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Abstract: Automatic in-line process quality control plays a crucial role to enhance production effi-
ciency in the injection molding industry. Industry 4.0 is leading the productivity and efficiency of
companies to minimize scrap rates and strive for zero-defect production, especially in the injection
molding industry. In this study, a fully automated closed-loop injection molding (IM) setup with a
communication platform via OPC UA was built in compliance with Industry 4.0. The setup included
fully automated inline measurements, in-line data analysis, and an AI control system to set the new
machine parameters via the OPC UA communication protocol. The surface quality of the injection
molded parts was rated using the ResNet-18 convolutional neural network, which was trained on
data gathered by a heuristic approach. Further, eight different machine learning models for predicting
the part quality (weight, surface quality, and dimensional properties) and for predicting sensor data
were trained using data from a variety of production information sources, including in-mold sensors,
injection molding machine (IMM) sensors, ambient sensors, and inline product quality measure-
ments. These models are the backbone of the AI control system, which is a heuristic model predictive
control (MPC) method. This method was applied to find new sets of machine parameters during
production to control the specified part quality feature. The control system and predictive models
were successfully tested for two groups of quality features: Geometry control and surface quality
control. Control parameters were limited to injection speed and holding pressure. Moreover, the
geometry control was repeated with mold temperature as an additional control parameter.

Keywords: injection molding of plastics; closed-loop quality control; in-line quality control; AI
quality control; predictive control; deep neural network; deep residual learning; surface quality
prediction; dimensional features prediction; weight prediction

1. Introduction

The plastics industry is an increasingly demanded market which is known as the third
largest manufacturing industry worldwide with a prospective market of 750.1 billion U.S.
dollars in 2028 [1]. Most of the products are combined with plastic parts, in which the
injection molding manufacturing process contributes approximately 80% of this production
in the modern plastics industry [2]. Thus, efficient production in such a big industry is
inevitable [3].

Digitized production will dramatically change the value chain of most industrial
producers. In Europe, this goal is referred to as Industry 4.0, while in the USA it is focused
on by the Industrial Internet Consortium (IIC), in Asia by the Industrial Value-Chain
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Initiative (IVI), and in China by the initiative “Made in China 2025” [4]. There is an
increasing demand for inline and real-time control of the quality of injection molded parts.
These requisitions are defining the term ‘injection mold as a cyber-physical system’ in the
literature on injection molding technology. This subject designates the requirements for the
inline quality feature measurements, machine learning for quality feature prediction, and
smart adaptive control of the injection molding process. [5–7].

Plastic injection molding (PIM) is a non-linear and very complex process with very
dependent process parameters characterizing the quality of the produced parts [8]. Material
selection, part geometry, mold design, and process parameters are recognized as the
effective parameters for the final quality of the part.

1.1. Process Parameters

The quality of the plastic molded part depends on the process parameters in addition
to the part design [9]. The subject of which parameters affect the PIM process significantly
is the first question to be answered. The significance of process parameters’ effects depends
on the expecting quality features. Therefore, a common way is to study the significance of
the process parameters by screening before starting a design of experiment (DOE) [10–12].
Some researchers select a wide range of process parameters and sensors initially, then,
exclude the least significant variables to reduce the number of required experiments [13].

Dimensional properties of the part and the affecting parameters have been one of
the most important quality features in PIM [14–17]. Ferreira Alves [18] and Kapadia [19]
provided a comprehensive study on shrinkage and warpage behavior. The history of the
most important parameters affecting the shrinkage of the part (or dimensional properties)
was studied by Annicchiarico and Alcock [20]. They investigated material properties,
processing parameters, and design effects on the shrinkage of the part and concluded the
process parameters as the main resource for affecting the shrinkage. The most important
process parameters were recognized to be holding pressure, mold temperature, and melt
temperature [20]. Recently, many researchers studied shrinkage and warpage of plastic
molded parts [19,21–26]. In addition, Nurul Hidayah Mohamad Huzaim et al. provide a
review on rapid tooling for heat cycle molding [27], while Tim Evens et al. [28] studied the
replication of microneedles, in other words, micro-molding. Both technologies can signif-
icantly alter the specific effects of injection molding process parameters on dimensional
stability. However, in our study, we analyzed a macroscopic part and used conventional
mold temperature control.

