTWC products have been used in many pavement maintenance
treatments in China, and GT-10 has received excellent evaluations from investors and users
in recent years.

However, studies that have compared the UTWC performance of SMA-10, Novachip-
B, and GT-10 by the laboratory test are pretty limited. The performance of UTWC, such as
water stability, reveling resistance, fatigue resistance, and anti-skid performance, is usually
evaluated [11,15–20,23–25]. Furthermore, pavement diseases, such as waves, deformations,
and ruts occur after a frequent traffic load, if rutting resistance is insufficient. Therefore,
most specifications require UTWC to have sufficient rutting resistance. According to the
specification, the traditional rutting performance test method uses a solid rubber tire with a
wheel pressure of 0.7 MPa rolls on a 300 mm × 300 mm × 50 mm specimen for a round-trip
speed of 42 times/min at 60 ◦C for 1 h [26,27]. It is worth noting that the traditional rutting
test is unsuitable for testing the rutting performance of UTWC for the following reasons.
Firstly, the UTWC is thinner than the traditional rutting test specimen. Secondly, UTWC
is frequently applied on old cement pavement. The effect of cement concrete structure on
UTWC performance should be considered when preparing a 50 mm thick sample to test
UTWC performance. Furthermore, the rutting performance of UTWC is more susceptible
to lower layer impacts than typical asphalt pavements due to its thinner thickness [28,29].

Some scholars have proposed new testing methods to better test the performance of
UTWC. Ding et al. [30] prepared double-layered composite specimens exhibiting a 3 + 2 cm
structure. Firstly, 30 × 30 × 3 cm AC-13 mixture was prepared in a 30 × 30 × 5 cm mold,
then a 2 cm thick overlay was prepared with three kinds of asphalt mixture to form a
composite rutting board for the functional surface durability test. Yang et al. [31] also
prepared double-layered composite specimens to study the effect of basing on the rutting
performance of asphalt mixture surfaces. These specimens consisted of cement stabilized
macadam slab and an asphalt surface layer having a thickness much larger than 50 mm.
Cui et al. [3] prepared a 1.5 cm rutting-plate mold to simulate paving thickness and study
UTWC anti-slide performance attenuation. Ge [32] simulated cement pavement with
Portland cement concrete (PCC) slabs to evaluate the shear and fatigue behavior of an AC
overlay on the slabs using different interlayer bonding materials in laboratory performance
testing. Scholars prepared thinner rutting specimens or double-layer structures to simulate
the actual situation of a UTWC. Still, no research has been conducted on the rutting
performance of UTWC with thinner specimens or double-layer structures.

Based on the abovementioned, this study aims to evaluate the comprehensive perfor-
mance of typical UTWCs. The three UTWC products (SMA-10, Novachip-B, and GT-10)
are suitable for performance comparison due to their similar thickness and cost. A series
of performance tests were conducted on the three UTWCs, including residual Marshall
stability, freeze-thaw split, Cantabro, four-point beam fatigue, sand-patch method, and
British pendulum number (BPN) test. In addition, an improved rutting experiment was
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designed to evaluate the rutting performance of UTWC accurately. Three kinds of 20 mm
UTWC specimens and 30 mm PCC slabs were used to prepare composite specimens. The
improved rutting test was conducted on composite specimens to investigate their rutting
performance. This provides a new idea for evaluating the performance of UTWC. These
results will provide a basis for evaluating the advantages and disadvantages of typical
UTWC and provide a significant reference for the research and application of UTWC.

2. Materials and Methods
2.1. Materials

Two kinds of modified asphalt were used. SBS-modified asphalt (PG76-22) was used
as the asphalt binder of SMA-10 and Novachip-B. The SBS content is 5%. High-viscosity
and high-elasticity modified asphalt (PG100-22) is an asphalt binder of GT-10. It is a mixture
of matrix asphalt, SBS polymer, compatibilizer, and coupling agent, and the dosage of SBS
polymer, compatibilizer, and coupling agent were 8%, 4%, and 0.3%, respectively. PG100-22
has excellent performance on dynamic viscosity, rutting resistance, and elastic recovery.
The properties of asphalt binders are shown in Table 1. The coarse aggregates used were
high-quality diabase with good wearing resistance and grain shape, and the fine aggregates
were limestone aggregates with hard texture, no weathering, and moderate gradation. The
mineral powder was used as limestone powder.

Table 1. Properties of the SBS modified asphalt (PG76-22) and high-viscosity and high-elasticity
modified asphalt (PG100-22).

