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Abstract: The concept of representative directions allows for automatic generation of multi-axial
constitutive equations, starting from simplified uni-axial material models. In this paper, a modification
of the concept is considered suitable for the analysis of fibrous polymeric materials, which are
anisotropic in the as-received state. The modification of the concept incorporates an orientation
probability density function (OPDF), which explicitly accounts for the material anisotropy. Two
versions of the concept are available. The first version utilizes the homogeneous distribution of the
representative directions, with the entire anisotropy being contained in the weighting factors. The
second encapsulates the anisotropy in the distribution of the representative directions. Due to its
nature, the second version allows for a more efficient use of computational power. To promote this
efficient version of the concept, we present new algorithms generating required sets of representative
directions that match a given OPDF. These methods are based (i) on the minimization of a potential
energy, (ii) on the equilibration method, and (iii) on the use of Voronoi cells. These three methods are
tested and compared in terms of various OPDFs. The applicability of the computationally efficient
modeling method to mechanical behavior of an anisotropic polymeric material is demonstrated. In
particular, a calibration procedure is suggested for the practically important case when the OPDF is
not known a-priori.

Keywords: fibrous composites; polymers; large strain; concept of representative directions;
computational efficiency; electrospinning

1. Introduction

One-dimensional material laws are often deduced by materials scientists, based on
in-depth understanding of the underlying physical phenomena or by data-driven ap-
proaches [1,2]. These one-dimensional laws provide axial stresses as a function of the local
history of axial strain. Unfortunately, such uni-axial models are not suitable for boundary
value problems, neither can they be implemented into the finite element method for ana-
lysis of bulk structures. To enable finite element modeling, a number of procedures have
been developed which generalize one-dimensional constitutive laws to new multi-axial
material models. One such procedure is the concept of representative directions [3–7].
Within this concept, each material particle is associated with a collection of fibers, which we
also call representative directions. The generalization of the material model is based on the
postulate that the overall stress power is equal to the sum of the stress powers of individual
fibers (directions). Note that in the special case of hyperelastic materials, this concept is
equivalent to the integration approach [8], which is also called the “angular integration
approach” [9–14]. The angular integration approach is based on the more specific postulate
that the total potential energy is the sum of the energies stored in individual fibers. We
emphasize that the concept of representative directions is more general since it does not
require the existence of the potential energy of individual fibers.

Polymers 2022, 14, 3314. https://doi.org/10.3390/polym14163314 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14163314
https://doi.org/10.3390/polym14163314
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-5624-9732
https://doi.org/10.3390/polym14163314
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14163314?type=check_update&version=2


Polymers 2022, 14, 3314 2 of 21

Along with the concept of representative directions, there are similar approaches to
material modeling that also lead to integration over the unit sphere. For example, the mi-
croplane approach proposed in [15], as well as the micro-sphere approach, see [16–18].

The current study uses the classical (affine) concept of representative directions as
a starting point. Namely, we implement the concept based on the right Cauchy-Green
tensor C; for brevity, we call this concept the C-approach. Only incompressible materials
are modeled here. Nevertheless, the concept of representative directions can be easily
generalized to predict the stress response in compressible materials as well, cf. [3,19].

The case of initially isotropic materials has been covered in numerous publications.
In particular, it has been shown that the concept of representative directions can describe
the load-induced anisotropy in such materials with a surprising accuracy [4]. The cur-
rent study is devoted to a more general case of materials anisotropic in the as-received
state, where the initial anisotropy is described by a proper orientation probability density
function (OPDF). Dealing with fibrous materials, the OPDF provides information on how
many fibers are aligned along a certain direction in the reference state. Despite its high
generality, the straightforward use of OPDFs within the concept of representative directions
is computationally expensive since it requires a tedious integration over the unit sphere.
Therefore, in some applications, refined approaches are commonly implemented based on
generalized structural tensors [20–22]. In the current study, we suggest another remedy to
the problem of excessive computational costs.

The goal of this work is twofold. First, we propose a computationally efficient method
based on the concept of representative directions. Its high efficiency is due to the use of
heterogeneously distributed fibers (representative directions) matching a given OPDF. Sec-
ond, we suggest three algorithms generating the required sets of fibers matching the given
OPDF. As a byproduct, we also demonstrate the modeling chain for strongly anisotropic
materials when the proper OPDF is not known a-priori.

This paper is organized as follows. In Section 2 we recall the main ingredients of
the concept of representative directions. New algorithms are provided, generating sets
of representative directions (fibers) matching a given OPDF. These algorithms are (i) the
energy minimization (Landau–Ginzburg) method, (ii) the equilibration method, and (iii) the
method of Voronoi cells. Various tests involving OPDFs of Mises–Fischer, Vallée-Poussin,
and orthotropic OPDF based on a structural tensor were carried out for each of the proposed
methods. In Section 3 we calibrate an orthotropic material model against actual testing
data from [23]. After the calibration is complete, an anisotropic set of fibers is generated
using the identified OPDF and a good correspondence between experiment and simulation
is observed. Section 4 presents the discussion of the main results.

We conclude this introduction by a few words regarding notation. A coordinate-free
tensor formalism described in [24] is applied in this study. Tensors of the first and second
rank in R3 are typed in bold. The symbol 1 denotes the identity tensor; AD := A− 1

3 tr(A)1
is the deviatoric part of the tensor. The double contraction (scalar product) of two tensors
is denoted as A : B = tr(A · BT).

2. Modeling of Initially Anisotropic Materials
2.1. General Concept of Representative Directions

Let F be the deformation gradient tensor. The local strain history is given by the
history of the right Cauchy–Green tensor C(t) = FT(t)F(t), t ∈ [0, T]. The classical concept
of representative directions provides the second Piola–Kirchhoff stress tensor T̃(t) as
a function of the right Cauchy–Green tensor C(t′), t′ ∈ [0, t] [3,6]. Note that all models of
this type are automatically objective [25].

Suppose that the material particle is idealized as a set of N fibers which we also call
“representative directions”. In [17] and other studies, instead of the general term “fiber”,
the authors prefer the micromechanically justified term “chain”. In addition, in the micro-
sphere approach the models of individual chains are two-dimensional, whereas in our
study the fibers are one-dimensional.
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In the reference configuration, each fiber is uniquely determined by the unit vector eα,
‖eα‖ = 1, α = 1, 2, . . . , N. The stretch of the fiber with the number α is calculated as

λα :=
√

eα · C · eα =
√

C : (eα ⊗ eα). (1)

Suppose that for each fiber with the number α there is a one-dimensional material
law. This law specifies the uniaxial stress σα(t) as a function of the history of the stretch
λα(t′), t′ ∈ [0, t]. It is important that the material law is the same for all fibers. A simple
one-dimensional material law will be presented later on.

Within the concept of representative directions uniaxial stress σα is the stress which
is power conjugate to the true strain εα = ln(λα). In other words, the stress power of
the individual fiber is equal to the product σα ε̇α. Dealing with incompressible materials,
the stress σα coincides with the true stress (also known as the Cauchy stress).