Selvaraj et al. [29] extracted a list of defects-causes-preventions from the works of
literature showing the significant variables over each defect. Among the list, sink marks,
weld lines, and flow lines are the relevant defects to this paper. The significant process
variables on these defects were reported by Selvaraj et al. as holding pressure, injection
speed, and mold temperature.

We consider the weight of the part as a pertinent variable to both other quality features
(dimensional properties and surface quality). Therefore, holding pressure time is also
considered as affecting the process parameter on the weight of the part.

1.2. Process Sensors

The mold as the heart of the injection molding process and part quality provides the
most important information about the process. The type and position of the sensors to
monitor the process are important topics to be studied. Researchers use in-mold sensors
universally [13,30,31]. Florian [32], Ageyeva et al. [33], and Zhao et al. [2] provided com-
prehensive reviews of the in-mold sensors for injection molding. The multivariable sensor
(MVS) is a prevalent sensor in injection molding research. We exerted three MVS sensors in
our mold (described in Section 3.3.3) to monitor the behavior of melt during the injection.

Chang et al. [34] propose a real-time online monitoring method to predict the weight
of injection molded products made of recycled materials. We used some features of
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the clamping force since tie-bars elongation is measured as the clamping force by our
experiment injection molding machine.

1.3. Application of Artificial Intelligence (AI) in PIM

The application of artificial neural networks (ANN) in the injection molding of plastics
has been undertaken by many researchers since 1995 [35–37]. S. L. Mok et al. reviewed the
studies on the process parameters optimization approaches till 1998 [36].

Where support vector machines have been rarely used [38], types of ANNs have been
employed widely for the prediction of quality features such as warpage [39], weight [40],
shrinkage [41], or cycle time minimization [42].

Ogorodnyk et al. [43] investigated ANN methods and decision trees versus the number
of input features. Gim and Rhee [44] employed MLP neural network to predict the weight
based on the given features extracted from cavity pressure for part weight optimization.
Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) were
employed by Nagorny et al. [31] recently. They applied the CNN on thermographic
images for part dimension (width) prediction. Despite very few amount of samples (only
177 samples for training and 27 samples for testing), the CNN worked with an accuracy of
87 percent. Guo et al. [45] trained ANN with a reinforcement learning (RL) decision system
to optimize the dimensions of an ultrahigh-precision lens product.

We listed the previous modeling and optimization approaches in another study to
be support vector machine (SVM), least-square support vector machine (LSSVM), genetic
neural fuzzy system (GNFS), fuzzy neural network (FNN), back propagation neural net-
work (BPNN), a combination of genetic algorithms and neural network (GA-NN), deep
restricted Boltzmann machine (DRBM), Feedforward neural network (FFNN), MLP, PSO-
based BPNN, FFBPNN, hybrid neural network (HNN), Decision trees, CNN, radial basis
function (RBF), RL, and Forgetting Factor Recursive Least Square Algorithm (FF-RLS) [4].

Given a review, we conclude that multiple AI solutions may provide an acceptable
accuracy of predictions. The application of the AI method type not only depends on the
accuracy of the predictions but also on the number of required samples and the time of
calculations. Generalizability, transferability, and reversibility of the predicting models are
the other important challenges nowadays in this field.

We investigated the applicability of the central composite design, simple regressions,
and AI models for plastic injection molding in simulations during a prior study [4] resulting
that the ANNs were superior in weight and dimensional properties predictions.

1.4. Non-Iterative Optimization Methods

Dang [46] classified the optimization methods into two groups of Meta model-based
(for AI methods) and direct discrete methods (for regression), whereas, Zhao et al. [2]
categorize the optimization methods into iterative and non-iterative methods. Design of
experiment (DOE) as a non-iterative method is used traditionally in research and industry
for finding an optimal injection molding process setting in an efficient non-iterative way.
In injection molding of plastics, it takes 10 to 50 shots to a stable point of production
based on the changes in the machine parameters, and it makes numerous experiments
unaffordable [11]. A DOE method is selected based on the complexity of the problem and
the affordable amount of experimental production.

