Effects of Nanoscale Morphology on Optical Properties of Photoluminescent Polymer Optical Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bicomponent Melt-Spinning of PL-POFs
2.3. Sheath Removal from POFs
2.4. Axial Light Emission Measurements
2.5. X-ray Measurements
3. Results and Discussion
3.1. Dimensions of Core/Sheath PL-POFs
3.2. Axial Emission Properties
Impact of the Presence of a Semi-Crystalline Sheath Material onto Axial Emission
- NSI values of core/sheath PL-POFs are significantly higher than NSI values of core-only PL-POFs. These values depend on the light-incoupling and light-guiding ability of the fiber.
- The attenuation coefficients of core/sheath PL-POFs are smaller than the ones of core-only PL-POFs. The smaller the attenuation coefficient, the less light is lost over a fixed distance along the fiber. Thus, the removal of the sheath material for core-only fibers induces additional attenuation.
- A 2D-view of the transversal cross-section of a core/sheath PL-POF (Figure 6a) and a core-only fiber (Figure 6b). The incoming light is refracted at the air/sheath interface and crystals in the sheath material of a PL-POF deflect the incoming light in different directions. Thus in the case of PL-POFs, a large part of the incoming light interacts with the core. Note, that light that is transmitted transversely through the fiber can also be returned to the core via scattering events. In contrast, for core-only fibers (Figure 6b) some light rays pass the fiber without even interacting with the core.
- A 2D-view of the longitudinal cross-section of a core/sheath PL-POF (Figure 6c) and a core-only fiber (Figure 6d). Forward-scattering crystals in the sheath material of a PL-POF deflect the light path, resulting in longer traveling distances, L, of the light inside the core, thus a higher probability of dye excitation. In contrast, the undeflected wave in a core-only fiber (Figure 6d), has an interaction path that is maximally equal to the fibers’ diameter d.
- (1)
- During sheath removal, the solvent may cause microcracks in the surface of the amorphous core, which in turn increases the attenuation [49].
- (2)
- In core/sheath PL-POFs, a robust optical interface between the two materials exists, making the waveguide less sensitive to the negative impact of external factors, such as dust particles that attach to the surface.
3.3. Structural Properties
3.4. Structure-Property Relationship Comparing Differently Drawn PL-POFs
- (i)
- a significantly lower attenuation coefficient (α = 28.4 ± 4) than the PL-POF with DR = 1.1 (α = 32.6 ± 4), p = 0.012.
- (ii)
- a significantly higher NSI value (NSI = 1499 ± 117) than the PL-POF with DR = 1.1 (1312 ± 117) for x = 20 cm, p = 0.036.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roncali, J. Luminescent Solar Collectors: Quo Vadis? Adv. Energy Mater. 2020, 10, 2001907. [Google Scholar] [CrossRef]
- Jakubowski, K.; Huang, C.-S.; Boesel, L.F.; Hufenus, R.; Heuberger, M. Recent advances in photoluminescent polymer optical fibers. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100912. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Portnoi, M.; Debije, M.G. The Hidden Potential of Luminescent Solar Concentrators. Adv. Energy Mater. 2021, 11, 2002883. [Google Scholar] [CrossRef]
- Parola, I.; Illarramendi, M.A.; Jakobs, F.; Kielhorn, J.; Zaremba, D.; Johannes, H.-H.; Zubia, J. Characterization of Double-Doped Polymer Optical Fibers as Luminescent Solar Concentrators. Polymers 2019, 11, 1187. [Google Scholar] [CrossRef] [Green Version]