Consider the incompressibility condition:

det F ≡ 1 ⇒ det C ≡ 1 ⇒ Ċ : C−1 = 0. (2)

From the basic assumption that the overall stress power of the material equals the
weighted average of the stress powers of individual fibers, we can calculate the deviatoric
part of the stress tensor. Indeed, the balance of stress powers is as follows:

T̃ :
1
2

Ċ =
N

∑
α=1

ωασα ·
d
dt
(ln λα) for all Ċ, such that Ċ : C−1 = 0. (3)

Here, T̃ is the second Piola–Kirchhoff stress tensor; ωα ≥ 0 are constant weighting coeffi-
cients corresponding to the fibers eα. Differentiating (1) with respect to time, we obtain the
rate of the true strain:

ε̇α =
d
dt
(ln λα) =

1
2λ2

α
(eα ⊗ eα) : Ċ for all α = 1, 2, . . . , N. (4)

Substituting this kinematic expression into the power balance (3), we obtain

T̃ :
1
2

Ċ =
N

∑
α=1

ωασα ·
1

2λ2
α
(eα ⊗ eα) : Ċ for all Ċ, such that Ċ : C−1 = 0. (5)

The direct consequence of this is the explicit formula for the second Piola–Kirchhoff
stress tensor:

T̃ =
N

∑
α=1

ωα
σα

λ2
α
(eα ⊗ eα) + p̃C−1. (6)

Here, p̃ ∈ R is an arbitrary number. Mathematically, the term p̃C−1 appears on the right-
hand side due to the incompressibility constraint Ċ : C−1 = 0. From the mechanical
standpoint, the term p̃C−1 is needed since, in incompressible materials, the constitutive
law determines the stresses uniquely up to an indefinite hydrostatic part [25].

We call the stress calculation rule (6) the C-approach since the fiber stretch λα is defined
by Equation (1) using the tensor C. An alternative to this method was proposed in [7] for
initially isotropic materials. The concept of representative directions offers various oppor-
tunities for an accurate description of the actual mechanical behavior, while preserving the
basic principles of constitutive mechanics like objectivity and thermodynamic consistency.

Different versions of the C-approach (6) are possible depending on the specific choice
of the representative directions eα and the weighting coefficients ωα. These modifications
will be discussed in the following.



Polymers 2022, 14, 3314 4 of 21

2.2. Orientation Probability Density Function

Let S2 = {x ∈ R3 : ‖x‖ = 1} be the unit sphere. Each point on S2 is identical to
a certain fiber orientation vector. Thus, there is a correspondence between the unit sphere
and the space of all possible orientations. In this paper, a crucial role is played by the so-
called orientation probability density function (OPDF), also known as orientation density
function [26] or probability density function [14]. The orientation probability density
function f (x) is defined on S2:

f (x) > 0 for all x ∈ S2. (7)

The OPDF f (x) is assumed continuous on S2 and its normalization condition reads∫
S2

f (x)dS = 4π, where 4π is the area of the unit sphere. Since each direction is uniquely

determined by a couple of opposite points on the unit sphere, we deal with symmetric
OPDFs only: f (x) = f (−x) for all x ∈ S2.

Consider a large discrete set of points on the unit sphere. Strictly speaking, we consider
a limiting case as the number of points tends to infinity. We say that this set matches the
OPDF f (x) if the probability that an arbitrary point is located within the small area dS near

x ∈ S2 equals f (x)dS
4π . This definition is given in the probabilistic setting since there is no

need to specify exact location of each individual point on the unit sphere. The special case
of the homogeneous (isotropic) OPDF corresponds to f (x) = 1 for all x ∈ S2. In this case,
all directions are equally important.

Dealing with fibrous composites, the OPDF f (x) tells us how many fibers are oriented
along x ∈ S2 in the undeformed state. To simulate an anisotropic mechanical behavior of
actual materials, a set of representative directions {eα, α = 1, . . . , N}matching the OPDF
f (x) will be needed. In the following, we discuss three different procedures yielding such
a set of directions.

2.3. Generation of Fiber Sets Matching the Given OPDF
2.3.1. Energy Minimization Method (Landau–Ginzburg Method)

In this subsection we consider a modified version of the algorithm from [27], generat-
ing a required heterogeneous set of representative directions (fibers). Within the approach,
an initial set of N “primary charges” is randomly placed on the unit sphere S2. Each
“primary charge” gives rise to a “secondary charge” located on the opposite side; secondary
charges are attached to the corresponding primary charges. In total, there is a system of 2N
charges on the unit sphere. In a spherical coordinate system, the position of the ith primary
charge is given by its coordinates θi, φi for i = 1, . . . , N. Then, the set of all primary charges
is uniquely described by the vector~q = {θ1, φ1, θ2, φ2, . . . , θN , φN} ∈ R2N . Let us consider
the total potential energy of the system

Ψ(~q) = Ψ(q1, q2, . . . , q2N) =
N

∑
i,j=1
i<j

pp
Ψ ij +

ss
Ψij +

ps
Ψij +

sp
Ψij. (8)

Here,
pp
Ψ ij is the energy of interaction between two primary charges with numbers i and j,

ss
Ψij corresponds to interaction between two secondary charges with numbers i and j,

ps
Ψij

stands for interaction between the ith primary charge and the jth secondary charge,
sp
Ψij

corresponds to interaction between the ith secondary charge and jth primary charge. The
Landau–Ginzburg evolution equation is used to minimize the overall energy Ψ:

q̇i = −
1
ηi

∂Ψ
∂qi

for all i = 1, 2, . . . , N, (9)
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where ηi is a pseudo-viscosity; in this study we set ηi = 1 for simplicity.
If a homogeneous distribution of representative directions eα (α = 1, . . . , N) is needed,

we make use of the following isotropic interaction potential:

Ψij = Ψij(rij) =
1
r2

ij
, (10)

where rij = ‖xi − xj‖ is the distance between the involved charges with position vectors xi
and xj. The minimum of the potential energy Ψ corresponds to an almost homogeneous
distribution of representative directions. A similar procedure was already implemented by
other authors (see [3]).

Remark. Please note that the “charges” are moving on the unit sphere, not in the actual
physical space. The physical analogy is used merely as a guideline while constructing
the method.

Remark. Besides the ansatz (10), there are other potentials which can be used to
generate an isotropic set of fibers. For instance, a large set of potentials are implemented
within the analysis of nanoscale objects’ self-assembly [28]. However, we prefer working
with the power-law potential (10) since it yields a system with a moderate nonlinearity.
This property is beneficial for the convergence of numerical procedures.

To generate a set of representative directions matching the given OPDF f (x), the fol-
lowing new potential energy is chosen in the current study:

Ψij =
1
r2

ij

1√
f (xi) f (xj)

. (11)

Note that the introduced multiplier 1/
√

f (xi) f (xj) accounts for the specific OPDF f (x).
The impact of this modification will be evident later on. Despite its simplicity, the energy
minimization method from this subsection violates Newton’s third law. This can be seen
by checking that ∂ψij/∂xi 6= −∂ψij/∂xj. In the next subsection, we suggest another method
which is free from this drawback.