The Taguchi method has been used widely by researchers [40,41,47–49]. Taguchi’s
designs are highly fractionated which makes them very attractive to experimenters [50].
Some researchers use the Taguchi method initially for screening the process variables
because of a lower number of experiments [51,52].

Provided that Taguchi is useful to compromise on the number of experiments finding
the optimal parameter, the response surface method (RSM) involves more experimentation
to get closer to the global optimum. There are two popular classes of RSM designs: central
composite design (CCD) and Box-Behnken design (BBD). CCD studies five levels for
each experimental variable, which contain two-level factorial or full factorial designs, an
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additional two axial (star) points for each variable, and a replicated center point [10,50].
Therefore, we have employed a CCD, type inscribed (CCI), in this paper.

1.5. Iterative Optimization Methods

Numerous researchers applied iterative optimization methods to find the optimal
point of production variables, on which Zhao et al. [2] gave a review. Few of them tried to
develop an adaptive online process control strategy. The adaptive control methodologies
were conventionally adaptive PID [53] to fuzzy-PID [54,55] and Gray fuzzy PI [56].

Chen and Tung [37] reviewed the history of modeling and closed-loop techniques in
2005. Ogorodnyk [43] provided a general review of the closed-loop control process and
AI application for plastic injection molding (PIM) in 2018. Selvaraj et al. [29] presented a
comprehensive review of AI applications in PIM recently. We listed the in-line iterative
methods for PIM [4] to be Genetic Algorithm (GA), Particle Swarm Optimization (PSO), In-
vasive Weed Optimization (IWO), Fuzzy Logic, Reverse Neural Network, Model Predictive
Control (MPC), and Sequential Approximation Optimization (SAO), and Dynamic Ma-
trix Control (DMC). However, few researchers tried to implement a real-time closed-loop
quality control for plastic injection molded parts [55,57,58].

Among all, there are attempts such as Johnston et al. [13] and Hopmann et al. [59] using
innovative methods, combining iterative methods with AI models. As a recent example,
Tsai et al. [51] developed an adaptive online control system to maintain the consistency of
the weight as the quality feature employing BPNNs for prediction.

In this research, we develop a heuristic model predictive control algorithm (MPC) to
predict a new set of machine parameters for the desired quality feature in a real-time and
in-line way.

1.6. OPC UA and Industry 4.0

The key technologies of Industry 4.0, e.g., the Internet of Things, IPv6 and OPC UA,
cloud services, big data and artificial intelligence, virtual technologies, and intelligent
sensors and actuators are intended to enable manufacturers to remain competitive in the
global economy [4]. In November 2016, the Industry 4.0 Platform published a checklist
for classifying and advertising products as Industry 4.0 “Basic,” “Ready,” or “Full”. To
comply with the “Industry 4.0 communication” criterion, even the lowest category requires
the product to be addressable over the network via TCP/UDP or IP and to integrate at
least the OPC UA information model [60]. EUROMAP 77 describes the interface between
injection molding machines (IMM) and manufacturing execution systems (MES) for data
exchange [61]. While OPC UA provides the technology for the transfer of information,
EUROMAP 83 defines the definition of which information is transferred and in which
form [62].

Therefore, the application of OPC UA platform as an important part of Industry 4.0
was inevitable in our research. We employed three network architectures of the OPC UA
platform for three purposes-communication between IMM and stations, sampling the data
from IMM and peripherals, and manipulating the closed-loop control. The details of the
OPC UA networks are described in Section 2.2.

1.7. Research Objective

Our vision is to improve the performance of industrial manufacturing processes
for plastics products in terms of product quality as well as process flexibility, efficiency,
reliability, and performance through comprehensive process analysis, modeling, control,
and digitization. We consider an intelligent injection molding tool to be an indispensable
building block in this process: By continuously monitoring the process history in the mold
cavity, injection molding machine, and ambient conditions, disturbances can be recognized
in an early stage.

