Using Cellulose-graft-Poly(L-lactide) Copolymers as Effective Compatibilizers for the Preparation of Cellulose/Poly(L-lactide) Composites with Enhanced Interfacial Compatibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of C-g-PLLA
2.2. Preparation of C/P Blend and the Composites
2.3. Characterization
3. Results
3.1. Chemical Structure Analysis of C-g-PLLA
3.2. Mechanical Properties
3.3. Morphology Analysis
3.4. Thermal Properties
3.5. Hydrophilicity Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farah, S.; Anderson, D.G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Adv. Drug Deliv. Rev. 2016, 107, 367–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bledzki, A.K.; Jaszkiewicz, A.; Scherzer, D. Mechanical Properties of PLA Composites with Man-Made Cellulose and Abaca Fibres. Compos. Part A Appl. Sci. Manuf. 2009, 40, 404–412. [Google Scholar] [CrossRef]
- Stepanova, M.; Korzhikova-Vlakh, E. Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review. Polymers 2022, 14, 1477. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Xiong, Z.; Na, H.; Zhu, J. How Does Epoxidized Soybean Oil Improve the Toughness of Microcrystalline Cellulose Filled Polylactide Acid Composites? Compos. Sci. Technol. 2014, 90, 9–15. [Google Scholar] [CrossRef]
- Dai, X.; Xiong, Z.; Ma, S.; Li, C.; Wang, J.; Na, H.; Zhu, J. Fabricating Highly Reactive Bio-Based Compatibilizers of Epoxidized Citric Acid to Improve the Flexural Properties of Polylactide/Microcrystalline Cellulose Blends. Ind. Eng. Chem. Res. 2015, 54, 3806–3812. [Google Scholar] [CrossRef]
- Mathew, A.P.; Oksman, K.; Sain, M. Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC). J. Appl. Polym. Sci. 2005, 97, 2014–2025. [Google Scholar] [CrossRef]
- Iwatake, A.; Nogi, M.; Yano, H. Cellulose Nanofiber-Reinforced Polylactic Acid. Compos. Sci. Technol. 2008, 68, 2103–2106. [Google Scholar] [CrossRef]
- Ye, G.; Li, Z.; Chen, B.; Bai, X.; Chen, X.; Hu, Y. Performance of Polylactic Acid/Polycaprolactone/Microcrystalline Cellulose Biocomposites with Different Filler Contents and Maleic Anhydride Compatibilization. Polym. Compos. 2022, 43, 5179. [Google Scholar] [CrossRef]
- Eicher, M.; Bajwa, D.; Shojaeiarani, J.; Bajwa, S. Biobased Plasticizer and Cellulose Nanocrystals Improve Mechanical Properties of Polylactic Acid Composites. Ind. Crops Prod. 2022, 183, 114981. [Google Scholar] [CrossRef]
- Wang, F.Y.; Dai, L.; Ge, T.T.; Yue, C.B.; Song, Y.M. A-Methylstyrene-Assisted Maleic Anhydride Grafted Poly(Lactic Acid) As an Effective Compatibilizer Affecting Properties of Microcrystalline Cellulose/Poly(Lactic Acid) Composites. Express Polym. Lett. 2020, 14, 530–541. [Google Scholar] [CrossRef]
- Hong, J.; Kim, D.S. Preparation and Physical Properties of Polylactide/Cellulose Nanowhisker/Nanoclay Composites. Polym. Compos. 2013, 34, 293–298. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Montanes, N.; Sammon, C.; Balart, R.; Torres-Giner, S. Compatibilization of Highly Sustainable Polylactide/Almond Shell Flour Composites by Reactive Extrusion with Maleinized Linseed Oil. Ind. Crops Prod. 2018, 111, 878–888. [Google Scholar] [CrossRef]
- Nyambo, C.; Mohanty, A.K.; Misra, M. Effect of Maleated Compatibilizer on Performance of PLA/Wheat Straw-Based Green Composites. Macromol. Mater. Eng. 2011, 296, 710–718. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Ruksakulpiwat, C.; Rugmai, S.; Soontaranon, S.; Ruksakulpiwat, Y. Crystallization Behavior Studied by Synchrotron Small-Angle X-Ray Scattering of Poly (Lactic Acid)/Cellulose Nanofibers Composites. Compos. Sci. Technol. 2017, 143, 106–115. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, C.; Weng, Y. Enhancing Gas Barrier Performance of Polylactic Acid/Lignin Composite Films through Cooperative Effect of Compatibilization and Nucleation. J. Appl. Polym. Sci. 2021, 138, e50019. [Google Scholar] [CrossRef]