- Correia, S.F.H.; Frias, A.R.; Fu, L.; Rondão, R.; Pecoraro, E.; Ribeiro, S.J.L.; André, P.S.; Ferreira, R.A.S.; Carlos, L.D. Large-Area Tunable Visible-to-Near-Infrared Luminescent Solar Concentrators. Adv. Sustain. Syst. 2018, 2, 1800002. [Google Scholar] [CrossRef]
- Huang, C.-S.; Jakubowski, K.; Ulrich, S.; Yakunin, S.; Clerc, M.; Toncelli, C.; Rossi, R.M.; Kovalenko, M.V.; Boesel, L.F. Nano-domains assisted energy transfer in amphiphilic polymer conetworks for wearable luminescent solar concentrators. Nano Energy 2020, 76, 105039. [Google Scholar] [CrossRef]
- Riaz, A.; Faulkner, G.; Collins, S. A Fluorescent Antenna for White Light Visible Light Communications. In Proceedings of the 2019 Global LIFI Congress (GLC), Paris, France, 12–13 June 2019; pp. 1–4. [Google Scholar]
- Peyronel, T.; Quirk, K.J.; Wang, S.C.; Tiecke, T.G. Luminescent detector for free-space optical communication. Optica 2016, 3, 787–792. [Google Scholar] [CrossRef]
- Portnoi, M.; Haigh, P.A.; Macdonald, T.J.; Ambroz, F.; Parkin, I.P.; Darwazeh, I.; Papakonstantinou, I. Bandwidth limits of luminescent solar concentrators as detectors in free-space optical communication systems. Light Sci. Appl. 2021, 10, 3. [Google Scholar] [CrossRef]
- Jakubowski, K.; Heuberger, M.; Hufenus, R. Melt-Spun Photoluminescent Polymer Optical Fibers for Color-Tunable Textile Illumination. Materials 2021, 14, 1740. [Google Scholar] [CrossRef]
- Beckers, M.; Schlüter, T.; Vad, T.; Gries, T.; Bunge, C.-A. An overview on fabrication methods for polymer optical fibers. Polym. Int. 2015, 64, 25–36. [Google Scholar] [CrossRef]
- Quandt, B.M.; Braun, F.; Ferrario, D.; Rossi, R.M.; Scheel-Sailer, A.; Wolf, M.; Bona, G.-L.; Hufenus, R.; Scherer, L.J.; Boesel, L.F. Body-monitoring with photonic textiles: A reflective heartbeat sensor based on polymer optical fibres. J. R. Soc. Interface 2017, 14, 20170060. [Google Scholar] [CrossRef] [Green Version]
- Hufenus, R.; Yan, Y.; Dauner, M.; Kikutani, T. Melt-Spun Fibers for Textile Applications. Materials 2020, 13, 4298. [Google Scholar] [CrossRef] [PubMed]
- Hufenus, R.; Yan, Y.; Dauner, M.; Yao, D.; Kikutani, T. Bicomponent fibers. In Handbook of Fibrous Materials; Jinlian, H., Kumar, B., Lu, J., Eds.; Wiley-VCH: Weinheim, Germany, 2018; p. 1. [Google Scholar]
- Jakubowski, K.; Huang, C.-S.; Gooneie, A.; Boesel, L.F.; Heuberger, M.; Hufenus, R. Luminescent solar concentrators based on melt-spun polymer optical fibers. Mater. Des. 2020, 189, 108518. [Google Scholar] [CrossRef]
- Debije, M.G.; Dekkers, W. Functionalizing the rear scatterer in a luminescent solar concentrator. J. Renew. Sustain. Energy 2012, 4, 013103. [Google Scholar] [CrossRef] [Green Version]
- Debije, M.G.; Teunissen, J.-P.; Kastelijn, M.J.; Verbunt, P.P.C.; Bastiaansen, C.W.M. The effect of a scattering layer on the edge output of a luminescent solar concentrator. Sol. Energy Mater. Sol. Cells 2009, 93, 1345–1350. [Google Scholar] [CrossRef]
- Wang, C.; Winston, R.; Zhang, W.; Jiang, L.; Pelka, D.; Carter, S. Performance of Organic Luminescent Solar Concentrator Photovoltaic Systems. AIP Conf. Proc. 2011, 1407, 163–167. [Google Scholar]
