Investigation of Thermal Properties of Zr-Based Metallic Glass–Polymer Composite with the Addition of Silane
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. X-ray Diffraction Analysis (XRD)
3.2. Differential Scanning Calorimetry (DSC)
3.3. Laser Flash Analysis
3.4. Scanning Electron Microscope
3.5. Thermogravimetric Analysis (TGA)
3.6. Fourier-Transform Infrared Spectroscopy (FTIR)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, A.; Zadorozhnyy, V. Review of the recent development in metallic glass and its composites. Metals 2021, 11, 1933. [Google Scholar] [CrossRef]
- Ding, S.; Liu, Y.; Li, Y.; Liu, Z.; Sohn, S.; Walker, F.J.; Schroers, J. Combinatorial development of bulk metallic glasses. Nat. Mater. 2014, 13, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Budhani, R.C.; Goel, T.C.; Chopra, K.L. Melt-spinning technique for preparation of metallic glasses. Bull. Mater. Sci. 1982, 4, 549–561. [Google Scholar] [CrossRef]
- Davies, H.A.; Aucote, J.; Hull, J.B. Amorphous nickel produced by splat quenching. Nat. Phys. Sci. 1973, 246, 13–14. [Google Scholar] [CrossRef]
- Wang, Z.; Georgarakis, K.; Nakayama, K.S.; Li, Y.; Tsarkov, A.A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D.V.; Yavari, A.R. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites. Sci. Rep. 2016, 6, 24384. [Google Scholar] [CrossRef] [PubMed]
- Monfared, A.; Vali, H.; Faghihi, S. Biocorrosion and biocompatibility of Zr-Cu-Fe-Al bulk metallic glasses. Surf. Interface Anal. 2013, 45, 1714–1720. [Google Scholar] [CrossRef]
- Lin, C.J.; Spaepen, F. Fe-B glasses formed by picosecond pulsed laser quenching. Appl. Phys. Lett. 1982, 41, 721–723. [Google Scholar] [CrossRef]
- Halim, Q.; Mohamed, N.A.N.; Rejab, M.R.M.; Naim, W.N.W.A.; Ma, Q. Metallic glass properties, processing method and development perspective: A review. Int. J. Adv. Manuf. Technol. 2021, 112, 1231–1258. [Google Scholar] [CrossRef]
- Li, P.; Wang, J.J.; Cheng, J.L.; Li, F.; Zhao, W.; Chen, G. Investigation of the effects of Al on the glass forming ability of Zr-Cu-Ni-Al alloys through their solidification characteristics. Intermetallics 2019, 109, 105–109. [Google Scholar] [CrossRef]
- Lee, J.; Huang, K.H.; Hsu, K.C.; Tung, H.C.; Lee, J.W.; Duh, J.G. Applying composition control to improve the mechanical and thermal properties of Zr-Cu-Ni-Al thin film metallic glass by magnetron DC sputtering. Surf. Coat. Technol. 2015, 278, 132–137. [Google Scholar] [CrossRef]
- Hu, L.; Liu, X.; Chen, T.; Le, G.; Li, J.; Qu, F.; Zhou, Y.; Qi, L.; Wang, D. Characterization of laser cladded Zr–Cu–Ni–Al in-situ metallic glass matrix composite coatings with enhanced corrosion-resistance. Vacuum 2021, 185, 109996. [Google Scholar] [CrossRef]
- Ding, J.; Inoue, A.; Zhu, S.L.; Wu, S.L.; Shalaan, E.; Al-Ghamdi, A.A. Formation, microstructure and mechanical properties of ductile Zr-rich Zr–Cu–Al bulk metallic glass composites. J. Mater. Res. Technol. 2021, 15, 5452–5465. [Google Scholar] [CrossRef]