Properties Units
Technical Requirement Test Results

PG76-22 PG100-22 PG76-22 PG100-22

Penetration (25 ◦C, 5 s, 100 g) 0.1 mm 40–60 30–50 53 38
Softening point ◦C ≥75 ≥95 89 98

Elastic recovery (25 ◦C) % ≥90 ≥98 96 99.5
Solubility (Trichloroethylene) % ≥99 ≥99 99.8 99.8

Storage stability ◦C ≤2.0 ≤2.5 1.2 2.1
After short-term aging

Mass loss % ±1.0 ±1.0 −0.014 +0.01
Penetration ratio (25 ◦C) % ≥65 ≥70 78.1 83.9
G*/sin δ 2.2 kPa critical

temperature
◦C ≥76 ≥100 76.6 100.9

2.2. Specimen Preparation
2.2.1. Asphalt Mixture

Typical gradation curves of SMA-10, Novachip-B, and GT-10 are shown in Figure 1 [18,26,33].
SMA-10 should contain 0.3% lignin fiber. The target void volume of SMA-10, Novachip-B, and
GT-10 was 4, 11, and 5%, respectively. The compaction temperature of SMA-10 and Novachip-B
was 165–170 ◦C, while for the GT-10, it was 195–200 ◦C. Marshall specimens were prepared for
each asphalt mixture at different asphalt–aggregate ratios. Table 2 demonstrates the results. The
optimum ratio for SMA-10, Novachip-B, and GT-10 was 6.4, 5, and 7.5%, respectively.

2.2.2. PCC Slab with Prefab Cracks

The design strength of PCC is 40 MPa. Its main components were P.O42.5 Portland
cement, medium sand, granite gravel, and water in a ratio of 1:1.62:2.43:1:0.4. The bulk
densities of the Portland cement, medium sand, granite gravel, and water were 450, 728,
1092, and 180 kg/m3. The dimension of PCC slabs was 300 mm × 300 mm × 30 mm [32].
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Figure 1. Grading curve of SMA-10-10, Novachip-B, and GT-10. 
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Figure 1. Grading curve of SMA-10-10, Novachip-B, and GT-10.

Table 2. Volume index under different asphalt–aggregate ratios.

Asphalt–Aggregate Ratio (%) Porosity (%) VMA (%) VFA (%) VFAmix (%)
Asphalt Film

Thickness
(µm)

Rate of
Run-Off
Loss (%)

SMA-10
6.1 4.6 ± 0.2 17.0 ± 0.1 73.0 ± 0.6 36.7 ± 0.2 11.74 0.09 ± 0.01
6.4 3.9 ± 0.1 17.1 ± 0.1 76.9 ± 0.2 36.6 ± 0.2 12.8 0.12 ± 0.01
6.7 3.3 ± 0.1 17.1 ± 0.1 80.7 ± 0.7 36.4 ± 0.1 13.02 0.17 ± 0.03

Novachip-B
4.7 12 ± 0.1 20.8 ± 0.1 42.2 ± 0.3 40.5 ± 0.1 8.71 0.05 ± 0.01
5.0 11.2 ± 0.4 20.7 ± 0.3 45.8 ± 0.8 40.2 ± 0.3 9.35 0.06 ± 0.2
5.3 10.4 ± 0.6 20.5 ± 0.3 49.4 ± 1.6 39.9 ± 0.5 9.99 0.11 ± 0.02

GT-10
7.2 5.5 ± 0.2 20 ± 0.1 72.7 ± 0.7 38.2 ± 0.1 14.16 0.22 ± 0.03
7.5 5.1 ± 0.3 20.2 ± 0.1 74.7 ± 1.1 38.2 ± 0.3 14.79 0.27 ± 0.03
7.8 4.6 ± 0.2 20.3 ± 0.5 77.5 ± 2.2 38.1 ± 0.4 15.43 0.33 ± 0.03

In this study, cracks were preset on 2/3 of the PCC slabs to simulate the realistic
conditions of old concrete pavements, especially those with cracks and no other serious
diseases. Concerning the previous findings, it is considered that the penetration type
dummy joints are consistent with the actual situation of cement pavement [34–39]. The
width of the preset crack set by the former researcher was between 0.5 and 3 mm, and
its length was more than 300 mm, and the preset crack interval was 1/3–1/4 of PCC slab
length according to other researchers. The preset crack was set as a dummy joint at a depth
1/3 of the slab thickness [40]. Therefore, cracks (1.2 mm width, 10 mm depth, 300 mm
length, and 100 mm interval) were cut on PCC slabs, as shown in Figure 2. The emulsified
asphalt was used to repair PCC slabs after cutting cracks [13,34,35]. In addition, to simulate
the situation of cement concrete pavement with different degrees of deterioration, 2 cracks
were set on 1/3 of PCC slabs, and 4 cracks were set on 1/3 of PCC slabs.
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Figure 2. Three-dimensional (3D) view and front view of PCC slabs.