- Mateen, F.; Oh, H.; Kang, J.; Lee, S.Y.; Hong, S.-K. Improvement in the performance of luminescent solar concentrator using array of cylindrical optical fibers. Renew. Energy 2019, 138, 691–696. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Chen, W.; Wang, D.; Li, C.; Wu, D.; Hao, J.; Zhou, Z.; Wang, X.; Wang, K. Scattering enhanced quantum dots based luminescent solar concentrators by silica microparticles. Sol. Energy Mater. Sol. Cells 2018, 179, 380–385. [Google Scholar] [CrossRef]
- Bunge, C.A.; Beckers, M.; Lustermann, B. 3—Basic principles of optical fibres. In Polymer Optical Fibres; Bunge, C.-A., Gries, T., Beckers, M., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 47–118. [Google Scholar]
- Hashimoto, T.; Todo, A.; Kawai, H. Light scattering from tilted two-dimensional spherulites. J. Polym. Sci. Part A-2 Polym. Phys. 1973, 11, 149–173. [Google Scholar] [CrossRef]
- Molnár, J.; Sepsi, Ö.; Erdei, G.; Lenk, S.; Ujhelyi, F.; Menyhárd, A. Modeling of light scattering and haze in semicrystalline polymers. J. Polym. Sci. 2020, 58, 1787–1795. [Google Scholar] [CrossRef]
- Bernland, K.; Goossens, J.G.P.; Smith, P.; Tervoort, T.A. On clarification of haze in polypropylene. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 865–874. [Google Scholar] [CrossRef] [Green Version]
- Aldabaldetreku, G.; Bikandi, I.; Illarramendi, M.A.; Durana, G.; Zubia, J. A comprehensive analysis of scattering in polymer optical fibers. Opt. Express 2010, 18, 24536–24555. [Google Scholar] [CrossRef] [PubMed]
- Illarramendi, M.A.; Aldabaldetreku, G.; Bikandi, I.; Zubia, J.; Durana, G.; Berganza, A. Scattering in step-index polymer optical fibers by side-illumination technique: Theory and application. J. Opt. Soc. Am. B 2012, 29, 1316–1329. [Google Scholar] [CrossRef]
- Murthy, N.S.; Grubb, D.T. Deformation in lamellar and crystalline structures: In situ simultaneous small-angle X-ray scattering and wide-angle X-ray diffraction measurements on polyethylene terephthalate fibers. J. Polym. Sci. Part B-Polym. Phys. 2003, 41, 1538–1553. [Google Scholar] [CrossRef]
- Beckers, M.; Vad, T.; Mohr, B.; Weise, B.; Steinmann, W.; Gries, T.; Seide, G.; Kentzinger, E.; Bunge, C.-A. Novel Melt-Spun Polymer-Optical Poly(methyl methacrylate) Fibers Studied by Small-Angle X-ray Scattering. Polymers 2017, 9, 60. [Google Scholar] [CrossRef] [Green Version]
- Reifler, F.A.; Hufenus, R.; Krehel, M.; Zgraggen, E.; Rossi, R.M.; Scherer, L.J. Polymer optical fibers for textile applications—Bicomponent melt spinning from cyclic olefin polymer and structural characteristics revealed by wide angle X-ray diffraction. Polymer 2014, 55, 5695–5707. [Google Scholar] [CrossRef]
- Quandt, B.M.; Hufenus, R.; Weisse, B.; Braun, F.; Wolf, M.; Scheel-Sailer, A.; Bona, G.-L.; Rossi, R.M.; Boesel, L.F. Optimization of novel melt-extruded polymer optical fibers designed for pressure sensor applications. Eur. Polym. J. 2017, 88, 44–55. [Google Scholar] [CrossRef]
- Lustermann, B.; Quandt, B.M.; Ulrich, S.; Spano, F.; Rossi, R.M.; Boesel, L.F. Experimental determination and ray-tracing simulation of bending losses in melt-spun polymer optical fibres. Sci. Rep. 2020, 10, 11885. [Google Scholar] [CrossRef]
- Sohn, I.-S.; Park, C.-W. Diffusion-Assisted Coextrusion Process for the Fabrication of Graded-Index Plastic Optical Fibers. Ind. Eng. Chem. Res. 2001, 40, 3740–3748. [Google Scholar] [CrossRef]
- Perret, E.; Reifler, F.A.; Hufenus, R.; Bunk, O.; Heuberger, M. Modified Crystallization in PET/PPS Bicomponent Fibers Revealed by Small-Angle and Wide-Angle X-ray Scattering. Macromolecules 2013, 46, 440–448. [Google Scholar] [CrossRef]