2.3.2. Equlibration Method

Similar to the previous subsection, the idea behind the method is to implement
a physics-motivated principle, enabling a self-assembly of the required set {eα}. Again,
N primary charges with position vectors xi, i = 1, 2, . . . , N and N opposite secondary
charges are placed on the unit sphere. Thus, a total number of 2N charges is considered.
We introduce the following ansatz for the repulsive force between two charges located at xi
and xj:

Repulsive forceij =
1

rk−1
ij

1
f (xi)

1
f (xj)

, where rij = ‖xi − xj‖, 1 ≤ i 6= j ≤ 2N. (12)

Various values of k are possible; in this work we use k = 6.
Consider two charges with the numbers i 6= j (1 ≤ i, j ≤ 2N). The repulsive force

exerted by the charge i on the charge j is denoted as Fij, and the force exerted by the jth
charge on the ith charge as Fji. According to Newton’s third law Fij = −Fji. Following (12),
we have

Fij = −
rij

rk
ij

1
f (xi) f (xi)

, rij = xi − xj. (13)

Let there be an array [X] of position vectors of charges. Since the position of the
secondary charges depends on the primary charges, it is sufficient to consider only the
primary charges:

X = (x1, x2, . . . , xN)
T. (14)
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For them, we define the velocities and accelerations

Ẋ = (ẋ1, ẋ2, . . . , ẋN)
T, Ẍ = (ẍ1, ẍ2, . . . , ẍN)

T. (15)

Here, the superimposed dot stands for the time derivative. Since each charge moves along
the unit sphere, we have ẋi · xi = 0 for i = 1, 2, . . . , N. Let the array of tangent forces be
represented as follows:

Ftangent =
(

Ftangent
1 , Ftangent

2 , . . . , Ftangent
N

)T
, Ftangent

i = (1− xi ⊗ xi)Fi, (16)

where (1− xi ⊗ xi) is the projection operator and Fi is the total force exerted on the primary
charge i by other charges:

Fi =
N

∑
j=1
j 6=i

p
Fji +

s
Fji for all i = 1, 2, . . . , N. (17)

Here,
p
Fji is the force exerted on the ith primary charge by the jth primary charge;

s
Fji is

exerted by the jth secondary charge. The force exerted by the secondary charge i on the
primary charge i is neglected, since it acts exactly along the normal to the sphere.

Using Newton’s second law, we obtain the equations of motion for the set of pri-
mary charges:

mẌ = Ftangent, (18)

where m is a pseudo-mass; we use m = 1 in this work. This differential equation accounts
for the interactions between the charges, but there is no viscosity. To enable equilibration of
charges due to viscous dissipation, the following modification is considered:

mẌ = Ftangent − cẊ. (19)

Here, c > 0 is the pseudo-viscosity. Due to energy dissipation, Ẋ → 0 and Ẍ → 0 as
t → ∞. Thus, Ftangent → 0 as t → ∞, which means that the system of charges comes to
an equilibrium. The numerical implementation of this method is described in Appendix A.

Remark. In general, there is a minor probability of the overall system of charges getting
stuck in a meta-stable state far from the optimal equilibrium. To avoid this undesired effect,
a random force may be added to the right-hand side of the motion Equation (19). This idea
is already used in some molecular dynamics simulations on a sphere [28].

Remark. Both methods—the energy minimization method and the method of equili-
bration — are insensitive to the scaling of the OPDF f (x). In other words, the normalization
condition

∫
S2

f (x)dS = 4π does not have to be satisfied. In contrast to the method from the

previous subsection, the equilibration method respects Newton’s third law.
Remark. The methods from Sections 2.3.1 and 2.3.2 are inspired by physical analogies

involving quasi-elastic (conservative) interactions between charges on the unit sphere.
An alternative method can be designed starting from the general mechanical principle of
entropic ordering, see [29] for the background information.

2.3.3. Voronoi Cells Method

The third method generating a set of fibers is based on the Voronoi tessellation [30].
In contrast to the well-known Voronoi cells in Rn, a tasselation on the unit sphere is
considered here. The idea behind the algorithm is to establish a relation between individual
fibers and Voronoi cells on S2. This method is purely mathematical without any physical
motivation behind it. Assume that we need to generate N fibers matching the given OPDF
f (x). Such a set corresponds to 2N Voronoi cells. The corresponding Voronoi tessellation
is uniquely determined by setting 2N sites (also known as generators) on S2. We denote
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these sites as x1, x2, ..., x2N . To reduce the number of degrees of freedom, we assume that
the position vectors of only the first N sites are independent:

xN+1 = −x1, xN+2 = −x2, . . . , x2N = −xN . (20)

Next, let zi be the center of mass of the ith Voronoi cell. Obviously, the set {z1, z2, . . . , zN}
is uniquely determined by the set {x1, x2, . . . , xN}. Within our method the required set of N
fibers is as follows: e1 = z1/‖z1‖, e2 = z2/‖z2‖, . . . , eN = zN/‖zN‖.

Recall that 4π is the area of the unit sphere; let Si be the area of the ith cell. To find the
desired heterogeneous fiber distribution, the following objective function is minimized:

ΦVoronoi(x1, x2, . . . , x2N) =
N

∑
i=1

(
Si −

4π

2N f (ei)

)2
. (21)

The perfect situation ΦVoronoi = 0 means that the area of the ith Voronoi cell is inversely
proportional to the OPDF f (x) evaluated at the center of the cell:

Si =
4π

2N f (ei)
. (22)

To check that the Voronoi cells method is assymptotically exact, let us consider an arbitrary
x ∈ S2 and a small surface element dS near x. According to (22), the area of the Voronoi
cells near x behaves like 4π

2N f (x) as N → ∞. Thus, the surface element dS contains f (x)dS 2N
4π

Voronoi cells. Since there are 2N cells, the probability that an arbitrary cell is contained
within dS equals f (x) dS

4π . This estimate means that the generated set {eα} matches the
given OPDF.

There is also an alternative way to build the error functional:

ΦVoronoi(x1, x2, . . . , x2N) =
N

∑
i=1

(
Si f (ei)− 4π/(2N)

)2. (23)

This version of the error functional is beneficial when a division by zero is possible in (21),
that is, when f = 0 in a certain area. In the simplest case of the uniform distribution ( f = 1),
the absolute minimum of the error function corresponds to the following set of equations:
Si = 4π/(2N), i = 1, . . . , N.

Please note that the error functions (21) and (23) can only be used for OPDFs satisfying
the normalization condition:

∫
S2

f (~x)dS = 4π. However, if the OPDF f (x) for some reason

does not obey the normalization condition, then another pair of error functions should
be employed:

ΦVoronoi(x1, x2, . . . , x2N) =
N

∑
i=1

(
Si −

MULT · 4π

2N f (ei)

)2
. (24)

ΦVoronoi(x1, x2, . . . , x2N) =
N

∑
i=1

(
f (ei)

MULT
Si − 4π/(2N)

)2

. (25)

Here, MULT = ∑N
i=1

2Si · f (ei)
4π is a correction multiplier that allows us to deal with various

OPDFs, normalized and non-normalized.
For the numerical implementation of the algorithm, the unit sphere is uniformly

covered with a large number of so-called control points. A computationally efficient way to
generate such a set of control points is explained in Appendix B. Let Ncontrol be the number
of these points, Ncontrol � N. For each control point yk, k ∈ {1, . . . , Ncontrol}, we find the
site on the unit sphere closest to this control point:

j = argmin
l=1,...,2N

‖yk − xl‖. (26)
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Per definition, the proximity to the site xj means that the control point yk falls into
the jth Voronoi cell. Let Mi be the total number of control points that fell into the ith
Voronoi cell (i = 1, 2, . . . , 2N). Then, the area of the ith Voronoi cell is calculated by the
approximate formula:

Si =
Mi

Ncontrol
· 4π, i = 1, 2, . . . , 2N. (27)

The disadvantage of using Equation (27) is that the areas Si are discontinuous func-
tions of the position vectors of the sites x1, x2, . . . , x2N . The following modification of the
algorithm consists in “smearing” the Voronoi cells. In the case of smearing, a situation may
arise when several Voronoi cells claim certain control points. The following steps are taken
to resolve the conflict. For a given k ∈ {1, 2, . . . , Ncontrol} assume that xi1 , xi2 , xi3 , xi4 are the
sites on the unit sphere corresponding to the smallest ξ j = ‖yk − xij‖ (1 ≤ i1, i2, i3, i4 ≤ 2N),
see Figure 1 (left). Here we consider only four sites closest to the control point yk; the
situation where five or more Voronoi cells claim one control point is ignored as quite rare.
The areas of the cells are calculated using the following algorithm:

Step 1: For a given k ∈ {1, . . . , Ncontrol} compute the primary weight of the site xij ,
where j = 1, 2, 3, 4:

ωj = 〈ξmin + ε− ξ j〉. (28)

Here, ξmin is the smallest value of ξ j = ‖yk − xij‖, j = 1, 2, 3, 4; ε > 0 is a smoothing
parameter; 〈x〉 = max(x, 0) is the Macaulay bracket, see Figure 1 (right).