2.3. Testing Method
2.3.1. Water Stability Test

As Figure 3a,b shows, this study conducted immersed-Marshall and freeze–thaw tests
to measure UTWC water stability. The immersed-Marshall test evaluates water damage
resistance of asphalt binder, and the freeze–thaw test evaluates water stability of asphalt
mixture at low temperatures or large temperature differences. The water stability test
specimens are standard Marshall specimens, the size is Φ101.6 mm × 63.5 ± 1.3 mm. The
number of test specimens in the same group of tests was five.

2.3.2. Raveling Resistance Test

The Cantabro test was used to evaluate raveling resistance of UTWC. The Cantabro
test instrument is shown in Figure 3c. The Marshall specimens were first put into the water
tank (20 ◦C) for 20 h. After wiping the water on the surface of the specimen, it was put into
the test machine to rotate for 300 cycles at a speed of 30 rpm. The raveling resistance test
specimens were standard Marshall specimens, the number of test specimens in the same
group of tests was five.
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2.3.3. Pull Strength Test

High-viscosity emulsified asphalt was used as a tack coat to bond three kinds of asphalt
mixtures and PCC slabs. The tensile adhesion tests were conducted on three unprocessed
slabs and three slabs with preset cracks, each PCC slab was tested 4 times. The amount of
high-viscosity emulsified asphalt applied to the slab surfaces was 0.8 kg/m2 [41,42]. For
the slabs with preset cracks, the test pullers were fixed to the position of cracks to test the
pull strength under the most unfavorable conditions, as shown in Figure 4a.
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2.3.4. Fatigue Test Procedure

This study used four-point beam test to evaluate the fatigue performance of asphalt
mixtures. Cooper NU-14 tester (Cooper Research Technology-Technical Centre, Ripley,
Derbyshire, UK, Figure 4b) was used. The tests were performed at 15 ± 0.5 ◦C. The size
of the fatigue test specimen is 380 ± 5 mm length, 63.5 ± 5 mm width, and 50 ± 5 mm
height. The fatigue performance at strain levels of 400, 600, 800, and 1000 micro-strains was
evaluated, and a loading frequency of 10 Hz was used, a standard frequency for fatigue
tests. Four specimens were tested under each strain level. Failure was assumed to occur
when the stiffness of the specimen reached half of its initial value. The initial value was
determined by 50 loading cycles. The test was terminated automatically when this load
diminished by 50% [43,44].

2.3.5. Rutting Test Procedure

The rutting test of an asphalt mixture is used to evaluate its high-temperature rutting
resistance. The test instrument is shown in Figure 4c. The dynamic stability (DS) and the
rutting depth (RD) of 300 mm × 300 mm × 50 mm rutting specimens from the three asphalt
mixtures were measured. Three specimens of each asphalt mixture were prepared for the
rutting test. DS is obtained by measuring the relationship between the number of wheel
loads and the deformation of slab specimens. A larger DS means better high-temperature
stability. The rutting test was conducted after 5 h at a temperature of 60 ◦C. The wheel-
driving direction was consistent with the compaction direction in the specimen molding.
The deformation of the asphalt mixture after 45 and 60 min was recorded separately. The
total number of round trips was divided by the gap of specimen deformation at 60 and
45 min to determine the DS value. DS can be calculated using Equation (1):

DS =
(t1 − t2)·42

d1 − d2
·c1·c2 (1)

DS—dynamic stability of asphalt mixtures;
t1,t2—test time, usually 45 min and 60 min;
d1,d2—rutting depth of specimen surface corresponding to t1 and t2 at test time, mm;
c1,c2—correction factors;
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2.3.6. Improved Rutting Test

This study designed an improved rutting test. A UTWC specimen with a dimension
of 300 mm × 300 mm × 20 mm was used for the rutting test. The rutting specimens usually
need to be compacted several times with compaction machines and the compaction time of
UTWC was different from the 50 mm-thick specimen used in the traditional rutting test. The
test set compaction times as 24, 20, 16, and 12, ensuring UTWC specimens meet compaction
standard. A steel plate, dimensions 300 mm × 300 mm × 30 mm, was placed in the
rutting mold. Viscosity-modified emulsified asphalt was spread on a steel plate, amounting
to 0.8 kg/m2. Then, the asphalt mixture was compacted into the UTWC specimen under
different compaction times with a volume of 1800 cm3 (30 cm × 30 cm × 2 cm) placed on
the steel plate according to the bulk density of different asphalt mixtures.

