Filling-Balance-Oriented Parameters for Multi-Cavity Molds in Polyvinyl Chloride Injection Molding
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Time Delay of an Imbalance in Filling
3.2. Optimization via the Taguchi Method and Verification
3.3. Temperature, Shear Rate and Pressure Distributions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Conssent Statement
Data Availability Statement
Conflicts of Interest
References
- Percentage of PVC among Plastics. Available online: https://www.bpf.co.uk/plastipedia/polymers/PVC.aspx (accessed on 7 July 2022).
- Ahmed, T.; Sharma, P.; Karmaker, C.L.; Nasir, S. Warpage prediction of Injection-molded PVC part using ensemble machine learning algorithm. Mater. Today Proc. 2022, 50, 565. [Google Scholar] [CrossRef]
- Koszkul, J.; Nabialek, J. Viscosity models in simulation of the filling stage of the injection moulded process. J. Mater. Process. Technol. 2004, 157, 183–187. [Google Scholar] [CrossRef]
- Garcia, J.L.; Koelling, K.W.; Xu, G.; Summers, J.W. PVC degradation during injection molding: Experimental evaluation. J. Vinyl Technol. 2004, 10, 17–40. [Google Scholar] [CrossRef]
- Garcia, J.L.; Koelling, K.W.; Summers, J.W. Computational prediction of PVC degradation during injection molding in a rectangular channel. Polym. Eng. Sci. 2004, 44, 1295–1312. [Google Scholar] [CrossRef]
- Weir, S. Predicting surface defects in injection molded PVC components. J. Vinyl Technol. 1994, 16, 231–234. [Google Scholar] [CrossRef]
- Yavari, R.; Khorsand, H. Numerical and experimental study of injection step, separation, and imbalance filling in low pressure injection molding of ceramic components. J. Eur. Ceram. Soc. 2021, 41, 6915. [Google Scholar] [CrossRef]
- Fernandes, C.; Pontes, A.J.; Viana, J.C.; Gaspar-Cunha, A. Modeling and Optimization of the Injection-Molding Process: A Review. Adv. Polym. Technol. 2016, 37, 429–449. [Google Scholar] [CrossRef]
- Chang, R.-Y.; Yang, W.-H. Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach. Int. J. Numer. Methods Fluids 2001, 37, 125–148. [Google Scholar] [CrossRef]
- Tsai, H.H.; Liao, Y.L. Feasibility Study of the Flatness of a Plastic Injection Molded Pallet by a Newly Proposed Sequential Valve Gate System. Polymers 2022, 14, 616. [Google Scholar] [CrossRef]
- Liao, Y.-L.; Tsai, H.-H. A Comparison of Numerical and Actual Measurements of Large-Scale Rib-Structured Pallet Flatness Using Recycled Polypropylene in Injection Molding. Polymers 2022, 14, 1631. [Google Scholar] [CrossRef]
- Lladó, J.; Sánchez, B. Influence of injection parameters on the formation of blush in injection moulding of PVC. J. Mater. Processing Technol. 2008, 204, 1–3. [Google Scholar] [CrossRef]
- Sánchez, B.; Lladó, J. Surface quality of PVC fittings based on the design of the sprue. J. Mater. Processing Technol. 2008, 207, 1–3. [Google Scholar] [CrossRef]
- Impact of Lead Restrictions on the Recycling of PVC. Available online: https://www.vinylplus.eu/resources/impact-of-lead-restrictions-on-the-recycling-of-pvc/ (accessed on 10 July 2022).