The process is modeled using artificial intelligence (AI) for individual quality factors
during a training phase. The AI knows the relationships between process parameters,
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sensor signals, and molded part quality, and uses this knowledge to promptly recognize,
evaluate and react adaptively to disturbances combined with a model predictive control
(MPC) algorithm to minimize scrap and defective injection molded parts.

2. Materials and Methods
2.1. Plastics Injection Molding Process

Injection molding of plastics is a cyclic process for manufacturing plastic components.
There are different types of injection molding processes, however, this process generally
includes plasticization (metering), injection (filling), packing (holding), cooling, and ejecting
(demolding). The polymer melts from solid granules through the combination of heat
conduction from the heated barrel and heat caused by molecular deformation with the
rotation of the screw (shear heating). By closing the mold (clamping), the polymer melt
is forced from the barrel (cylinder) into the mold cavity(s) during the injection stage. The
molten resin travels through the gate(s), and throughout one or more mold cavities where
it will form the desired product(s) shape in the mold. Due to the heat conduction between
the mold walls and the melt, the melt temperature decreases, and solidification progresses.
Afterward, the cooling stage provides additional time for the resin in the cavity to solidify
and become sufficiently rigid for ejection. Finally, the molding machine actuates the
necessary cores, slides, and pins to open the mold and eject the molded part(s) [63,64].

2.2. OPC UA Communication Platform

Each peripheral device or measurement device comprises an OPC UA server to
provide its information and data for the clients. The communication platform is developed
based on three main OPC UA clients.

First, A BECKHOFF® IPC model CP6600 (BECKHOFF Automation GmbH, Buers,
Germany) is programmed for controlling the axes of the cylindrical measurement system
and communications with the other peripheral devices. This IPC is the center of the au-
tomation process and communicates with the DAQ center, measurement devices, injection
molding machine, and robot. An OPC UA server on this IPC provides the required data
(about dimensional measurement status, camera capturing status, and cylindrical moving
system status) for communication with the DAQ center (computer). Simultaneously, an
OPC UA client on this IPC checks the status of the DAQ center programs and manages the
measurements in full compliance with the software on the DAQ center for storing the data.
Additionally, this IPC communicates with the robot through digital I/Os (input/output) to
guarantee the robot’s safe movements. The OPC UA client on this IPC reads out the status
of the injection molding machine, the position of the clamping unit and ejector pins, and
the maximum stroke, and manages the permissibility of robot entrance and movements in
the machine and mold area. This platform is illustrated in Figure 1.
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Second, the OPC UA client on the DAQ center is responsible for the acquisition of the
injection molding machine data and its peripherals, see Figure 2. The program of this OPC
UA client was provided by WITTMANN BATTENFELD GmbH (Kottingbrunn, Austria).
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Third, the controller synchronizes and applies the outputs of the control process
over the OPC UA platform. The DAQ center analyses the sensors and measurements
data after each cycle of production. The results of the analyses are uploaded onto the
ownCloud, afterward. The controller OPC UA client detects the availability of the data on
the ownCloud and after processing the data, the control process takes place. The new set of
machine parameters (controlling parameters) is written via controller OPC UA client to the
injection molding machine OPC UA server, in case of requirement. The diagram is shown
in Figure 3. The entire process of measurement, data analysis, data processing, and control
decision-making takes place within one production cycle.
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2.3. Quality Feedback

In our research, in addition to the weight, dimensional properties, and surface quality
are considered to be the crucial quality features for in-line quality control.