The asphalt mixture was also compacted on a PCC slab to form a composite specimen
to simulate the actual situation of overlaying UTWC onto old cement pavement. As shown
in Figure 5, the composite specimens from top to bottom were UTWC, tack coat oil of
emulsified asphalt, and the PCC slab. Rutting tests were conducted on the specimens
according to the methods described in Section 2.3.5. Three 20 mm UTWC specimens and
three composite specimens of each UTWC were prepared for the improved rutting test.
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2.3.7. Anti-Skid Performance and Durability Test

The anti-skid performance and durability of UTWC were evaluated based on the
loading kneading tester. We added a lateral moving motor on the rutting test machine to
make W-shaped movement possible, stimulating the change of asphalt pavement surface
structure under the action of a moving tire. This process is called the kneading test [45].
The latitude speed of the wheel is 10 cm/min, the longitude speed is 42 ± 1 times/min, and
the weight of the kneading wheel is 42–100 kg (adjustable). The loading and environmental
simulations of this acceleration load kneading machine are practical, and it is easy to
operate. The total kneading time of each specimen was 8 h divided into 5 stages, 0, 2, 4,
6, and 8 h. The sand-patch method and a BPN test at room temperature (25 ± 1 ◦C) were
used to measure the attenuation pattern of the surface anti-skid performance, with 2 h
testing interval. Three specimens of each UTWC were prepared for the kneading test. The
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test process is shown in Figure 6. The durability of a UTWC was visually measured by
observing the fracture.
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3. Results and Discussion
3.1. Water Stability

The residual Marshall test and freeze–thaw test were used in this study to reflect the
ability of an asphalt mixture to resist failure caused by asphalt membrane peeling and
particle drop. The residual Marshall mainly evaluates the water stability of the asphalt
mixture at high temperatures, and the freeze–thaw test mainly evaluates its water stability
at low temperatures or at high temperature differences. The water stability of asphalt
mixtures can be better evaluated by using both tests. Although the freeze–thaw test has
a freeze–thaw cycle, it is also applicable to non-freezing areas because it is designed to
evaluate water stability.

Table 3 and Figure 7 show that the Marshall stability of the three asphalt mixtures was
about 9.5 kN. The Marshall stability of SMA-10, Novachip-B, and GT-10 was also very close
even after immersion, which was 8.84, 9.09, and 8.79, respectively. The residual Marshall
stability of SMA-10, Novachip-B, and GT-10 were 93.6, 95.3, and 92.5%, respectively. Table 4
and Figure 7 show the tensile strength of the asphalt mixture before and after the freeze-
thaw. Afterward, the tensile strength ratio of SMA-10 Novachip-B and GT-10 was 91.7, 94.9,
and 90.7%, respectively, which met the technical requirements of at least 80%. Noticeably,
the residual stability of the three mixtures was above 90%. The same results also appeared
in the freeze–thaw test, indicating that the water stability of the mixtures as typical UTWC
engineering products was excellent.

Table 3. Results of Marshall stability test.

Mixture Type Marshall Stability (kN) Residual Marshall
Stability (%)60 ◦C, 0.5 h 60 ◦C, 48 h

SMA-10 9.44 ± 0.31 8.84 ± 0.51 93.6
Novachip-B 9.53 ± 1.09 9.09 ± 0.40 95.3

GT-10 9.50 ± 0.42 8.79 ± 0.40 92.5
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Table 4. Results of tensile strength test.

Mixture
Type

Unfreeze-Thaw Group Freeze-Thaw Group Tensile
Strength
Ratio (%)

Critical Load
(kN)

Tensile
Strength

(MPa)

Critical Load
(kN)

Tensile
Strength

(MPa)

SMA-10 9.56 ± 0.53 0.96 ± 0.06 8.86 ± 0.30 0.88 ± 0.03 91.7
Novachip-B 9.84 ± 0.55 0.98 ± 0.06 9.36 ± 0.35 0.93 ± 0.03 94.9

GT-10 8.71 ± 0.35 0.86 ± 0.03 7.85 ± 0.32 0.78 ± 0.03 90.7

3.2. Raveling Resistance

When under repeat traffic, insufficient asphalt dosage and asphalt bonding cause
aggregate shedding and scattering, which further leads to pavement potholes. This is a
common disease in UTWC. It is necessary to supplement the UTWC performance testing
with a raveling resistance test to prevent this damage. The raveling loss is an indicator
of the asphalt mixture raveling resistance, measured by the Cantabro test and expressed



Polymers 2022, 14, 3235 10 of 21

as a percentage. The smaller the raveling loss, the better the raveling resistance of the
asphalt mixture. Table 5 shows that the raveling loss of SMA-10, Novachip-B, and GT-10
was 4.11, 6.38, and 4.93%, respectively, and did not exceed 8% according to the specifications.
The difference between the raveling loss of SMA-10 and GT-10 is not large, but the raveling
loss of Novachip-B is nearly 2% larger than the raveling loss of SMA and GT-10, indicating
that Novachip-B had the worst raveling resistance. SMA-10 and Novachip-B asphalt
mixtures both underwent gap gradation, but the air void of Novachip-B was larger than
SMA-10, and the film thickness was lower than SMA-10. Therefore, the raveling resistance
of SMA-10 was better than that of Novachip-B. GT-10 had a dense skeleton structure, larger
asphalt film thickness, and better raveling resistance than Novachip-B.

Table 5. Cantabro test results.