Step 2: Find the final weight of the site xij :

Wj =
ωj

ω1 + ω2 + ω3 + ω4
, j = 1, 2, 3, 4. (29)

Within a loop over all control points, each control point yk contributes its parts W1,
W2, W3, and W4 to the cells with the numbers i1, i2, i3, and i4:

Sij ← Sij + Wj · 4π for all j = 1, 2, 3, 4. (30)

Here, the symbol A← B means assigning the value B to the variable A.

1 2 43
=

3

21

4

1

2
3

4

Figure 1. Voronoi cell smoothing method. Left: control point yk is claimed by four sites xi1 , xi2 , xi3 , xi4

from its neighbourhood. Right: dependence of the primary weighting coefficient ωj related to the site
xij on the distance to the control point yk.

Owing to the smoothing, we ensure a continuous dependence of the cell areas S1,. . . ,
SN on x1, x2, . . . , xN . The center of mass of the ith cell is defined as the center of mass of
the set of control points that fall into this cell. In this case, each control point is included
with a weighting coefficient calculated by Equation (29). The error functionals (21)–(25) are
minimized by the Levenberg–Marquardt method [31,32].

2.3.4. Demonstration Tests: Generated Sets of Fibers

The energy minimization method, the equilibration method, and the Voronoi cells
method are tested in this subsection. Towards that end, three different types of the OPDF
are used.
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OPDF of von Mises–Fischer type. Within the first series of tests, the OPDF of von
Mises–Fisher type is considered:

f MF = f MF(x, µ, k) = C3(k)
ekµ·x + e−kµ·x

2
, (31)

where k ≥ 0 is the degree of heterogeneity, µ is the orientation vector for the OPDF
(‖µ‖ = 1), µ · x is the scalar product of µ and x, C3(k) = (2k)/(ek− e−k) is the normalization
constant. OPDFs of this type are used, among others, to describe the distribution of collagen
fibers in biological soft tissues [22]. For testing purposes, we set k = 2, µ = (0, 0, 1)T.
The results of generating a set of N = 200 fibers with the energy minimization method and
the equilibration method are shown in Figure 2. The results of the Voronoi cells method are
shown in Figure 3. Please recall that the generated sets {eα} are represented as collections
of points on the unit sphere.
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Figure 2. Anisotropic sets of 200 fibers generated for the von Mises-Fischer OPDF. The fibers are
represented by charges on the unit sphere. The primary and secondary charges are shown in blue
and red, respectively. Left: energy minimization method. Right: equilibration method.
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A spherical dome with the polar angle θ ∈ [0, π/2] is a set of points on the unit sphere
such that the angle between their position vector and the orientation vector µ is less than θ.
A cumulative distribution function gives the portion of charges located within the spherical
dome as a function of its polar angle. The cumulative distribution function for the von
Mises–Fischer OPDF is shown in Figure 4 for all three generation methods.
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Figure 4. Cumulative distribution functions pertaining to the von Mises–Fischer distribution. Top
left: the energy minimization method. Top right: the equilibration method. Bottom left: the Voronoi
cells method. Bottom right: comparison of the three methods for N = 400 fibers.

OPDF of Valée-Poussin type. The next test is based on the OPDF of Vallée-Poussin type:

f VP =
1
8

β( 3
2 , 1

2 )

β( 3
2 , k + 1

2 )

(
cos2k

(ω

2

)
− cos2k

(π −ω

2

))
, where ω = arccos

( µ · x
‖µ‖‖x‖

)
. (32)

Here, β(·, ·) is the Euler Beta-function; µ is the orientation vector. To be definite, we set
k = 5 and µ = (0, 0, 1)T. Figure 5 shows the generated sets of N = 200 fibers using the
energy-minimization method and the equilibration method. Figure 6 corresponds to the
Voronoi cells method. The cumulative distribution functions are shown in Figure 7.
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Figure 5. Generated systems of 200 fibers pertaining to the OPDF of Vallée-Poussin type. The fibers
are represented by charges on the unit sphere. The primary and secondary charges are shown in blue
and red. Left: Energy minimization method. Right: The method of equilibration.
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Figure 7. Cumulative distribution function for the OPDF of Vallée-Poussin type. Top left: energy
minimization method. Top right: the equilibration method. Bottom left: the Voronoi cells method.
Bottom right: comparison of the three methods for N = 400 fibers.

OPDF as a quadratic form. As a third test, we consider the following probability
density function given by the quadratic form

f quadratic(x) = x ·M · x, (33)

where M is a symmetric, positive definite tensor. In the context of material modeling, such
a tensor can be seen as a structure tensor, governing orthotropic material properties. To be
definite, we use (up to a positive normalization multiplier):

M =

1 0 0
0 4 0
0 0 3

. (34)

Figure 8 shows the generated set of N = 200 fibers using the energy minimization and
the equilibration methods; Figure 9 corresponds to the Voronoi cells method. Unlike the
two previous examples, the OPDF is not transversally isotropic, namely, the distribution is
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orthotropic. The cumulative distribution functions pertaining to this OPDF are shown in
Figure 10.
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Figure 8. Generated sets of 200 fibers pertaining to the OPDF as a quadratic form. The fibers are
represented by charges on the unit sphere. The primary and secondary charges are shown in blue
and red. Left: Energy minimization method. Right: The method of equilibration.
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The key assumption behind the energy minimization method is ansatz (11) describ-
ing the potential energy function. According to (11), ψ ∼ 1√

fi f j

. However, within the

equilibration method Equation (12) gives the repulsion force between two charges in the
form: Force ∼ 1

fi f j
. These two assumptions are based on trial-and-error without a proper

mathematical justification. Numerical tests show that both approaches yield reasonable
results, both in transversely isotropic and orthotropic cases.
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Figure 10. Cumulative distribution functions for the OPDF given by the quadratic form. Top left: the
energy minimization method. Top right: the uquilibration method. Bottom left: the Voronoi cells
method. Bottom right: comparison of the three methods for N = 400 fibers.

According to Equations (21) and (23), the Voronoi cells method is asymptotically exact:
it allows obtaining the desired distribution as N → ∞. As revealed by the numerical
tests, the most accurate results are provided by the equlibration method and the Voronoi
cells method. In particular, the superior accuracy of these two methods is visible from the
cumulative distributions (Figures 4, 7 and 10). If needed, a strict comparison of the three
generation methods as well as rigorous convergence studies can be carried out in terms of
a newly proposed mechanics-based metric [33].