2.3.1. Weight

A Sartorius scale model Sartorius MSA 2203S-100-DR (Sartorius Lab Instruments
GmbH & Co. KG, Goettingen, Germany) measures the weight of the parts with an accuracy
of 0.001 g (see Figure 4). A software written in LABVIEW (scale software) communicates
with the scale over the RS232 serial protocol. Scale software manages the measurement
process and communications with the robot for placing and picking the part. A fixture is
positioned on the scale to guarantee a repeatable position for the part during the robot
entry. Since the scale is very sensitive to air movements in the measurement room, the scale
software manages the stability of the scale, before and after part placement.
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2.3.2. Dimensional Properties

A special three-dimensional cylindrical measurement system was built to measure
the dimensional properties of the molded part (illustrated in Figure 4) with ±0.005 mm
precision. Details of this measurement system were published in our paper [5] recently.
Due to in-line and real-time measurements (a complete measurement should be finished
within a production cycle), only the lengths of three linear and three rotary profiles of the
molded part were measured (see Figure 5). Later, the controller makes an average of each
three-line group for simplicity of the control process.
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2.3.3. Surface Inspection

For the aspect of surface inspection, extensive experiences could be drawn upon. In
several previous research projects, inspection methods for complex 3D components were
developed at the Polymer Component Center Leoben GmbH (PCCL) [65–67]. These include
methods that can cope with very difficult reflective or highly reflective surfaces [68–70].

In our research, a monochrome vision camera (AVT Mako U-130B) was installed at
an angle of about 45◦ to the horizon looking to the center of rotations. An LED-bar light
source with a length of 20 cm illuminated the center of the part under the camera (shown
in Figure 4). The camera recorded 250~300 images during both rotations for a complete
surface scan of the part.

The captured pictures from the surface of the part were analyzed and quantified
for three groups of surface defects: flow line thickness, streaks, and sink marks. For
this purpose, an offline model-based supervised learning method was developed using
the produced samples from the preliminary experiments [71]. The levels of the holding
pressure were defined as the numeric classes (labels) and a multi-class classifier based on
ResNet-18 [72] was trained. To transform the pressure-level classification result of a model
into continuous numerical results, the following equation was applied:

QS = (CP − min(CP))/(max(CP)− min(CP)), (1)

where QS is the surface quality value defined between 0 and 1, and CP is the class of the
pressure level. It’s defined so that a higher value of QS indicates good quality and a lower
value means a surface quality containing large effects of flow lines, streaks, and sink marks.

2.4. Process Automation

A KUKA robot (KUKA CEE GmbH, Steyregg, Austria) was programmed to handle
the part between the measurement stations. After taking the part from the open injection
mold, the part was tested initially for a possible rotation during ejection using a fork sensor,
then placed on the scale for weight measurement. Afterward, the robot handles the part to
the cylindrical measurement system for dimensional measurements and surface inspection.
The sequence diagram is shown in Figure 6 and the procedure is illustrated in Figure 7.
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Since the time consistency of the production is important, the part manipulations and
measurements should be accomplished during one cycle of injection molding production.
The table of robot station actions and parallel movements is given in Table 1 (also see
Figure 6).
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Table 1. The time duration for each automation station and parallel tasks.

Action Duration Unit Parallel Actions

Dimensional measurement 44 Second Robot handling and weight measurement

Camera scan 9 Second Robot handling and weight measurement

Weight measurement 8 Second Robot handling

Robot handling 42 Second Measurements and part production

Production of the part 76~95 Second A complete measurement process

2.5. AI Models

The process was modeled for two groups of outputs. The first group is the quality
features including surface quality, weight, and dimensional properties, which consist of the
length of 6 profiles of the part. The second group is the sensor data including the digital
sensor data and analog sensor data.

Therefore, two groups of models were trained. The first group includes five regression
ANNs consisting of four hidden linear layers, where the first three layers were activated
with a ReLU function. The input layers of ANNs were considered as five machine parame-
ters based on the preliminary experiment (5 inputs), the time difference from the start of
production on the same day of the experiment to each sample production (one input), and
ambient sensors data (19 inputs). The predicted outputs of each neural network were:

1. Surface quality (single output),
2. Weight (single output),
3. Profile lengths on the part (six outputs),
4. Analog sensor data (163 outputs),
5. Digital sensor data (136 outputs).