Mixture Type Before Testing (g) After Raveling (g) Raveling Loss (%)

SMA-10 1216.9 ± 16.8 1166.9 ± 9.6 4.11
Novachip-B 1203.4 ± 11.4 1126.6 ± 9.7 6.38

GT-10 1224.9 ± 6.9 1164.5 ± 5.6 4.93

3.3. Pull Strength

The pull strength of high-viscosity emulsified asphalt used in this study was thor-
oughly studied by the former research group. The pull strength should be higher than
0.4 MPa to ensure UTWC is closely bonded with the original cement concrete pave-
ment [11,12,18]. The disease caused by insufficient bond strength did not occur when
high-viscosity emulsified asphalt pull strength was more than 0.4 MPa. A few researchers
applied this high-viscosity emulsified asphalt on PCC slabs with preset cracks for pull
strength tests before. To ensure the applicability of high-viscosity emulsified asphalt, the
pull strength of high-viscosity emulsified asphalt was measured by the tensile adhesion
test. As Table 6 shows, the pull strength of high-viscosity emulsified asphalt on the un-
processed PCC slab interface was 0.49 MPa, and for PCC slabs with 2 and 4 preset cracks,
0.45 and 0.42 MPa, respectively. Even in the most unfavorable position, the pull strength
reached the specification requirements of more than 0.4 MPa. Therefore, high-viscosity
emulsified asphalt can be used as a tack coat on PCC slabs with preset cracks. It ensures the
mechanical occlusion effect between the asphalt mixture and cement concrete. Thus, the
pull strength of the high-viscosity emulsified asphalt ensures the reliability of experimental
results, including the 20 mm specimens and the composite specimens.

Table 6. Pull strength test results.

PCC Type Pull Strength/MPa

Unprocessed PCC slab 0.49 ± 0.02
PCC slab with 2 cracks 0.45 ± 0.03
PCC slab with 4 cracks 0.42 ± 0.02

3.4. Fatigue Resistance

UTWC asphalt overlay is subjected to repeated vehicle loading. It fails when the
repeated loadings exceed its designed fatigue life. Therefore, UTWC requires longer fatigue
life. Fatigue resistance refers to the ability of the asphalt mixture to withstand repeated
loadings. The better the fatigue resistance, the longer the fatigue life.

The differences obtained for different asphalt mixtures are shown in Figure 8 and
Table 7. At each micro-strain, the fatigue life of the asphalt mixture is the largest in GT-10,
followed by SMA-10 and the smallest in Novachip-B. At lower strain levels (<600 micro-
strains), the fatigue life of GT-10 was higher than 1 million cycles. For higher strain levels
(>800 micro-strain), GT-10’s fatigue life was almost 18 times higher than that of SMA-10
and nearly 53 times higher than that of Novachip-B. The higher the strain level, the more
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significantly increased proportion of the fatigue life of GT-10 to the fatigue of the other two
mixtures. Therefore, the GT-10 asphalt mixture exhibited better fatigue resistance at higher
strain levels (800–1000 micro-strain). The better fatigue resistance was mainly due to the
high PG grade asphalt binder and thicker asphalt film, which significantly improved the
toughness of the GT-10. In addition, it was not easy to peel under repeated loads, thus
significantly enhancing the fatigue resistance of the mixture.
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Table 7. Results of four points bending fatigue test.

Mixture Type
Cycles of Failure

µε = 400 µε = 600 µε = 800 µε = 1000

SMA-10 305,368 ± 32,282 141,203 ± 15,562 32,684 ± 2419 11,404 ± 1053
Novachip-B 155,874 ± 10,274 33,841 ± 5179 10,801 ± 1848 4104 ± 419

GT-10 2,224,587 ± 215,535 1,075,369 ± 78,377 567,031 ± 48,516 220,015 ± 25,905

3.5. General Rutting Test Performance

Insufficient rutting resistance leads to pavement diseases, such as waves, deformations,
and ruts occurring after a frequent traffic load. The better rutting resistance of the asphalt
mixture, the better the rutting performance, and a larger DS and a smaller RD represent
better rutting performance.

The results of general rutting performance experiments are shown in Figure 9. The
DS of the three asphalt mixtures met the specification of higher than 3000 times/mm. The
DS of SMA-10 and GT-10 was 8132 and 8140 times/mm, respectively. The DS of SMA-10
and GT-10 was about 60% higher than that of Novachip-B, indicating their better rutting
performance. Meanwhile, the rutting depth (RD) of SMA-10 was 1.277 mm, only 84.1
and 73.9% of GT-10 and Novachip-B, respectively. Overall, SMA-10 had the best rutting
performance, followed by the GT-10 and Novachip-B.