- Jubsilp, C.; Asawakosinchai, A.; Mora, P.; Saramas, D.; Rimdusit, S. Effects of Organic Based Heat Stabilizer on Properties of Polyvinyl Chloride for Pipe Applications: A Comparative Study with Pb and CaZn Systems. Polymers 2022, 14, 133. [Google Scholar] [CrossRef]
- Yu, J.; Sun, L.S.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag. 2016, 48, 300–314. [Google Scholar] [CrossRef]
- Xu, Z.; Kolapkar, S.S.; Zinchik, S.; Bar-Ziv, E.; Mcdonald, A.G. Comprehensive kinetic study of thermal degradation of polyvinylchloride (PVC). Polym. Degrad. Stab. 2020, 176, 109148. [Google Scholar] [CrossRef]
- Tomaszewska, J.; Sterzyński, T.; Walczak, D. Thermal Stability of Nanosilica-Modified Poly(vinyl chloride). Polymers 2021, 13, 2057. [Google Scholar] [CrossRef]
- Wilczyński, K.; Narowski, P. Experimental and theoretical study on filling imbalance in geometrically balanced injection molds. Polym. Engr. Sci. 2018, 59, 2. [Google Scholar] [CrossRef]
- Wilczyński, K.; Narowski, P. Simulation studies on the effect of material characteristics and runners layout geometry on the filling imbalance in geometrically balanced injection molds. Polymers 2019, 11, 639. [Google Scholar] [CrossRef]
- Wilczyński, K.; Narowski, P. A Strategy for Problem Solving of Filling Imbalance in Geometrically Balanced Injection Molds. Polymers 2020, 12, 805. [Google Scholar] [CrossRef]
- Moayyedian, M.; Dinc, A.; Mamedov, A. Optimization of Injection-Molding Process for Thin-Walled Polypropylene Part Using Artificial Neural Network and Taguchi Techniques. Polymers 2021, 13, 4158. [Google Scholar] [CrossRef]
- Narowski, P.; Wilczyński, K. Study on filling patterns of engineering polymers in geometrically balanced injection molds. Chall. Mod. Technol. 2015, 6, 15. [Google Scholar]
- Beaumont, J.P.; Young, J.H.; Jaworski, M.J. Mold Filling Imbalances in Geometrically Balanced Runner Systems. J. Reinf. Plast. Compos. 1999, 18, 573. [Google Scholar] [CrossRef]
- Beaumont, J.P.; Young, J.H.; Jaworski, M.J. Solving mold filling imbalances in multi-cavity injection molds. J. Inject. Molding Technol. 1998, 2, 47. [Google Scholar]
- Moldex3D 2020. Available online: https://www.moldex3d.com/ (accessed on 14 July 2022).
- Formosa Plastic PVC Blend. Available online: http://www.fpc.com.tw/fpcw/index.php?op=proL&f=1&s=6 (accessed on 14 July 2022).
- Nan-Ya PVC Fitting. Available online: https://www.npc.com.tw/j2npc/enus/proddoc/Pipes%20&%20Fittings/PVC-U%20Pipes%20and%20Fitting%20catalog?type=info&docid=F00000177enus1&pdid=F00000177 (accessed on 14 July 2022).
- Gaaz, T.S.; Sulong, A.B.; Kadhum, A.A.H.; Nassir, M.H.; Al-Amiery, A.A. Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites via Taguchi Complemented with ANOVA. Materials 2016, 9, 947. [Google Scholar] [CrossRef] [PubMed]
- Mehat, N.M.; Kamaruddin, S. Quality control and design optimisation of plastic product using Taguchi method: A comprehensive review. Int. J. Plast. Technol. 2012, 16, 194–209. [Google Scholar] [CrossRef]
- Ryu, Y.; Sohn, J.S.; Kweon, B.C.; Cha, S.W. Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites. Materials 2019, 12, 764. [Google Scholar] [CrossRef]
- Tang, S.H.; Tan, Y.J.; Sapuan, S.M.; Sulaiman, S.; Ismail, N.; Samin, R. The use of Taguchi method in the design of plastic injection mould for reducing warpage. J. Mater. Proc. Technol. 2007, 182, 418–426. [Google Scholar] [CrossRef]
- Marra, F.; Liparoti, S.; Speranza, V.; Pantani, R. Morphology predictions in molded parts: A multiphysics approach. Chem. Eng. Res. Des. 2022, 183, 368. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Mold temperature (°C) | 40 |