- Wang, Q.; Qiang, J.B.; Xia, J.H.; Wu, J.; Wang, Y.M.; Dong, C. Cu-Zr-Al (Ti) bulk metallic glasses: Cluster selection rules and glass formation. Intermetallics 2007, 15, 711–715. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Kobayashi, A.; Fukaura, K.; Inoue, A. Oxygen embrittlement and effect of the addition of Ni element in a bulk amorphous Zr-Cu-Al alloy. Mater. Trans. 2002, 43, 571–574. [Google Scholar] [CrossRef]
- Wang, W.H.; Bian, Z.; Wen, P.; Zhang, Y.; Pan, M.X.; Zhao, D.Q. Role of addition in formation and properties of Zr-based bulk metallic glasses. Intermetallics 2002, 10, 1249–1257. [Google Scholar] [CrossRef]
- Tsai, P.H.; Lin, Y.Z.; Li, J.B.; Jian, S.R.; Jang, J.S.C.; Li, C.; Chu, J.P.; Huang, J.C. Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating. Intermetallics 2012, 31, 127–131. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Properties, Characteristics, and Applications of Expanded PTFE (ePTFE) Products. In Expanded PTFE Applications Handbook; William Andrew: Norwich, NY, USA, 2017; pp. 163–170. [Google Scholar] [CrossRef]
- Mafi, I.R.; Dehghanian, C. Comparison of the coating properties and corrosion rates in electroless Ni-P/PTFE composites prepared by different types of surfactants. Appl. Surf. Sci. 2011, 257, 8653–8658. [Google Scholar] [CrossRef]
- Gnedenkov, S.V.; Sinebryukhov, S.L.; Zavidnaya, A.G.; Egorkin, V.S.; Puz’, A.V.; Mashtalyar, D.V.; Sergienko, V.I.; Yerokhin, A.L.; Matthews, A. Composite hydroxyapatite-PTFE coatings on Mg-Mn-Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route. J. Taiwan Inst. Chem. Eng. 2014, 45, 3104–3109. [Google Scholar] [CrossRef]
- Ge, C.; Dong, Y.; Maimaitituersun, W. Microscale simulation on mechanical properties of Al/PTFE composite based on real microstructures. Materials 2016, 9, 590. [Google Scholar] [CrossRef] [Green Version]
- Zaporojtchenko, V.; Podschun, R.; Schürmann, U.; Kulkarni, A.; Faupel, F. Physico-chemical and antimicrobial properties of co-sputtered Ag-Au/PTFE nanocomposite coatings. Nanotechnology 2006, 17, 4904–4908. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, P.; Zhang, D. Designing a Highly Stable Slippery Organogel on Q235 Carbon Steel for Inhibiting Microbiologically Influenced Corrosion. ACS Appl. Bio Mater. 2021, 4, 6056–6064. [Google Scholar] [CrossRef] [PubMed]
- Zadorozhnyy, M.Y.; Chukov, D.I.; Churyukanova, M.N.; Gorshenkov, M.V.; Zadorozhnyy, V.Y.; Stepashkin, A.A.; Tsarkov, A.A.; Louzguine-Luzgin, D.V.; Kaloshkin, S.D. Investigation of contact surfaces between polymer matrix and metallic glasses in composite materials based on high-density polyethylene. Mater. Des. 2016, 92, 306–312. [Google Scholar] [CrossRef]
- Zhang, Y.; Kou, K.; Zhang, S.; Ji, T. Improving thermal properties of ultrafine-glass-fiber reinforced PTFE hybrid composite via surface modification by (3-aminopropyl)triethoxysilane. J. Polym. Res. 2019, 26, 214. [Google Scholar] [CrossRef]
- Piao, Y.; Jiang, Q.; Li, H.; Matsumoto, H.; Liang, J.; Liu, W.; Pham-Huu, C.; Liu, Y.; Wang, F.; Liu, W.; et al. Identify Zr Promotion Effects in Atomic Scale for Co-Based Catalysts in Fischer-Tropsch Synthesis. ACS Catal. 2020, 10, 7894–7906. [Google Scholar] [CrossRef]
- Kim, J.Y.; Gu, X.; Wraith, M.; Uhl, J.T.; Dahmen, K.A.; Greer, J.R. Suppression of catastrophic failure in metallic glass-polyisoprene nanolaminate containing nanopillars. Adv. Funct. Mater. 2012, 22, 1972–1980. [Google Scholar] [CrossRef]