Polymers 2022, 14, 3235 12 of 21

Polymers 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

and GT-10 was about 60% higher than that of Novachip-B, indicating their better rutting 
performance. Meanwhile, the rutting depth (RD) of SMA-10 was 1.277 mm, only 84.1 and 
73.9% of GT-10 and Novachip-B, respectively. Overall, SMA-10 had the best rutting per-
formance, followed by the GT-10 and Novachip-B. 

8,132

5,065

8,140

1.27

1.72

1.52

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

D
S 

(N
um

be
r/m

m
)

 DS
 RD

SMA-10 Novachip-B GT-10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

RD
 (m

m
)

 
Figure 9. Results of general rutting test. 

3.6. Improved Rutting Test Performance 
3.6.1. Compaction Times of UTWC 

The compaction times of traditional rutting test specimens are usually set to 24. How-
ever, Ding et al. [30] mentioned that UTWC compaction times should be considered sep-
arately. The test set different compaction times (from high to low 24, 20, 16, 12) to ensure 
that the 20 mm UTWC specimens met the compaction standard. The drill core specimen 
was taken after the specimen was compacted, and the bulk density was measured. The 
bulk-density test method was consistent with the Marshall specimen to reduce the error. 
When the bulk density reaches 100% ± 1 of the same Marshall specimen bulk density, the 
20 mm UTWC specimens can meet the compaction standard. 

As shown in Figure 10, the bulk density of UTWC specimens continued to increase 
with the compaction times. The bulk density increased rapidly in the early stage and grad-
ually stabilized in the latter. When the compaction times were 18 ± 1, the specimen bulk 
density of SMA-10 and Novachip-B was close to the median of the allowable region. When 
the compaction time was 24, the bulk density of the GT-10 was close to the median ac-
ceptable region because of fine gradation and high-viscosity and high-elasticity-modified 
asphalt. This indicated that the GT-10 required greater compaction force, whereas SMA-
10 and Novachip-B were easier to compact. Therefore, the compaction times of SMA-10 
and Novachip-B specimens were set to 18, and GT-10 specimens were set to 24. 

Figure 9. Results of general rutting test.

3.6. Improved Rutting Test Performance
3.6.1. Compaction Times of UTWC

The compaction times of traditional rutting test specimens are usually set to 24. How-
ever, Ding et al. [30] mentioned that UTWC compaction times should be considered sepa-
rately. The test set different compaction times (from high to low 24, 20, 16, 12) to ensure
that the 20 mm UTWC specimens met the compaction standard. The drill core specimen
was taken after the specimen was compacted, and the bulk density was measured. The
bulk-density test method was consistent with the Marshall specimen to reduce the error.
When the bulk density reaches 100% ± 1 of the same Marshall specimen bulk density, the
20 mm UTWC specimens can meet the compaction standard.

As shown in Figure 10, the bulk density of UTWC specimens continued to increase
with the compaction times. The bulk density increased rapidly in the early stage and
gradually stabilized in the latter. When the compaction times were 18 ± 1, the specimen
bulk density of SMA-10 and Novachip-B was close to the median of the allowable region.
When the compaction time was 24, the bulk density of the GT-10 was close to the median
acceptable region because of fine gradation and high-viscosity and high-elasticity-modified
asphalt. This indicated that the GT-10 required greater compaction force, whereas SMA-10
and Novachip-B were easier to compact. Therefore, the compaction times of SMA-10 and
Novachip-B specimens were set to 18, and GT-10 specimens were set to 24.

3.6.2. Rutting Performance of Composite Specimen

The test results of a 20 mm UTWC formed on an unprocessed PCC slab and a 50 mm
rutting test specimen are shown in Figure 11a. It shows that the RD of all kinds of mixtures
decreased while the DS increased. The RD of SMA-10 and Novachip-B decreased by 16.4
and 14.6%, while DS increased by 103 and 118%, respectively. The DS of GT-10 increased
by 83%, and the RD decreased by 38.5%. The RD of GT-10 was also the lowest of the three
asphalt mixtures. The RD of the 20 mm UTWC specimen is not so low as to be negligible.
Therefore, the rutting test results of the 20 mm UTWC specimen are reliable.
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The RD and DS of the UTWC specimens formed on steel plates and unprocessed
PCC slabs are shown in Figure 11b. The DS and RD of the two different 20 mm UTWC
specimens are very close for SMA-10 and Novachip-B with gab gradation and GT-10 with
dense gradation. The deviation values of all results are within 3%. The test results of
two different specimens may be equivalent in the rutting test, considering the experimental
error because the unprocessed PCC slab with no crack can be regarded as rigid as a steel
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plate in forming UTWC specimens. Therefore, consistent experimental results for the
rutting test can be obtained when UTWC specimens were prepared on the unprocessed
PCC slab and steel plate using the same quality of asphalt mixture, the same temperature,
and the number of compaction times.
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Figure 11. Rutting results: (a) UTWC specimens of 50 mm and 20 mm with PCC slab; (b) UTWC 
specimens of 20 mm with steel plate. 
Figure 11. Rutting results: (a) UTWC specimens of 50 mm and 20 mm with PCC slab; (b) UTWC
specimens of 20 mm with steel plate.