2.4. Two Specific Versions of the Concept of Representative Directions

Two different versions of the C-approach (6) will be considered in this section to model
initially anisotropic materials. The first version is called “anisotropy stored in weights”.
It is based on the isotropic distribution of the representative directions where the entire
anisotropy is contained in the weighting factors ωα = f (eα)/N:

T̃ =
1
N

N

∑
α=1

f (eα)
σα

λ2
α
(eα ⊗ eα) + p̃C−1, directions distributed homogeneously. (35)

The second version of the C-approach is called “anisotropy stored in directions”. It
implements the anisotropic set of fibers, related to the OPDF f (x) and constant weighting
coefficients ωα = 1/N:

T̃ =
1
N

N

∑
α=1

σα

λ2
α
(eα ⊗ eα) + p̃C−1, directions match the OPDF f (x). (36)

The main idea. Note that the first version treats all regions on the unit sphere in the
same way, even those regions where the OPDF is exactly zero. In that sense, a big amount
of computations are useless since corresponding stresses σα are multiplied with f (eα) ≈ 0.
In contrast to the first version, the second version treats the regions on the unit sphere with
a large value of the OPDF more accurately than the regions where the OPDF is small. Due
to the automatic adjustment of directions, a more reasonable use of computational power is
ensured. Therefore, for strongly anisotropic OPDFs, the second version, called “anisotropy
stored in directions”, is computationally more efficient and reasonable.A practically important
case when the OPDF is not known a-priori will also be considered.
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Remark. Researchers dealing with the concept of representative directions (or similar
approaches) have recognized the urgent need to reduce the computational costs. In [13,14]
the authors utilized the mechanical effect that zero stresses can be expected in fibers under
compression; the required computational speed-up was achieved by excluding fibers with
zero stresses. However, the approach proposed in the current study is based on the different
idea of using a higher resolution in the domain of large OPDF.

3. Actual Anisotropic Material
3.1. Polymeric Fibrous Material Produced by Electrospinning

Electrospinning (ES) is an innovative technology of non-woven fibrous materials
production from a solution of polymers, both synthetic and natural [34,35]. Since ES enables
fiber production from mixtures of polymers and blends with drugs or biologically active
substances [36], ES is widely used in tissue engineering. In particular, regenerative medicine
employs ES-produced vascular grafts (VG), mimicking actual biological tissues [35,37–39].

Varying the ES conditions like the used electrode (RF patent N2704314), rotation
speed of the collector, and velocity of jet motion [35,39], one can produce VGs with highly
anisotropic mechanical properties [40]. The accurate programming of deformation patterns
of VGs is crucial for compliance with natural arteries by correct anastomosis, which is nec-
essary for long-term functioning of VGs [41,42]. In this paper, we focus on the description
of electrospun poly-(butylene terephthalate) [23]. Other anisotropic electrospun-produced
matrices can be dealt with in a similar way.

3.2. Uniaxial Material Law and Orthotropic OPDF

To describe the mechanical behavior of a single representative direction (fiber), the fol-
lowing one-dimensional material law is utilized:

σ
eng
α = 0 for ε

eng
α ≤ 0,

σ
eng
α = min

(
a1ε

eng
α , a1ε0 + a2

(
ε

eng
α − ε0

))
for ε

eng
α > 0.

(37)

Here, engineering stresses and strains are used. This non-linear elastic mechanical behavior
of a single fiber is sketched in Figure 11. Since the standard C-approach operates with
true stresses (see Equation (6)), the following geometric pre- and post-processing steps
are needed for each direction: ε

eng
α := λα − 1 (pre-processor), σtrue

α := σ
eng
α (1 + ε

eng
α )

(post-processor).

Figure 11. One-dimensional material law implemented for each representative direction.

Aiming at the simulation of polymeric materials produced by electrospinning, the fol-
lowing orthotropic OPDF will be implemented:

f (x) = (x ·M · x)m. (38)

Here, M is a symmetric, positive definite structural tensor and m > 0 is a material parameter.
In the axes of orthotropy k1, k2, k3 the structural tensor M takes the following form:
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M = m1k1 ⊗ k1 + m2k2 ⊗ k2 + m3k3 ⊗ k3. (39)

The vectors k1, k2, and k3 are understood as material directions.
Due to strong anisotropy which appears when min(m1, m2, m3)� max(m1, m2, m3),

the simulation may become unstable. To stabilize computations, a regularization is carried
out by reinforcing the material by an additional neo-Hookean material:

T̃reg = βCD · C−1, (40)

where C = det(C)−1/3C is the isochoric part of the right Cauchy–Green tensor and β > 0
is a small regularization parameter.

3.3. Calibration of the Material Model against Experimental Data

To demonstrate the applicability of the approach to initially anisotropic materials, the
mechanical behavior of a polymeric material produced by electrospinning is analyzed.
The calibration of the anisotropic material model is carried out against actual experimental
data from [23]. The set of experimental data is formed by a series of uniaxial tension
tests. To describe these tests, let θ be the angle between the sample’s axis and the hoop
direction of the ES-collector. Within the experimental program, the angle θ ranges from
0◦ (tension along the hoop direction) to 90◦ (tension along the axial direction). As is seen
from Figure 12, the material exhibits a very strong anisotropy. The samples oriented along
the collector’s hoop direction exhibit the largest stiffness. This is due to the fibers of the
ES-produced material being mostly oriented along the hoop direction.

The homogeneous stretching of a sample cut along an arbitrary material direction k
is modeled in the following way. First, the rotation of the sample is simulated so that the
material direction k becomes oriented along e1. Second, the stretching of the sample along
e1 is modeled.

Let Q = exp(θεe3) be the rotation tensor, where exp(·) is the tensor exponential; θ is
the angle of rotation, ε is the permutation tensor (Levi–Chivita tensor), and e3 is the axis
of rotation. From the condition Qk = e1 it follows that the deformation of the sample is
described as follows:

F(t) = F(e1)(t) ·Q, F(e1)(t) =

F11(t) F12(t) F13(t)
0 F22(t) F23(t)
0 0 F33(t)

. (41)

Here, the operator F(e1)(t) describes the homogeneous deformation of the sample during
the stretching phase. The coordinate F11(t) is explicitly defined through the prescribed
engineering strain ε: F11(t) = 1 + ε(t). Due to material’s incompressibility we have
F33 = 1/(F11F22). The remaining four unknown coordinates of F are determined through
the system of four scalar equations:

(T12, T13, T23, T22 − T33) = (0, 0, 0, 0). (42)

Here, Tij are the coordinates of the Cauchy stress tensor. The system of four nonlinear
Equation (42) is solved by the Levenberg–Marquardt method at each load increment (each
time step). After finding all the coordinates of the deformation gradient tensor F and the
Cauchy stress tensor T, we correct the hydrostatic part:

Tcorrect = T− T22 · 1. (43)

This correction yields the desired uniaxial stress state such that Tcorrect
22 = Tcorrect

33 = 0.
To enable simulations, the parameters a1 > 0 and a2 > 0 of the one-dimensional

material model are needed. Additionally, the parameters of the orthotropy m1 > 0 and
m2 > 0 as well as the exponent m are subject to identification. The remaining parameter
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m3 > 0 should be determined from the normalization condition
∫
S2

f (~x)dS = S. However,

we implement methods which are stable regarding the violation of the normalization
condition. For simplicity of the identification procedure, we fix the remaining parameter:
m3 = 0.8.

During the parameter identification stage, we implement the first version of the C-
approach given by Equation (35). The advantage of the first version is that for each new
OPDF, the same homogeneous set of fibers can be used. To enable a high simulation accu-
racy, we employ N = 800 homogeneously distributed fibers. Note that the computationally
more efficient version of the C-approach corresponding to Equation (36) should not be used
during model calibration, since it would require a new set of representative directions at
each iteration of the calibration procedure.