Filling pressure (max) (MPa) | 173.4 |
Filling rate (max) (mm3/s) | 376,000 |
Melt temperature (°C) | 175 |
Filling time (s) | 12.197 |
Filling rate of 1st stage (ram 227.7–217.6 mm) (%) | 16 |
Filling rate of 2nd stage (ram 217.6–175.5 mm) (%) | 7.6 |
Filling rate of 3rd stage (ram 175.5–131.4 mm) (%) | 12.5 |
Filling rate of 4th stage (ram 131.4–0 mm) (%) | 15 |
V/P switch (at ram) (mm) | 12 |
Filling volume (mm3) | 438,600 |
Packing time (s) | 10 |
Packing pressure (MPa) | 121.38 |
Cooling time (s) | 40 |
Cooling channel temperature (°C) | 30 |
Mold opening time (s) | 5 |
Cycle time (s) | 57.8 |
Parameter | Level 1 | Level 2 | Level 3 |
---|---|---|---|
1st stage injection rate (%) | 10 | 30 | 50 |
2nd stage injection rate (%) | 10 | 25 | 40 |
3rd stage injection rate (%) | 30 | 50 | 70 |
4th stage injection rate (%) | 30 | 50 | 70 |
Trial Number | 1st Stage Injection Rate Level | 2nd Stage Injection Rate Level | 3rd Stage Injection Rate Level | 4th Stage Injection Rate Level |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 |
3 | 1 | 3 | 3 | 3 |
4 | 2 | 1 | 2 | 3 |
5 | 2 | 2 | 3 | 1 |
6 | 2 | 3 | 1 | 2 |
7 | 3 | 1 | 3 | 2 |
8 | 3 | 2 | 1 | 3 |
9 | 3 | 3 | 2 | 1 |
Trial Number | Max. Filling Temperature (°C) | Filling Time (s) | Filling Time Delay of Imbalance (s) | Percentage of Filling Time Delay of Imbalance (%) |
---|---|---|---|---|
1 | 183.25 | 7.228 | 0.231 | 3.30 |
2 | 185.86 | 5.958 | 0.497 | 9.10 |
3 | 183.14 | 3.690 | 0.357 | 10.70 |
4 | 187.26 | 5.044 | 0.021 | 0.42 |
5 | 184.94 | 2.874 | 0.095 | 3.42 |
6 | 185.35 | 4.071 | 0.266 | 6.99 |
7 | 188.40 | 4.319 | 0.012 | 0.28 |
8 | 187.55 | 3.808 | 0.094 | 2.53 |
9 | 186.04 | 3.523 | 0.213 | 6.44 |
Trial Number | 1st Stage Injection Rate Level | 2nd Stage Injection Rate Level | 3rd Stage Injection Rate Level | 4th Stage Injection Rate Level | S/N |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | −10.37 |
2 | 1 | 2 | 2 | 2 | −19.18 |
3 | 1 | 3 | 3 | 3 | −20.60 |
4 | 2 | 1 | 2 | 3 | 7.57 |
5 | 2 | 2 | 3 | 1 | −10.68 |
6 | 2 | 3 | 1 | 2 | −16.89 |
7 | 3 | 1 | 3 | 2 | −11.10 |
8 | 3 | 2 | 1 | 3 | −8.07 |
9 | 3 | 3 | 2 | 1 | −16.17 |
Level | 1st Stage Injection Rate Level | 2nd Stage Injection Rate Level | 3rd Stage Injection Rate Level | 4th Stage Injection Rate Level |
---|---|---|---|---|
L1 | −15.86 | 0.83 | −9.74 | −11.72 |
L2 | −8.35 | −11.38 | −11.41 | −8.16 |
L3 | −3.42 | −17.08 | −6.48 | −7.75 |
Difference | 12.44 | 16.25 | 5.03 | 3.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, H.-H.; Wu, S.-J.; Liu, J.-W.; Chen, S.-H.; Lin, J.-J. Filling-Balance-Oriented Parameters for Multi-Cavity Molds in Polyvinyl Chloride Injection Molding. Polymers 2022, 14, 3483. https://doi.org/10.3390/polym14173483
Tsai H-H, Wu S-J, Liu J-W, Chen S-H, Lin J-J. Filling-Balance-Oriented Parameters for Multi-Cavity Molds in Polyvinyl Chloride Injection Molding. Polymers. 2022; 14(17):3483. https://doi.org/10.3390/polym14173483
Chicago/Turabian StyleTsai, Hsi-Hsun, Shao-Jung Wu, Jia-Wei Liu, Sin-He Chen, and Jui-Jung Lin. 2022. "Filling-Balance-Oriented Parameters for Multi-Cavity Molds in Polyvinyl Chloride Injection Molding" Polymers 14, no. 17: 3483. https://doi.org/10.3390/polym14173483
APA StyleTsai, H. -H., Wu, S. -J., Liu, J. -W., Chen, S. -H., & Lin, J. -J. (2022). Filling-Balance-Oriented Parameters for Multi-Cavity Molds in Polyvinyl Chloride Injection Molding. Polymers, 14(17), 3483. https://doi.org/10.3390/polym14173483