- Li, S.; Louzguine-Luzgin, D.V.; Xie, G.; Sato, M.; Inoue, A. Development of novel metallic glass/polymer composite materials by microwave heating in a separated H-field. Mater. Lett. 2010, 64, 235–238. [Google Scholar] [CrossRef]
- Gizaw, E.T.; Yeh, H.H.; Chu, J.P.; Hu, C.C. Fabrication and characterization of nitrogen selective thin-film metallic glass/polyacrylonitrile composite membrane for gas separation. Sep. Purif. Technol. 2020, 237, 116340. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.Y.; Gorshenkov, M.V.; Churyukanova, M.N.; Zadorozhnyy, M.Y.; Stepashkin, A.A.; Moskovskikh, D.O.; Ketov, S.V.; Zinnurova, L.K.; Sharma, A.; Louzguine-Luzgin, D.V.; et al. Investigation of structure and thermal properties in composite materials based on metallic glasses with small addition of polytetrafluoroethylene. J. Alloys Compd. 2017, 707, 264–268. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.; Churyukanova, M.; Stepashkin, A.; Zadorozhnyy, M.; Sharma, A.; Moskovskikh, D.; Wang, J.; Shabanova, E.; Ketov, S.; Louzguine-Luzgin, D.; et al. Structure and thermal properties of an Al-based metallic glass-polymer composite. Metals 2018, 8, 1037. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Zadorozhnyy, M.; Stepashkin, A.; Kvaratskheliya, A.; Korol, A.; Moskovskikh, D.; Kaloshkin, S.; Zadorozhnyy, V. Investigation of thermophysical properties of Zr-based metallic glass-polymer composite. Metals 2021, 11, 1412. [Google Scholar] [CrossRef]
- Sharma, A.; Kopylov, A.; Zadorozhnyy, M.; Stepashkin, A.; Kudelkina, V.; Wang, J.Q.; Ketov, S.; Churyukanova, M.; Louzguine-Luzgin, D.; Sarac, B.; et al. Mg-based metallic glass-polymer composites: Investigation of structure, thermal properties, and biocompatibility. Metals 2020, 10, 867. [Google Scholar] [CrossRef]
- Yang, J.; Dauskardt, R.H. Hybrid coupling layers for bulk metallic glass adhesion. J. Mater. Res. 2013, 28, 3164–3169. [Google Scholar] [CrossRef]
- Khademian, N.; Gholamipour, R.; Shahri, F.; Tamizifar, M. Effect of vanadium substitution for zirconium on the glass forming ability and mechanical properties of a Zr65Cu17.5Ni 10Al7.5 bulk metallic glass. J. Alloys Compd. 2013, 546, 41–47. [Google Scholar] [CrossRef]
- Yamada, M.; Kamisato, R.; Yamasaki, T.; Adachi, H.; Tsuchiya, K.; Yokoyama, Y. Nanocrystallization of Zr-Cu-Ni-Al-Au glassy alloys during severe plastic deformation. IOP Conf. Ser. Mater. Sci. Eng. 2014, 63, 012167. [Google Scholar] [CrossRef]
- Bottom, R. Thermogravimetric Analysis. Princ. Appl. Therm. Anal. 2008, 1, 87–118. [Google Scholar] [CrossRef]
- Atta, A.; Ali, H.E. Structural and Thermal Properties of PTFE Films by Argon and Oxygen Plasma. Arab J. Nucl. Sci. Appl. 2013, 46, 106–114. [Google Scholar]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- Mihály, J.; Sterkel, S.; Ortner, H.M.; Kocsis, L.; Hajba, L.; Furdyga, É.; Minka, J. FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels. Croat. Chem. Acta 2006, 79, 497–501. [Google Scholar]