The small regularization parameter is set to β = N(a1+a2)
50000 . Six unknown parame-

ters (m1, m2, m, ε0, a1, a2) were determined by minimizing an error function using the
Nelder–Mead method [43]. The identified parameters are summarized in Table 1. The cor-
responding simulation results are shown in Figure 12. As is seen from the figure, the C-
approach (35) combined with the implemented one-dimensional material law and the
chosen OPDF describes the given experimental data with a plausible accuracy. The dis-
crepancy between the theory and experiment at θ = 0◦ is due to the restrictive ansatz (38)
used for the OPDF. A relatively low accuracy at small strains is caused by the simplified
nature of the one-dimensional material law (37).

Remark. As already mentioned, the considered OPDF does not satisfy the normali-
zation condition, that is,

∫
S2

f (~x)dS
S 6= 1. When identifying material constants, we neglect

the normalization condition to speed up the calculations. At the stage of identification of
material constants, the lack of normalization is compensated by the appropriate selection
of constants a1 and a2.

Remark. In this section, the unknown parameters of the OPDF f (x) were identified
based on the series of tension tests, which provide relevant data on material’s anisotropy.
An even bigger body of useful information regarding the anisotropy can be obtained by
optical methods like DIC [44].

Table 1. Identified parameters for the structural tensor M and the one-dimensional material law.

m1 [-] m2 [-] m [-] ε0 [-] a1 [MPa] a2 [MPa]

2.89 0.063 2.588 0.0034 423.82 0.52
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Figure 12. Experimental data from [23] and simulation results obtained by the first version of the
approach (anisotropy stored in weights) with N = 800 uniformly distributed fibers. In each test, the
tensile axis is inclined at the angle θ to the hoop direction.
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Following the main idea of the current study, we reduce the number of representative
directions by switching to the second version of the concept, see Equation (36). Towards that
end, an anisotropic set of N = 200 fibers is generated, matching the previously identified
OPDF. The accurate Voronoi cells method is employed here. The same set of material
parameters is used in the simulations (Table 1). The simulation results obtained using
200 heterogeneously distributed fibers are shown in Figure 13. We see that the results based
on N = 800 homogeneously distributed fibers can be reproduced using the anisotropic
set of only N = 200 fibers. This reduction of the number of representative directions has
a positive effect on the efficiency of the computational procedure.
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Figure 13. Experimental data from [23] and simulation results obtained by the second version of the
approach (anisotropy stored in directions) with N = 200 heterogeneously distributed fibers. In each
test, the tensile axis is inclined at the angle θ to the hoop direction.

4. Discussion and Conclusions

The well-known concept of representative directions is considered in this study, al-
lowing us to generalize uniaxial material models to multi-axial constitutive relations.
The standard C-approach is used here, cf. Equation (6). In the current paper we have
shown that this approach can be adjusted to initially anisotropic materials by employing
an appropriate OPDF f (x) in two different ways. The first version of the C-approach
implements a homogeneous set of representative directions (fibers) and different weighting
coefficients, cf. Equation (35). The second version implements a heterogeneous set of fibers
with constant weighting coefficients, cf. (36).

The main contribution of the manuscript is that a computationally efficient version of
the concept is suggested. The underlying idea is to treat only essential directions where
the OPDF is large and neglect directions with a small OPDF. However, the high efficiency
comes at a cost of preparing a heterogeneous set of fibers, matching the given OPDF.
Although computationally expensive, this preparation step is carried out “offline” before
the start of the actual simulation.

Three different algorithms are suggested, each yielding the required heterogeneous set
of fibers. These algorithms have been tested using three different OPDFs. In our opinion,
the most accurate algorithm is based on the Voronoi method. However, the other two
methods can be also used to create a good initial approximation for the Voronoi cells
method, thus improving its convergence and robustness.

In this paper, the unknown OPDF f (x) pertaining to the specific material is identified
within the model calibration procedure. Since the proper OPDF is not known during
the calibration, the first version of the C-approach (anisotropy is stored in the weighting
coefficients) should be used, although it is less efficient. After the optimal OPDF providing
the best possible fit is found, the corresponding heterogeneous set of fibers is generated for
later use in combination with the second version of the C-approach (anisotropy is stored
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in the fiber distribution). Thus, a two-stage procedure employing both versions of the
C-approach is advocated here to model actual materials.

The procedure can be essentially simplified if the OPDF f (x) is known a-priori. For in-
stance, the OPDF can be identified by imaging analysis for some fibrous materials [45].
In that case, the computationally efficient version of the C-approach can be used immedi-
ately after the heterogeneous set of fibers is generated.

For testing purposes, a series of tension tests carried out in different directions is
taken from [23]. The simulation results exhibit a good correspondence with the available
experimental data for the considered ES-produced polymeric material with a pronounced
initial anisotropy (Figures 12 and 13). Alternatively, the affine C-approach can be calibrated
against synthetic experimental data, provided by advanced non-affine approaches [46,47].
The efficient use of computational power within the second version of the C-approach
(anisotropy stored in the fiber distribution) opens up broad prospects for the concept of
representative directions regarding a number of practical problems.
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Appendix A. Implementation of the Equilibration Method

Note that the pair X, Ẋ uniquely describes the state of the system of charges. Let the
vector of initial positions 0X be random; assume that at t = 0 the system is at rest: 0Ẋ = 0.
Consider a generic time step tn 7→ tn+1. The trial step is made by the explicit scheme:

n+1Xtrial = nX + ∆t · nẊ, n+1Ẋtrial = nẊ + ∆t · nẌ. (A1)

Here, ∆t = tn+1 − tn. Using (19), we specify the expression for the current trial velocity:

n+1Ẋtrial = nẊ +
∆t
m
[nFtangent − c nẊ

]
. (A2)

The subsequent correction of the numerical solution is as follows. First, the trial
position vectors at tn+1 should be brought back to the unit sphere by the normalization:

n+1xi =
n+1xtrial

i /‖n+1xtrial
i ‖ for all i = 1, 2, . . . , N. (A3)

Next, we discard the normal components of the velocities:

n+1ẋi = (1− n+1xi ⊗ n+1xi) · n+1ẋtrial
i for all i = 1, 2, . . . , N. (A4)

This completes the generic time step.

Appendix B. Initial Approximation for the Uniform Distribution

The Fibonacci method allows creating the so-called Fibonacci point sets on the unit
sphere S2, also known as the Fibonacci lattice. The method consists of the following
steps [48]. Let N be the required number of points on S2, and let 0 ≤ k ≤ N be a natural
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number. Then we set φ := π(3 −
√

5); θ := φ · k; r :=
√

max(0, 1− y2), where y :=
1− (k/(N− 1)) · 2. The x and z coordinates of the Fibonacci points are computed as follows:{

x = r cos(θ);
z = r sin(θ).