- Perret, E.; Hufenus, R. Insights into strain-induced solid mesophases in melt-spun polymer fibers. Polymer 2021, 229, 124010. [Google Scholar] [CrossRef]
- Perret, E.; Reifler, F.A.; Gooneie, A.; Chen, K.; Selli, F.; Hufenus, R. Structural response of melt-spun poly(3-hydroxybutyrate) fibers to stress and temperature. Polymer 2020, 197, 122503. [Google Scholar] [CrossRef]
- Perret, E.; Reifler, F.A.; Gooneie, A.; Hufenus, R. Tensile study of melt-spun poly(3-hydroxybutyrate) P3HB fibers: Reversible transformation of a highly oriented phase. Polymer 2019, 180, 121668. [Google Scholar] [CrossRef]
- Perret, E.; Sharma, K.; Tritsch, S.; Hufenus, R. Reversible mesophase in stress-annealed poly(3-hydroxybutyrate) fibers: A synchrotron x-ray and polarized ATR-FTIR study. Polymer 2021, 231, 124141. [Google Scholar] [CrossRef]
- Schneider, K.; Zafeiropoulos, N.E.; Stamm, M. In situ Investigation of Structural Changes during Deformation and Fracture of Polymers by Synchrotron SAXS and WAXS. Adv. Eng. Mater. 2009, 11, 502–506. [Google Scholar] [CrossRef]
- Zaremba, D.; Evert, R. 5—Materials, chemical properties and analysis. In Polymer Optical Fibres; Bunge, C.-A., Gries, T., Beckers, M., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 153–186. [Google Scholar]
- Griffini, G. Host Matrix Materials for Luminescent Solar Concentrators: Recent Achievements and Forthcoming Challenges. Front. Mater. 2019, 6, 29. [Google Scholar] [CrossRef] [Green Version]
- Jakubowski, K.; Kerkemeyer, W.; Perret, E.; Heuberger, M.; Hufenus, R. Liquid-core polymer optical fibers for luminescent waveguide applications. Mater. Des. 2020, 196, 109131. [Google Scholar] [CrossRef]
- Quandt, B.M. Optical Fibre Textiles in Non-Invasive Medical Applications; ETH Zürich: Zurich, Switzerland, 2016. [Google Scholar]
- Kruhlak, R.J.; Kuzyk, M.G. Side-illumination fluorescence spectroscopy. I. Principles. J. Opt. Soc. Am. B 1999, 16, 1749–1755. [Google Scholar] [CrossRef]
- Kruhlak, R.J.; Kuzyk, M.G. Side-illumination fluorescence spectroscopy. II. Applications to squaraine-dye-doped polymer optical fibers. J. Opt. Soc. Am. B 1999, 16, 1756–1767. [Google Scholar] [CrossRef]
- Weiss, J.D. Trapping efficiency of fluorescent optical fibers. Opt. Eng. 2015, 54, 027101. [Google Scholar] [CrossRef] [Green Version]
- Itxaso, P.; María Asunción, I.; Joseba, Z.; Eneko, A.; Gaizka, D.; Nekane, G.; Olga, G.; Robert, E.; Daniel, Z.; Hans-Hermann, J.; et al. Polymer optical fibers doped with organic materials as luminescent solar concentrators. Proc.SPIE 2017, 10101, 102–109. [Google Scholar]
- Born, M.; Wolf, E. Electromagnetic theory of propagation, interference, and diffraction of light. In Principles of Optics, 7th (Expanded) ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Bunge, C.; Kruglov, R.; Poisel, H. Rayleigh and Mie scattering in polymer optical fibers. J. Lightwave Technol. 2006, 24, 3137–3146. [Google Scholar] [CrossRef]
- Yang, A.C.M.; Jou, E.D.Y.; Chang, Y.L.J.; Jou, J.H. The solvent-induced cracking in glassy polymer coatings by atomic force microscopy. Mater. Chem. Phys. 1995, 42, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Selli, F.; Erdoğan, U.H.; Hufenus, R.; Perret, E. Mesophase in melt-spun poly(ɛ-caprolactone) filaments: Structure–mechanical property relationship. Polymer 2020, 206, 122870. [Google Scholar] [CrossRef]