- Diani, J.; Gall, K. Finite Strain 3D Thermoviscoelastic Constitutive Model. Polym. Eng. Sci. 2006, 46, 486–492. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Y.; Hui, X.; Min, G.; Ye, Y.; Chen, Y. Anomalous change in nanocrystallization of amorphous Zr-Cu-Ni alloy. J. Mater. Sci. Lett. 2003, 22, 319–322. [Google Scholar] [CrossRef]
- Zhang, T.; Inoue, A.; Masumoto, T. Amorphous Zr–Al–TM (TM=Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of over 100 K. Mater. Trans. JIM 1991, 32, 1005–1010. [Google Scholar] [CrossRef] [Green Version]
- Senatov, F.S.; Niaza, K.V.; Zadorozhnyy, M.Y.; Maksimkin, A.V.; Kaloshkin, S.D.; Estrin, Y.Z. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed. Mater. 2016, 57, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, G.P.; Ramanujan, R.V.; Gonal, M.R.; Prasad, R.; Raj, P.; Badguzar, B.P.; Goswami, G.L. Structural relaxation in metallic glasses. Mater. Sci. Eng. A 2001, 304–306, 499–504. [Google Scholar] [CrossRef]
- Yamasaki, M.; Kagao, S.; Kawamura, Y. Thermal diffusivity and conductivity of Zr55Al 10Ni5Cu30 bulk metallic glass. Scr. Mater. 2005, 53, 63–67. [Google Scholar] [CrossRef]
- Blumm, J.; Lindemann, A.; Meyer, M.; Strasser, C. Characterization of PTFE using advanced thermal analysis techniques. Int. J. Thermophys. 2010, 31, 1919–1927. [Google Scholar] [CrossRef]
- Price, D.M.; Jarratt, M. Thermal conductivity of PTFE and PTFE composites. Thermochim. Acta 2002, 392–393, 231–236. [Google Scholar] [CrossRef]
- Hofsté, J.M.; Schut, J.A.; Pennings, A.J. The effect of chromic acid treatment on the mechanical and tribological properties of aramid fibre reinforced ultra-high molecular weight polyethylene composite. J. Mater. Sci. Mater. Med. 1998, 9, 561–566. [Google Scholar] [CrossRef]
- Borello, E.; Zecchina, A.; Morterra, C. Infrared Study of Methanol Adsorption on Aerosil. I. Chemisorption at Room Temperature. J. Phys. Chem. 1967, 71, 2938–2945. [Google Scholar] [CrossRef]
- Chen, Y.C.; Lin, H.C.; Lee, Y. Der The effects of phenyltrimethoxysilane coupling agents on the properties of PTFE/silica composites. J. Polym. Res. 2004, 11, 1–7. [Google Scholar] [CrossRef]
- Qaisrani, N.A.; Ma, Y.; Ma, L.; Liu, J.; Gao, L.; Li, L.; Gong, S.; Yan, X.; Zhang, F.; He, G. Facile and green fabrication of polybenzoxazine-based composite anion-exchange membranes with a self-cross-linked structure. Ionics 2018, 24, 3053–3063. [Google Scholar] [CrossRef]
Temperature Analysis, °C | 50 | 100 | 150 | 200 | 250 | 300 |
---|---|---|---|---|---|---|
PTFE | ||||||
Thermal diffusivity, mm2/s | 0.147 ± 0.007 | 0.141 ± 0.001 | 0.134 ± 0.001 | 0.125 ± 0.001 | 0.115 ± 0.003 | 0.102 ± 0.007 |
Thermal conductivity, W·m−1·K−1 | 0.05 ± 0.01 | 0.08 ± 0.01 | 0.21 ± 0.01 | 0.29 ± 0.01 | 1.01 ± 0.02 | 0.098 ± 0.01 |
Heat capacity, J/(g·K) | 0.421 ± 0.02 | 0.459 ± 0.02 | 0.483 ± 0.02 | 0.509 ± 0.02 | 0.540 ± 0.02 | 0.589 ± 0.02 |
Sample density, g/cm3 | 1.6 ± 0.01 | |||||
Composite 50/50 with Silane | ||||||
Thermal diffusivity, mm2/s | 0.151 ± 0.03 | 0.148 ± 0.04 | 0.142 ± 0.03 | 0.139 ± 0.04 | 0.121 ± 0.03 | 0.114 ± 0.01 |
Thermal conductivity, W·m−1·K−1 | 0.432 ± 0.005 | 0.475 ± 0.007 | 0.500 ± 0.01 | 0.49 ± 0.012 | 0.4383 ± 0.025 | 0.6607 ± 0.04 |