(A5)

The second way of generating a set of points, close to uniform, is based on the pseudo-
random Sobol sequence method. It utilizes a mapping of a uniform Sobol distribution
from the unit square [0, 1]2 to the unit sphere S2. This mapping is given by the following
relations [49]: 

x = 2 cos(2π · x1)
√

x2 − x2
2;

y = 2 sin(2π · x1)
√

x2 − x2
2;

z = 1− 2x2,

(A6)

where x1, x2 ∈ [0, 1]2. Figure A1 shows the distributions obtained by the Fibonacci tech-
nique and the pseudo-random Sobol sequence for N = 1000.
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Figure A1. Sets of points on the unit sphere S2. Left: Fibonacci lattice for N = 1000. Right:
Distribution based on the Sobol sequence for N = 1000 with Skip = 0, Leap = 0.
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2. Machrowska, A.; Szabelski, J.; Karpiński, R.; Krakowski, P.; Jonak, J.; Jonak, K. Use of deep learning networks and statistical

modeling to predict changes in mechanical parameters of contaminated bone cements. Materials 2020, 13, 5419. [CrossRef]
3. Freund, M.; Ihlemann, J. Generalization of one-dimensional material models for the finite element method. ZAMM 2010, 90,

399–417. [CrossRef]
4. Freund, M.; Shutov, A.V.; Ihlemann, J. Simulation of distortional hardening by generalizing a uniaxial model of finite strain

viscoplasticity. Int. J. Plast. 2012, 36, 113–129. [CrossRef]
5. Naumann, C.; Ihlemann, J. Thermomechanical material behaviour within the concept of representative directions. In Constitutive

Models for Rubber VII; Jerrams, S., Murphy, N., Eds.; Taylor & Francis Group: London, UK, 2011; pp. 107–112.
6. Pawelski, H. Erklärung Einiger Mechanischer Eigenschaften von Elastomerwerkstoffen mit Methoden der Statistischen Physik; Shaker-

Verlag: Aachen, Germany, 1998.
7. Shutov, A.V.; Laktionov, P.P.; Nekrasova, Y.S. Extending uniaxial material laws to multiaxial constitutive relations: H-approach.

Eur. J. Mech. A/Solids 2020, 81, 103937. [CrossRef]
8. Lanir, Y. Constitutive equations for fibrous connective tissues. J. Biomech. 1983, 16, 1–12. [CrossRef]
9. Federico, S.; Herzog, W. Towards analytical model of soft biological tissues. J. Biomech. 2008, 41, 3309–3313. [CrossRef]
10. Holzapfel, G.A.; Ogden, R.W. On the tension—compression switch in soft fibrous solids. Eur. J. Mech. A/Solids 2015, 49, 561–569.

[CrossRef]

http://doi.org/10.3390/ma15030882
http://www.ncbi.nlm.nih.gov/pubmed/35160827
http://dx.doi.org/10.3390/ma13235419
http://dx.doi.org/10.1002/zamm.200900352
http://dx.doi.org/10.1016/j.ijplas.2012.03.011
http://dx.doi.org/10.1016/j.euromechsol.2019.103937
http://dx.doi.org/10.1016/0021-9290(83)90041-6
http://dx.doi.org/10.1016/j.jbiomech.2008.05.039
http://dx.doi.org/10.1016/j.euromechsol.2014.09.005


Polymers 2022, 14, 3314 20 of 21

11. Holzapfel, G.A.; Ogden, R.W. Comparison of two model frameworks for fiber dispersion in the elasticity of soft biological tissues.
Eur. J. Mech. A/Solids 2017, 66, 193–200. [CrossRef]

12. Lanir, Y.; Namani, R. Reliability of structure tensors in representing soft tissues structure. J. Mech. Behav. Biomed. Mater. 2015, 46,
222–228. [CrossRef]

13. Li, K.; Ogden, R.W.; Holzapfel, G.A. Computational method for excluding fibers under compression in modeling soft fibrous
solids. Eur. J. Mech. A/Solids 2016, 57, 178–193. [CrossRef]

14. Li, K.; Ogden, R.W.; Holzapfel, G.A. A discrete fibre dispersion method for excluding fibres under compression in the modelling
of fibrous tissues. J. R. Soc. Interface 2018, 15, 20170766. [CrossRef]

15. Bažant, Z.P.; Oh, B.H. Microplane model for progressive fracture of concrete and rock. J. Eng. Mech. 1985, 111, 559–582. [CrossRef]
16. Göktepe, S.; Miehe, C. A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic

Mullins-type damage. J. Mech. Phys. Solids 2005, 53, 2259–2283. [CrossRef]
17. Miehe, C.; Göktepe, S.; Lulei, F. A micro-macro approach to rubber-like materials. Part I: The non-a,ne micro-sphere model of

rubber elasticity. J. Mech. Phys. Solids 2004, 52, 2617–2660. [CrossRef]
18. Miehe, C.; Göktepe, S. A micro-macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber

viscoelasticity. J. Mech. Phys. Solids 2005, 53, 2231–2258. [CrossRef]
19. Gelke, S.; Ihlemann, J. Generalization of a uniaxial elasto–plastic material model based on the Prandtl–Reuss theory. ZAMM 2018,

98, 1420–1435. [CrossRef]
20. Caggiano, L.R.; Holmes J. A comparison of fiber based material laws for myocardial scar. J. Elast. 2021, 145, 321–337. [CrossRef]
21. Holzapfel, G.A.; Ogden, R.W. Constitutive modelling of passive myocardium: A structurally based framework for material

characterization. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2009, 367, 3445–3475. [CrossRef]
22. Gasser, T.C.; Ogden, R.W.; Holzapfel, G.A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations.

J. R. Soc. Interface 2006, 3, 15–35. [CrossRef]
23. Mathew, G.; Hong, J.P.; Rhee, J.M.; Leo, D.J.; Nah, C. Preparation and anisotropic mechanical behavior of highly-oriented

electrospun poly (butylene terephthalate) fibers. J. Appl. Polym. Sci. 2006, 101, 2017–2021. [CrossRef]
24. Shutov, A.V.; Kreißig, R. Application of a coordinate-free tensor formalism to the numerical implementation of a material model.

ZAMM 2008, 88, 888–909. [CrossRef]
25. Haupt, P. Continuum Mechanics and Theory of Materials, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2002.
26. Lanir, Y.; Lichtenstein, O.; Imanuel, O. Optimal design of biaxial tests for structural material characterization of flat tissues.

J. Biomech. Eng. 1996, 118, 41–47. [CrossRef] [PubMed]
27. Thomson, J.J. On the structure of the atom: An investigation of the stability and periods of oscillation of a number of corpuscles

arranged at equal intervals around the circumference of a circle. Philos. Mag. 1904, 6, 237–265. [CrossRef]
28. Zhu, G.; Wang, Y.; Gao, L.; Xu, Z.; Zhang, X.; Dai, X.; Dai, L.; Hou, C.; Yan, L.-T. Entropy-driven self-assembly of tethered Janus

nanoparticles on a sphere. Fundam. Res. 2021, 5, 641–648. [CrossRef]
29. Hou, C.; Gao, L.; Wang, Y.; Yan, L.-T. Entropic control of nanoparticle self—assembly through confinement. Nanoscale Horiz. 2022 .

[CrossRef]
30. Voronoi, G.F. Nouvelles applications des paramètres continus à théorie des formes quadratiques. Deuxième Mémoire. Recherches

sur les paralléloèdres primitifs. J. Reine Angew. Math. 1909, 136, 67–182. [CrossRef]
31. Levenberg, K. A method for the solution of certain problems in least-squares. Q. Appl. Math. 1944, 2, 164–168. [CrossRef]
32. Marquardt, D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 1963, 11, 431–441.

[CrossRef]
33. Shutov, A.V.; Kaygorodtseva, A.A. Parameter identification in elasto-plasticity: Distance between parameters and impact of

measurement errors. ZAMM 2019, 99, e201800340. [CrossRef]
34. Islam, M.S.; Ang, B.C.; Andriyana, A.; Affi, A.M. A review on fabrication of nanofibers via electrospinning and their applications.