The errors of the outputs were calculated by the mean squared error, and the networks
were trained using the Adam optimization algorithm. The second group of models was
developed based on random forest regression models. Random Forest is a classification and
regression algorithm based on the creation of multiple Decision Trees [73]. The inputs for
the second group of the models were analog sensor data (163 inputs), the time difference
from the start of production on the same day of the experiment to each sample (one input),
and the ambient sensors data (19 inputs). Predicted outputs were:

1. Surface quality
2. Weight
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3. Six lines’ lengths

2.6. Model Predictive Controller (MPC)

The system in the injection molding process is a combination of an injection molding
machine (IMM), material, and mold. The quality of the production is evaluated through
measurements, or predictions based on the sensor data acquired during the production
(Figure 8).

We trained the AI models on the quality features using a preliminary experiment data
set and the measurement systems were applied in parallel to investigate the coherence
between the predictions and actual measurements. The block diagram of the control system
is illustrated in Figure 9. An algorithm decides on a new machine parameters calculations
based on the quality error, the difference between the predicted and actual quality values,
and the cycle counter. The block diagram of this process is shown in Figure 10.
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The control system was built based on the AI models. To simplify the controlling
process for the dimensional control problem, the profile lengths were averaged into two
groups linear line dimension and rotary line dimension, i.e., the bow length. The designed
controller is capable of controlling each of the quality features, “surface quality”, “line
dimension”, and “weight”.

2.6.1. Controller Algorithm

A short summary of some of the computational methods is described in our other
report [71]. The surface quality, weight, and dimensions of the part are denoted by Q1, Q2,
and Q3. as the outputs of the first group of neural network models which were described
in Section 2.5. These networks were used to perform a grid-search sub-routine of the
controller, described in Algorithm 1.

2.6.2. Extending Grid Search

Since model inference was very fast (depending on the discretization step size), a full
enumeration of all possible vectors of the machine parameters was possible. However,
specifying certain combinations of the machine parameters reduces the grid search time
significantly in cases where the search space is very large. Additionally, some machine
parameters (like melt temperature) are known as the slow-changing parameters which
require larger n shots between the controller actions to observe the controlling effect
significantly in the output quality. Therefore, the controlling parameters were limited to
injection speed and holding pressure (and mold temperature in one experiment) in the
experiments of this research.

Algorithm 1: Grid search

INPUT: The current machine parameters M, the current machine run time r, the vector E for
ambient sensor data, allowed machine parameters ranges, and a preference function f which rates
the desirability of a prediction goal and new machine parameters.
OUTPUT: New machine settings M’best
FOR each machine parameters vector M’ so that each element is within the defined range DO
| Compute the predicted surface quality s = Q1(M’, r, E)
| Compute the predicted weight w = Q2(M’, r, E)
| Compute the predicted dimensions d = Q3(M’, r, E)
| IF the current loop iteration is the first or if f(s, w, d, M’, M) > f(sbest, wbest, | dbest,
M’best, M) THEN
| | Set M’best = M’.
| | Set sbest = s.
| | Set wbest = w.
|_ |_ Set dbest = d.
return M’best

2.6.3. Controller Confidence Scaling

We denote the neural network regressions by S1 and S2 for predictions of analog and
digital sensor data, respectively, with the same input data as the models Q1, Q2, and Q3.
Then, the confidence of the machine parameters prediction could be defined based on the
accuracy of S1 and S2 (analog and digital sensor data) predictions. The result could be
applied as a proportional delta value to scale the controller’s suggested machine parameters.
The MPC controller is described in Algorithm 2.
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Algorithm 2: Controller