Heat capacity, J/(g·K) | 0.91 ± 0.03 | 1.02 ± 0.05 | 1.12 ± 0.12 | 1.13 ± 0.16 | 1.15 ± 0.22 | 1.84 ± 0.05 |
Sample density, g/cm3 | 3.15 ± 0.02 | |||||
Composite 30/70 with Silane | ||||||
Thermal diffusivity, mm2/s | 0.147 ± 0.03 | 0.144 ± 0.03 | 0.136 ± 0.04 | 0.13 ± 0.05 | 0.12 ± 0.05 | 0.105 ± 0.05 |
Thermal conductivity, W·m−1·K−1 | 0.378 ± 0.02 | 0.33 ± 0.04 | 0.244 ± 0.05 | 0.20 ± 0.09 | 0.17 ± 0.11 | 0.143 ± 0.07 |
Heat capacity, J/(g·K) | 0.96 ± 0.05 | 0.88 ± 0.07 | 0.67 ± 0.13 | 0.59 ± 0.21 | 0.55 ± 0.26 | 0.51 ± 0.05 |
Sample density, g/cm3 | 2.68 ± 0.02 | |||||
Metallic Glass | ||||||
Thermal diffusivity, mm2/s | 0.466 ± 0.004 | 0.479 ± 0.003 | 0.487 ± 0.003 | 0.499 ± 0.002 | 0.505 ± 0.007 | 0.503 ± 0.005 |
Thermal conductivity, W·m−1·K−1 | 2.48 ± 0.1 | 2.80 ± 0.1 | 2.92 ± 0.1 | 3.17 ± 0.2 | 3.46 ± 0.2 | 4.10 ± 0.3 |
Heat capacity, J/(g·K) | 1.044 ± 0.02 | 1.149 ± 0.02 | 1.177 ± 0.02 | 1.249 ± 0.02 | 1.347 ± 0.02 | 1.599 ± 0.02 |
Sample density, g/cm3 | 5.1 ± 0.01 | |||||
30/70 Composite (without silane) | ||||||
Thermal diffusivity, mm2/s | 0.109 ± 0.002 | 0.104 ± 0.004 | 0.098 ± 0.007 | 0.09 ± 0.003 | 0.082 ± 0.002 | 0.072 ± 0.005 |
Thermal conductivity, W·m−1·K−1 | 0.171 ± 0.03 | 0.163 ± 0.01 | 0.157 ± 0.01 | 0.148 ± 0.02 | 0.141 ± 0.04 | 0.145 ± 0.01 |
Heat capacity, J/(g·K) | 0.604 ± 0.02 | 0.605 ± 0.02 | 0.619 ± 0.02 | 0.634 ± 0.02 | 0.666 ± 0.02 | 0.775 ± 0.02 |
Sample density, g/cm3 | 2.6 ± 0.01 | |||||
50/50 Composite (Without Silane) | ||||||
Thermal diffusivity, mm2/s | 0.178 ± 0.005 | 0.171 ± 0.004 | 0.164 ± 0.002 | 0.152 ± 0.002 | 0.144 ± 0.005 | 0.141 ± 0.007 |
Thermal conductivity, W·m−1·K−1 | 0.330 ± 0.02 | 0.298 ± 0.01 | 0.300 ± 0.03 | 0.293 ± 0.01 | 0.294 ± 0.01 | 0.3 ± 0.01 |
Heat capacity, J/(g·K) | 0.641 ± 0.02 | 0.602 ± 0.02 | 0.631 ± 0.02 | 0.666 ± 0.02 | 6.706 ± 0.02 | 0.73 ± 0.02 |
Sample density, g/cm3 | 2.9 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A.; Muratov, D.; Zadorozhnyy, M.; Stepashkin, A.; Bazlov, A.; Korol, A.; Sergiienko, R.; Tcherdyntsev, V.; Zadorozhnyy, V. Investigation of Thermal Properties of Zr-Based Metallic Glass–Polymer Composite with the Addition of Silane. Polymers 2022, 14, 3548. https://doi.org/10.3390/polym14173548
Sharma A, Muratov D, Zadorozhnyy M, Stepashkin A, Bazlov A, Korol A, Sergiienko R, Tcherdyntsev V, Zadorozhnyy V. Investigation of Thermal Properties of Zr-Based Metallic Glass–Polymer Composite with the Addition of Silane. Polymers. 2022; 14(17):3548. https://doi.org/10.3390/polym14173548
Chicago/Turabian StyleSharma, Adit, Dmitry Muratov, Mikhail Zadorozhnyy, Andrey Stepashkin, Andrey Bazlov, Artem Korol, Ruslan Sergiienko, Victor Tcherdyntsev, and Vladislav Zadorozhnyy. 2022. "Investigation of Thermal Properties of Zr-Based Metallic Glass–Polymer Composite with the Addition of Silane" Polymers 14, no. 17: 3548. https://doi.org/10.3390/polym14173548
APA StyleSharma, A., Muratov, D., Zadorozhnyy, M., Stepashkin, A., Bazlov, A., Korol, A., Sergiienko, R., Tcherdyntsev, V., & Zadorozhnyy, V. (2022). Investigation of Thermal Properties of Zr-Based Metallic Glass–Polymer Composite with the Addition of Silane. Polymers, 14(17), 3548. https://doi.org/10.3390/polym14173548