- Cao, Z.; Lu, Y.; Zhang, C.; Zhang, Q.; Zhou, A.; Hu, Y.; Wu, D.; Tao, G.; Gong, F.; Ma, W.; et al. Effects of the Chain-Extender Content on the Structure and Performance of Poly(Lactic Acid)–Poly(Butylene Succinate)–Microcrystalline Cellulose Composites. J. Appl. Polym. Sci. 2017, 134, 1–8. [Google Scholar] [CrossRef]
- Lee, S.H.; Wang, S. Biodegradable Polymers/Bamboo Fiber Biocomposite with Bio-Based Coupling Agent. Compos. Part A Appl. Sci. Manuf. 2006, 37, 80–91. [Google Scholar] [CrossRef]
- Lee, H.J.; Ryu, Y.S.; Kim, I.S.; Kim, S.H. Pretreatment of Microfibrillated Cellulose on Polylactide Composites. Macromol. Res. 2020, 28, 110–117. [Google Scholar] [CrossRef]
- Chen, F.; Liu, L.S.; Cooke, P.H.; Hicks, K.B.; Zhang, J. Performance Enhancement of Poly(Lactic Acid) and Sugar Beet Pulp Composites by Improving Interfacial Adhesion and Penetration. Ind. Eng. Chem. Res. 2008, 47, 8667–8675. [Google Scholar] [CrossRef]
- Lee, J.S.; Ryu, Y.S.; Kim, I.S.; Kim, S.H. Effect of Interface Affinity on the Performance of a Composite of Microcrystalline Cellulose and Polypropylene/Polylactide Blends. Polym. Int. 2019, 68, 1402–1410. [Google Scholar] [CrossRef]
- Lu, T.; Liu, S.; Jiang, M.; Xu, X.; Wang, Y.; Wang, Z.; Gou, J.; Hui, D.; Zhou, Z. Effects of Modifications of Bamboo Cellulose Fibers on the Improved Mechanical Properties of Cellulose Reinforced Poly(Lactic Acid) Composites. Compos. Part B Eng. 2014, 62, 191–197. [Google Scholar] [CrossRef]
- Awal, A.; Rana, M.; Sain, M. Thermorheological and Mechanical Properties of Cellulose Reinforced PLA Bio-Composites. Mech. Mater. 2015, 80, 87–95. [Google Scholar] [CrossRef]
- Qu, P.; Gao, Y.; Wu, G.F.; Zhang, L.P. Nanocomposites of Poly(Lactic Acid) Reinforced with Cellulose Nanofibrils. BioResources 2010, 5, 1811–1823. [Google Scholar]
- Zhang, X.; Di, J.; Li, J.; Li, S.; Duan, J.; Lv, J.; Zhu, X.; Xu, L.; Chang, X. Effects of Different Interfacial Modifiers on the Properties of Digital Printing Waste Paper Fiber/Nanocrystalline Cellulose/Poly(Lactic Acid) Composites. Polym. Eng. Sci. 2022, 62, 781–792. [Google Scholar] [CrossRef]
- Yu, H.Y.; Wang, C.; Abdalkarim, S.Y.H. Cellulose Nanocrystals/Polyethylene Glycol as Bifunctional Reinforcing/Compatibilizing Agents in Poly(Lactic Acid) Nanofibers for Controlling Long-Term in Vitro Drug Release. Cellulose 2017, 24, 4461–4477. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, D.; Zou, P.; Wang, B. Preparation and Thermomechanical Properties of Nanocrystalline Cellulose Reinforced Poly(Lactic Acid) Nanocomposites. J. Appl. Polym. Sci. 2017, 134, 44683. [Google Scholar] [CrossRef]
- Khakalo, A.; Filpponen, I.; Rojas, O.J. Protein-Mediated Interfacial Adhesion in Composites of Cellulose Nanofibrils and Polylactide: Enhanced Toughness towards Material Development. Compos. Sci. Technol. 2018, 160, 145–151. [Google Scholar] [CrossRef]
- Takatani, M.; Ikeda, K.; Sakamoto, K.; Okamoto, T. Cellulose Esters as Compatibilizers in Wood/Poly(Lactic Acid) Composite. J. Wood Sci. 2008, 54, 54–61. [Google Scholar] [CrossRef]
- Suchaiya, V.; Aht-Ong, D. Microwave-Assisted Modification of Cellulose as a Compatibilizer for PLA and MCC Biocomposite Film: Effects of Side Chain Length and Content on Mechanical and Thermal Properties. Polym. Polym. Compos. 2014, 22, 613–624. [Google Scholar] [CrossRef]