INPUT: Quality threshold for the quality goal (surface quality, weight, or dimensions), integer n
for the minimum shot distance between the controller actions, and the reference function f as
described in Algorithm 1.
OUTPUT: No output, the algorithm runs perpetually.
WHILE forever DO
| Part Production
| |_ A new part is produced
| Quality Measurement
| | The surface quality smeasured is inspected using CNN.
| | The weight wmeasured is measured using the scale.
| |_ The dimensions dmeasured are measured using the cylindrical dimension
| measurement system.
| Quality Prediction
| | Let M be the vector of current machine parameters, r the running time of
| | the machine, E the vector of current ambient sensor data, and A the vector
| | of current analog sensor data.
| | The surface quality spred is predicted by R1(M, r, E, A).
| | The weight wpred is predicted by R2(M, r, E, A).
| |_ The dimensions dpred are predicted by R3(M, r, E, A).
| Quality Control
| | IF the measured quality value is outside of the given threshold THEN
| | | IF there has been a machine parameters update within the last n shots THEN
| | | |_ Terminate this loop
| | |IF the measured quality deviates strongly from the predicted quality THEN
| | | |_ Warn the user: an external factor might influence the part quality.
| | |_Use Algorithm 1 to calculate the new machine parameters based on M,
| | r, E, and f.
|_ |_ |_Set the new machine parameters.

3. Experimental Setup
3.1. Experiment Devices and Material

Standard white ABS material (acrylonitrile butadiene styrene) Novodur HH-112 from
INEOS Styrolution is selected as a popular material in the injection molding industry.
Masterbatch Renol-black CAV 80036 from Clariant Masterbatches GmbH was added by
DOSIMAX color dosing unit with a ratio of 4% of the metering material into the hopper end.
An EcoPower 110 injection molding machine with a screw size of 35 mm from WITTMANN
BATTENFELD GmbH was used to process the material. The mold temperature was
controlled by a combination of two TEMPRO plus D180 and D90 for fast and wide-ranging
mold temperature control (between 80 and 110 degrees Celsius). A KUKA robot KR 5 arc
was programmed for handling the molded part between the injection molding machine
and stations. The setup is illustrated in Figure 11.

3.2. Case Study

The part is a highly reflective and partially cylindrical-shaped sample with the cavity
dimensions of L = 120.2 mm, outer radius r = 123 mm, curve (bow) length C = 125.36 mm,
and arc angle α = 58.39 ◦, as illustrated in Figure 12. The post-molded volumetric shrinkage
ratio for ABS (Acrylonitrile Butadiene Styrene) is expected to be 0.4 to 0.7%. The aggregation
of black color, very low surface roughness, and cylindrical shape cause the problem as the
hard example for surface inspection and surface quality control.

3.3. Process Sensors
3.3.1. Digital Sensor Data

The data from the injection molding machine, DRYMAX dryer, and TEMPRO plus
devices were sampled over the OPC UA network platform. The injection molding machine,
DRYMAX dryer, and TEMPRO plus D devices have each an OPC UA server inside which
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provides the information of the internal sensor and variables to be read or written. A
program named DataRetriever provided by WITTMANN BATTENFELD reads the data
from the OPC UA servers with a sampling rate of 60 Hz for every cycle of production.
These data are called digital sensor data.
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A python code extracted a set of 136 features from the digital sensor data. Each
extracted feature is a single value that represents a characteristic property of the process.
These features were, for instance, maximum, average, integral, difference, time of action,
length of action, and time difference properties.
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3.3.2. Analog Sensor Data (Machine)

Since a persistent sampling rate of the OPC UA data was limited to 60 Hz, a set of
important machine signals such as screw pressure (i.e., pressure in the screw antechamber),
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screw position, clamping force, and digital signals of the machine process phases were
measured using an HBM MX 840B 840B (Hottinger Brüel & Kjaer Austria GmbH, Vienna,
Austria) for data acquisition and CATMAN software 840B (version 5.2.1, Hottinger Brüel &
Kjaer Austria GmbH, Vienna, Austria) for storing the data with a sampling rate of 600 Hz.

3.3.3. Analog Sensor Data (Mold)

Four sensors are installed in the moving side of the mold to monitor the cavity pressure
and polymer temperature during the injection, as shown in Figure 13. Three of the sensors
were typed on an MTPS 408-IR-BTS-XSR from FOS Messtechnik GmbH (Schacht-Audorf,
Germany) and the fourth sensor is a Kistler pressure sensor. MX840B and MX1601 DAQ
systems (from HBM) were used for sampling the mold sensor data with a sampling rate of
600 Hz and CATMAN software was used for storing the data.
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pressure sensor is marked in blue, (a) marked positions on the part, (b) marked positions on the
moving side of the mold.