SN Appl. Sci. 2019, 1, 1248. [CrossRef]
35. Nagam Hanumantharao, S.; Rao, S. Multi-functional electrospun nanofibers from polymer blends for scaffold tissue engineering.

Fibers 2019, 7, 66. [CrossRef]
36. Leal, B.B.J.; Wakabayashi, N.; Oyama, K.; Kamiya, H.; Braghirolli, D.I.; Pranke, P. Vascular tissue engineering: Polymers and

methodologies for small caliber vascular grafts. Front. Cardiovasc. Med. 2021, 7, 592361. [CrossRef] [PubMed]
37. Chernonosova, V.S.; Laktionov, P.P. Structural Aspects of Electrospun Scaffolds Intended for Prosthetics of Blood Vessels. Polymers

2022, 14, 1698. [CrossRef]
38. Nazarkina, Z.K.; Chelobanov, B.P.; Kuznetsov, K.A.; Shutov, A.V.; Romanova, I.V.; Karpenko, A.A.; Laktionov, P.P. Influence of

elongation of paclitaxel-eluting electrospun-produced stent coating on paclitaxel release and transport through the arterial wall
after stenting. Polymers 2021, 13, 1165. [CrossRef] [PubMed]

39. Rahmati, M.; Mills, D.K.; Urbanska, A.M.; Saeb, M.R.; Venugopal, J.R.; Ramakrishna, S.; Mozafari, M. Electrospinning for tissue
engineering applications. Prog. Mater. Sci. 2021, 117, 100721. [CrossRef]

40. Rickel, A.P.; Deng, X.; Engebretson, D.; Hong, Z. Electrospun nanofiber scaffold for vascular tissue engineering. Mater. Sci. Eng. C
2021, 129, 112373. [CrossRef] [PubMed]

41. Tagiltsev, I.; Parshin, D.; Shutov, A. Rational choice of modelling assumptions for simulation of blood vessel end-to-side
anastomosis. Math. Model. Nat. Phenom. 2022, 17, 20. [CrossRef]

http://dx.doi.org/10.1016/j.euromechsol.2017.07.005
http://dx.doi.org/10.1016/j.jmbbm.2015.02.012
http://dx.doi.org/10.1016/j.euromechsol.2015.11.003
http://dx.doi.org/10.1098/rsif.2017.0766
http://dx.doi.org/10.1061/(ASCE)0733-9399(1985)111:4(559)
http://dx.doi.org/10.1016/j.jmps.2005.04.010
http://dx.doi.org/10.1016/j.jmps.2004.03.011
http://dx.doi.org/10.1016/j.jmps.2005.04.006
http://dx.doi.org/10.1002/zamm.201700200
http://dx.doi.org/10.1007/s10659-021-09845-5
http://dx.doi.org/10.1098/rsta.2009.0091
http://dx.doi.org/10.1098/rsif.2005.0073
http://dx.doi.org/10.1002/app.23762
http://dx.doi.org/10.1002/zamm.200800017
http://dx.doi.org/10.1115/1.2795944
http://www.ncbi.nlm.nih.gov/pubmed/8833073
http://dx.doi.org/10.1080/14786440409463107
http://dx.doi.org/10.1016/j.fmre.2021.06.014
http://dx.doi.org/10.1039/D2NH00156J
http://dx.doi.org/10.1515/crll.1909.136.67
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1002/zamm.201800340
http://dx.doi.org/10.1007/s42452-019-1288-4
http://dx.doi.org/10.3390/fib7070066
http://dx.doi.org/10.3389/fcvm.2020.592361
http://www.ncbi.nlm.nih.gov/pubmed/33585576
http://dx.doi.org/10.3390/polym14091698
http://dx.doi.org/10.3390/polym13071165
http://www.ncbi.nlm.nih.gov/pubmed/33916436
http://dx.doi.org/10.1016/j.pmatsci.2020.100721
http://dx.doi.org/10.1016/j.msec.2021.112373
http://www.ncbi.nlm.nih.gov/pubmed/34579892
http://dx.doi.org/10.1051/mmnp/2022022


Polymers 2022, 14, 3314 21 of 21

42. Singh, C.; Wong, C.S.; Wang, X. Medical textiles as vascular implants and their success to mimic natural arteries. J. Funct. Biomater.
2015, 6, 500–525. [CrossRef] [PubMed]

43. O’Neill, R. Algorithm AS 47: Function minimization using a simplex procedure. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1971, 20,
338–345. [CrossRef]

44. Henriques, J.; Xavier, J.; Andrade-Campos, A. Identification of orthotropic elastic properties of wood by a synthetic image
approach based on digital image correlation. Materials 2022, 15, 625. [CrossRef] [PubMed]

45. Niestrawska, J.A.; Viertler, C.; Regitnig, P.; Cohnert, T.U.; Sommer, G.; Holzapfel, G.A. Microstructure and mechanics of healthy
and aneurysmatic abdominal aortas: Experimental analysis and modelling. J. R. Soc. Interface 2016, 13, 20160620. [CrossRef]
[PubMed]

46. Nikpasand, M.; Mahutga, R.R.; Bersie-Larson, L.M.; Gacek, E.; Barocas, V.H. A hybrid microstructural-continuum multiscale
approach for modeling hyperelastic fibrous soft tissue. J. Elast. 2021, 145, 295–331. [CrossRef]

47. Xiao, R.; Mai, T.T.; Urayama, K.; Gong, J.P.; Qu, S. Micromechanical modeling of the multi-axial deformation behavior in double
network hydrogels. Int. J. Plast. 2021, 137, 102901. [CrossRef]

48. Swinbank, R.; Purser, R.J. Fibonacci grids: A novel approach to global modelling. Quart. J. Roy. Meteor. Soc. 2006, 132, 1769–1793.
[CrossRef]

49. Brauchart, J.S.; Dick, J. Quasi-Monte Carlo rules for numerical integration over the unit sphere S2. Numer. Math. 2012, 121,
473–502. [CrossRef]

http://dx.doi.org/10.3390/jfb6030500
http://www.ncbi.nlm.nih.gov/pubmed/26133386
http://dx.doi.org/10.2307/2346772
http://dx.doi.org/10.3390/ma15020625
http://www.ncbi.nlm.nih.gov/pubmed/35057341
http://dx.doi.org/10.1098/rsif.2016.0620
http://www.ncbi.nlm.nih.gov/pubmed/27903785
http://dx.doi.org/10.1007/s10659-021-09843-7
http://dx.doi.org/10.1016/j.ijplas.2020.102901
http://dx.doi.org/10.1256/qj.05.227
http://dx.doi.org/10.1007/s00211-011-0444-6

	Introduction
	Modeling of Initially Anisotropic Materials
	General Concept of Representative Directions
	Orientation Probability Density Function
	Generation of Fiber Sets Matching the Given OPDF
	Energy Minimization Method (Landau–Ginzburg Method)
	Equlibration Method
	Voronoi Cells Method
	Demonstration Tests: Generated Sets of Fibers

	Two Specific Versions of the Concept of Representative Directions

	Actual Anisotropic Material
	Polymeric Fibrous Material Produced by Electrospinning
	Uniaxial Material Law and Orthotropic OPDF
	Calibration of the Material Model against Experimental Data

	Discussion and Conclusions
	Appendix A
	Appendix B
	References