- Stribeck, N. Analysis of SAXS Fiber Patterns by Means of Projections. In Scattering from Polymers; American Chemical Society: Washington, DC, USA, 1999; Volume 739, pp. 41–56. [Google Scholar]
- Guinier, A. X-ray Diffraction; W. H. Freeman: San Francisco, CA, USA, 1963. [Google Scholar]
- Sharma, K.; Braun, O.; Tritsch, S.; Muff, R.; Hufenus, R.; Perret, E. 2D Raman, ATR-FTIR, WAXD, SAXS and DSC data of PET mono- and PET/PA6 bicomponent filaments. Data Brief 2021, 38, 107416. [Google Scholar] [CrossRef]
- Gerasimov, V.I.; Genin, Y.V.; Tsvankin, D.Y. Small-angle X-Ray study of deformed bulk polyethylene. J. Polym. Sci. Part B-Polym. Phys. 1974, 12, 2035–2046. [Google Scholar] [CrossRef]
- Kumar, S.; Warner, S.; Grubb, D.T.; Adams, W.W. On the Small-Angle X-Ray-Scattering of Rigid-Rod Polymer Fibers. Polymer 1994, 35, 5408–5412. [Google Scholar] [CrossRef]
- Welch, B.L. The Significance of the Difference between Two Means when the Population Variances Are Unequal. Biometrika 1938, 29, 350–362. [Google Scholar] [CrossRef]
- Perret, E.; Braun, O.; Sharma, K.; Tritsch, S.; Muff, R.; Hufenus, R. High-resolution 2D Raman mapping of mono- and bicomponent filament cross-sections. Polymer 2021, 229, 124011. [Google Scholar] [CrossRef]
Fiber Number Used at Empa | Label | Godet 1 Speed/ Temp. (m/min, °C) | Godet 2 Speed/ Temp. (m/min, °C) | Godet 3 Speed/ Temp. (m/min, °C) | Godet 4 Speed/ Temp. (m/min, °C) | Winder Speed (m/min) | Draw Ratio |
---|---|---|---|---|---|---|---|
1815 | Core/sheath 1.1 | 140/54 | 140/60 | 147/30 | 150/30 | 148 | 1.1 |
1817 | Core/sheath 1.6 | 140/54 | 140/60 | 223/30 | 225/30 | 223 | 1.6 |
Label | Core Radius (µm) | (mm2) | Sheath Thickness (µm) | Outer PL-POF Radius (µm) | APL-POF (mm2) |
---|---|---|---|---|---|
Core/sheath, DR = 1.1 | 144 ± 3 | 0.065 | 21 ± 6 | 165 ± 3 | 0.086 |
Core/sheath, DR = 1.6 | 118 ± 4 | 0.044 | 17 ± 7 | 135 ± 3 | 0.057 |
Fiber | x (cm) | Imeasured (x) (pA) | (dB/m) | NSI(x) (pA/mm2) |
---|---|---|---|---|
Core/sheath, DR = 1.1 | 10 | 181 ± 10 | 32.6 ± 4 | 2780 ± 146 |
15 | 121 ± 6 | 1861 ± 98 | ||
20 | 85 ± 8 | 1312 ± 117 | ||
Core-only, DR = 1.1 | 10 | 49 ± 3 | 54.4 ± 11 | 757 ± 48 |
15 | 26 ± 4 | 401 ± 58 | ||
20 | 14 ± 3 | 216 ± 53 | ||
Core/sheath, DR = 1.6 | 10 | 126 ± 8 | 28.4 ± 4 | 2881 ± 178 |
15 | 89 ± 6 | 2034 ± 134 | ||
20 | 66 ± 5 | 1499 ± 117 | ||
Core-only, DR = 1.6 | 10 | 30 ± 4 | 48.9 ± 13 | 682 ± 89 |
15 | 17 ± 3 | 382 ± 73 | ||
20 | 10 ± 3 | 221 ± 59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perret, E.; Jakubowski, K.; Heuberger, M.; Hufenus, R. Effects of Nanoscale Morphology on Optical Properties of Photoluminescent Polymer Optical Fibers. Polymers 2022, 14, 3262. https://doi.org/10.3390/polym14163262
Perret E, Jakubowski K, Heuberger M, Hufenus R. Effects of Nanoscale Morphology on Optical Properties of Photoluminescent Polymer Optical Fibers. Polymers. 2022; 14(16):3262. https://doi.org/10.3390/polym14163262
Chicago/Turabian StylePerret, Edith, Konrad Jakubowski, Manfred Heuberger, and Rudolf Hufenus. 2022. "Effects of Nanoscale Morphology on Optical Properties of Photoluminescent Polymer Optical Fibers" Polymers 14, no. 16: 3262. https://doi.org/10.3390/polym14163262
APA StylePerret, E., Jakubowski, K., Heuberger, M., & Hufenus, R. (2022). Effects of Nanoscale Morphology on Optical Properties of Photoluminescent Polymer Optical Fibers. Polymers, 14(16), 3262. https://doi.org/10.3390/polym14163262