- Lu, S.; Li, J.; Liu, F.; Chen, M.; Na, H.; Zhu, J. Impact of DBU on the Synthesis of Cellulose-Graft-Poly(L-Lactide) Copolymer in CO2 Switchable Solvent with Different Grafting Strategies. Polymer 2021, 229, 124020. [Google Scholar] [CrossRef]
- Hua, S.; Chen, F.; Liu, Z.Y.; Yang, W.; Yang, M.B. Preparation of Cellulose-Graft-Polylactic Acid via Melt Copolycondensation for Use in Polylactic Acid Based Composites: Synthesis, Characterization and Properties. RSC Adv. 2016, 6, 1973–1983. [Google Scholar] [CrossRef]
- Xiao, L.; Mai, Y.; He, F.; Yu, L.; Zhang, L.; Tang, H.; Yang, G. Bio-Based Green Composites with High Performance from Poly(Lactic Acid) and Surface-Modified Microcrystalline Cellulose. J. Mater. Chem. 2012, 22, 15732–15739. [Google Scholar] [CrossRef]
- Espino-Pérez, E.; Bras, J.; Ducruet, V.; Guinault, A.; Dufresne, A.; Domenek, S. Influence of Chemical Surface Modification of Cellulose Nanowhiskers on Thermal, Mechanical, and Barrier Properties of Poly(Lactide) Based Bionanocomposites. Eur. Polym. J. 2013, 49, 3144–3154. [Google Scholar] [CrossRef]
Sample | DPPLLA | DSPLLA | MSPLLA | WPLLA (%) | Tg (°C) |
---|---|---|---|---|---|
C-g-PLLA-12 | 2.76 | 1.43 | 3.95 | 63.7 | 67.7 |
C-g-PLLA-14 | 2.84 | 1.57 | 4.46 | 66.5 | 63.3 |
Sample | Tg,PLLA (°C) | Tcc,PLLA (°C) | Tm1,PLLA (°C) | Tm2,PLLA (°C) | ΔHcc,PLLA (J·g−1) | ΔHm,PLLA (J·g−1) | χc,PLLA (%) | T5% (°C) | Td,max (°C) |
---|---|---|---|---|---|---|---|---|---|
PLLA | 59.3 | / | / | 167.4 | / | 10.2 | 10.9 | 348.3 | 384.3 |
C/P | 63.2 | 103.8 | / | 168.1 | 19.2 | 27.3 | 10.8 | 324.0 | 368.0 |
C/P/12-1 | 61.9 | 106.9 | 160.0 | 164.5 | 26.4 | 36.1 | 13.0 | 316.0 | 367.3 |
C/P/12-3 | 60.0 | 107.3 | 156.0 | 163.7 | 25.9 | 35.8 | 13.2 | 297.7 | 364.7 |
C/P/12-5 | 58.5 | 104.8 | 153.0 | 161.1 | 24.8 | 34.3 | 12.7 | 283.7 | 364.0 |
C/P/14-1 | 62.0 | 107.1 | 159.7 | 166.5 | 23.8 | 32.3 | 11.4 | 314.3 | 366.7 |
C/P/14-3 | 60.1 | 106.8 | 156.3 | 164.1 | 24.7 | 33.6 | 11.9 | 297.7 | 366.3 |
C/P/14-5 | 58.1 | 105.8 | 153.0 | 160.9 | 25.1 | 33.0 | 10.6 | 290.0 | 364.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Lu, S.; Cao, W.; Huang, J.; Sun, Y.; Xu, Y.; Chen, M.; Na, H.; Zhu, J. Using Cellulose-graft-Poly(L-lactide) Copolymers as Effective Compatibilizers for the Preparation of Cellulose/Poly(L-lactide) Composites with Enhanced Interfacial Compatibility. Polymers 2022, 14, 3449. https://doi.org/10.3390/polym14173449
Liu F, Lu S, Cao W, Huang J, Sun Y, Xu Y, Chen M, Na H, Zhu J. Using Cellulose-graft-Poly(L-lactide) Copolymers as Effective Compatibilizers for the Preparation of Cellulose/Poly(L-lactide) Composites with Enhanced Interfacial Compatibility. Polymers. 2022; 14(17):3449. https://doi.org/10.3390/polym14173449
Chicago/Turabian StyleLiu, Fei, Shan Lu, Weihong Cao, Juncheng Huang, Yi Sun, Yiting Xu, Meiling Chen, Haining Na, and Jin Zhu. 2022. "Using Cellulose-graft-Poly(L-lactide) Copolymers as Effective Compatibilizers for the Preparation of Cellulose/Poly(L-lactide) Composites with Enhanced Interfacial Compatibility" Polymers 14, no. 17: 3449. https://doi.org/10.3390/polym14173449
APA StyleLiu, F., Lu, S., Cao, W., Huang, J., Sun, Y., Xu, Y., Chen, M., Na, H., & Zhu, J. (2022). Using Cellulose-graft-Poly(L-lactide) Copolymers as Effective Compatibilizers for the Preparation of Cellulose/Poly(L-lactide) Composites with Enhanced Interfacial Compatibility. Polymers, 14(17), 3449. https://doi.org/10.3390/polym14173449