The rutting test results of composite specimens with two and four preset cracks are
shown in Figure 12 and Table 8. The growth between the RD of the composite specimen
with two preset cracks and the one with the unprocessed PCC slab was expressed by
the Comparison 1 virtual line. The growth between the RD of the composite specimen
with four preset cracks and the RD with the unprocessed PCC slab is expressed by the
Comparison 2 virtual line. From the Comparison 1 virtual line, the RD increase of SMA-10
and Novachip-B reached 11.6 and 5.9%, and the results of the RD had obvious changes. The
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RD of GT-10 was reduced by about 1.1%. Considering experimental error, the DS of the two
GT-10 specimens was similar, so its RD did not change. The rutting performance of GT-10
was not affected by the two preset cracks, and its RD was only 77.6% of that of SMA-10 and
59.2% of that of Novachip-B. From the Comparison 2 virtual line, the RD changes in the
three mixtures were undeniable. The stress concentration occurred at the preset crack of
PCC slab in the rutting test, so that the bottom and surface of the local UTWC specimen
were subjected to greater shear stress than those on the complete PCC slab. This led to the
destabilization of the structure of the UTWC due to shear damage, resulting in a larger
RD [46]. The RD increase in SMA-10, Novachip-B, and GT-10 reached 17.2, 13.5, and 19.8%,
respectively. However, it is worth noting that the RD of GT-10 was the smallest, and its DS
the largest. Meanwhile, the RDs of SMA-10 and Novachip-B were close to that of the 50 mm
specimen. In contrast, the RD of GT-10 was only 73.7% of the RD of the 50 mm specimen.
The RD of GT-10 was only 89.5% of that of SMA-10 and 66.8% of that of Novachip-B. GT-10
had the better rutting performance even though the number of preset cracks increased.
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Table 8. Results of composite specimens.

Mixture Type PCC Slab Rutting
Depth (mm)

DS
(number/mm)

Amplification
of RD (%)

SMA-10
Two cracks 1.1895 ± 0.1 14,691 ± 731 11.6

Four cracks 1.2484 ± 0.053 9214 ± 432 17.2

Novachip-B
Two cracks 1.5597 ± 0.054 9144 ± 329 5.9

Four cracks 1.6719 ± 0.053 5880 ± 393 13.5

GT-10
Two cracks 0.9226 ± 0.05 14,414 ± 953 −1.1

Four cracks 1.1169 ± 0.11 10,674 ± 788 19.8

As SMA-10 and Novachip-B underwent gap gradation, the same SBS-modified asphalt
was used for the two mixtures, the variation patterns of which were relatively close. GT-10
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had dense gradation with high-viscosity and high-elasticity modified asphalt. Therefore,
the variation pattern of GT-10 was different and obtained a better rutting performance than
from SMA-10 and Novachip-B.

In summary, the rutting performance of UTWC decreased due to the effect of pre-
determined cracks, and the range of decrease varied with different types of UTWC.
Compared with the composite specimens on unprocessed PCC slabs, the RD of SMA-
10, Novachip-B, and GT-10 composite specimens with two and four preset cracks increased
by 11.6, 5.9, and −1.1%, and 17.2, 13.5, and 19.8%, respectively. The RD of GT-10 was
60–90% of that of the others. Therefore, the combined rutting performance of GT-10 is better
than others. Notably, the increase in RD and decrease in rutting performance for the three
asphalt mixtures reveal a situation. This situation is in line with the fact that the actual
rutting performance of UTWC in practical applications is weaker than the design rutting
performance. The service life of UTWC is affected by insufficient rutting performance,
resulting in the actual service life (usually 3–4 years) of the UTWC being half or less than
the design life (usually 8–10 years) [47,48]. The results indicated that compared with the
traditional rutting test, the improved rutting test predicts the actual rutting performance of
UTWC more accurately to some extent.

3.7. Anti-Skid Performance and Durability

The anti-skid performance test effectively reflects skid resistance attenuation, and it
was characterized by the texture depth (TD) and BPN in this study. As shown in Figure 13,
as kneading times increased, the BPN and TD of the three UTWCs presented an obvious
downturn, and the corresponding anti-skid performance decreased. After the kneading
experiment at room temperature for 8 h, the TD of SMA-10, Novachip-B, and GT-10
decreased by 18.9, 22.6, and 17.8%, respectively. In contrast, the BPN decreased by 13.7,
12.8, and 4.7%. The TD and BPN of GT-10 were also superior to the other two mixtures in
absolute value. However, the TD and BPN of each exhibited different variation patterns.
GT-10 decreased with a fast attenuation rate in the early stage, but then it slowed down
and stabilized in the later stage. For SMA-10 and Novachip-B, the TD and BPN decreased
continuously, and the attenuation rate did not slow down. It can be concluded that the
anti-skid performance of GT-10 was superior to that of Novachip-B and SMA-10.

Table 9 shows that, after an 8 h kneading experiment at room temperature, the
three mixtures were unchanged with no apparent cracks or rutting, showing that three
kinds of asphalt mixtures had good durability at room temperature.

3.8. Comprehensive Performance

Based on the results and discussions, the performances of three typical UTWCs are
shown in Table 10, including water stability, raveling resistance, fatigue resistance, anti-
skid performance, durability, and rutting performance based on general rutting test and
improved rutting test. Among the three UTWCs, Novachip-B showed the best water
stability, SMA-10 showed the best raveling resistance, and GT-10 was the best in fatigue
resistance, anti-skid performance, and durability. GT-10 and Novachip-B showed similar
performance in the water stability, and the gap between the raveling resistance of GT-10
and that of SMA-10 was minimal. However, the advantage of GT-10 in fatigue resistance
and anti-skid performance was more prominent. In particular, in the four-point beam
fatigue test at higher strain levels, GT-10 exhibited stronger fatigue life than SMA-10
and Novachip-B.
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Table 10. Results of UTWC comprehensive performance.

Performance
Mixture Type

SMA-10 Novachip-B GT-10

Water stability 2 1 3

Raveling resistance 1 3 2

Fatigue resistance 2 3 1

Anti-skid performance 3 2 1

Durability 1 1 1

General rutting performance 1 3 2

Improved rutting
performance

20 mm specimen 2 3 1

composite specimen
with 2 cracks 2 3 1

composite specimen
with 4 cracks 2 3 1

In the same experiment, 1 represents excellent, 2 represents medium, and 3 represents weak.

Moreover, the rutting performance of GT-10 was the best in the improved rutting tests.
Comparing the test results, the rutting test of 20 mm specimens and two different composite
specimens showed nice agreement, and the rutting performance of the three UTWCs was
ranked the same. SMA-10 showed the best rutting performance in the general rutting
test, which was not consistent with the results of the improved rutting test. Therefore, the
improved rutting test is recommended to evaluate the rutting performance of UTWC for an
asphalt overlay with a thickness of nearly 20 mm. GT-10 showed the best comprehensive
performance among the three typical UTWC products.

4. Conclusions

This study compared the comprehensive performance of three typical UTWC products
of similar thickness and cost. Typical gradations and asphalt–aggregate ratios for each
product were used to prepare UTWC specimens. This study conducted a series of laboratory
tests on UTWCs to investigate the differences in their water stability, raveling resistance,
fatigue resistance, anti-skid performance, and durability. The water stability of UTWC
was investigated by the residual Marshall stability and freeze–thaw split test. Then, the
Cantabro test and four-point beam fatigue test were conducted to get the raveling resistance
and fatigue resistance of UTWC. Furthermore, an improved rutting test was designed in
this study, and rutting tests were applied to 15 different specimens to investigate the rutting
performance of UTWC. Finally, the anti-skid performance of UTWC was evaluated by the
sand-patch method test and BPN test, and the durability was investigated by observing the
changes of several UTWCs during the 8 h kneading test. According to the experimental
results, the following conclusions can be drawn:

• The water stability of all kinds of UTWCs was excellent. Novachip-B showed weaker
raveling resistance than others, while GT-10 showed the best fatigue resistance and
anti-skid performance.

• The recommended compaction times for 20 mm SMA-10, Novachip-B, and GT-10
specimens were 18, 18, and 24, respectively. The rutting performance of all specimens
on the steel plate and unprocessed PCC slab was similar, which was considered
equivalent under specific circumstances.

• The rutting performance of UTWCs was reduced because of the influence of preset
cracks, and different UTWCs were affected to various degrees. Compared with the
unprocessed PCC slab specimens, the RD of SMA-10, Novachip-B, and GT-10 com-
posite specimens with two and four preset cracks increased by 11.6, 5.9, and −1.1%,
and 17.2, 13.5, and 19.8%, respectively. The improved rutting test predicts the actual
rutting performance of UTWC more accurately.
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• GT-10 showed the best comprehensive performance among the three typical
UTWC products.

The study evaluated the comprehensive performance of typical UTWCs, from water
stability to rutting performance. The results provide a reference for the research and
development of UTWC performance. However, the longer test time of UTWC rutting test
could be considered in the future. The durability of the UTWCs and the anti-reflection crack
performance of UTWCs will be investigated by rutting test machine or other equipment
that can provide rutting loads based on the conclusions of this paper. Moreover, the fatigue
performance of composite specimens will be further studied by the four-point beam test,
which is essential for evaluating the comprehensive performance of UTWC.
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