3.3.4. Ambient Sensors

Three special ambient sensor packages were built based on the ESP8266 module
(Figure 14). Three sensors (BME280, MLX90614, HYT 271) were installed in the ambient
sensor package to ensure the safety of the data and the precision of the measurements. Three
sensor packages were installed in three zones: room, above mold area, and part quality
measurement area. These sensors sample the temperature and relative humidity every 30 s
and upload the measurement data every ten minutes onto an ownCloud (developed by
Information Center of Montanuniversitaet Leoben, Leoben, Austria).

3.4. Design of Experiment (DOE)

A central composite inscribed (CCI) [50] type of CCD was selected to plan the experi-
ments. The levels of the experimental points are shown in Table 2. The combinations of
melt temperature, i.e., the set nozzle temperature, and mold temperature, i.e., the set TCU
output temperature, were blocked separately since changes in the melt temperature and
mold temperature take a long time to reach stability. Therefore, 56 experiments were carried
out randomly. To approximate a stable process, a minimum of 40 samples were produced
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within each experiment. The last 10 shots were used to feed the statistical analysis of the
designed DOE, however, all the shots (about 2500 samples) were used for training the AI
models to capture the trend of changes in the quality features.
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Table 2. Factor levels in designing the CCI experiments.

Factor Unit −1 −0.42 0 +0.42 +1

Melt temperature ◦C 240 246 250 254 260

Holding pressure bar 300 358 400 442 500

Time of holding pressure s 14 18 22 26 30

Mold temperature ◦C 84 90 94 98 104

Injection speed mm/s 15 22 27 32 39

3.5. Experiments for Controlling Strategies

The controller was tested with three different controlling strategies. The surface quality
was controlled using the injection speed and holding pressure as the controlling parameters.
The linear dimension (average of the linear dimensions) was controlled with two different
strategies. The first strategy included only injection speed and holding pressure for the
controlling parameters. The second strategy included the mold temperature in addition to
the first strategy’s controlling parameters.

4. Results and Discussion
4.1. DOE Results and Factors Correlations

Figure 15 shows the main effect diagrams for weight, surface quality, and Line 4 (as a
sample of the line lengths) with the influence of the five investigated experimental factors.
The machine parameters, mold temperature, melt temperature, holding pressure, and
injection speed, have a significant effect on the quality features.



Polymers 2022, 14, 3551 16 of 24

Polymers 2022, 14, x FOR PEER REVIEW 16 of 24 
 

 

were built using the DOE factors and sensors data. The R2 result for Line4 was 98.63% and 

for weight was 99.26%. The accuracy of the model is not being better for surface quality 

and the R2 remains at about 70%. Models were validated using the K-fold cross-validation 

method with K = 10. 

The precision of the dimensional measurement system was assessed as ±0.010 µm in 

a previous study [5] and the length of the lines could be predicted with considerable ac-

curacy by regression models. 

 

Figure 15. Main effect diagrams from the analysis of the CCI experimental design. 

The main effects agree well with the state of the art when considering a dominant 

impact of the pin gates and their sealing: Higher mold temperature, higher melt temper-

ature and higher injection speed (via increased shear heating) keep the pin gate longer 

open to melt flow, thus the holding pressure can be more effective and overwhelms the 

greater shrinkage potential with lower cooling of the polymer melt, in other words, more 

polymer is pumped into the cavity with rising mold temperature, melt temperature, and 

injection speed, making the parts heavier and larger. The minimum holding pressure time 

of 14 s was chosen to guarantee that the gate is sealed in all experiments within the DOE, 

thus, as expected, holding pressure time showed no significant influence on dimensions 

and weight. As predicted in our former simulation study [4], the process parameters prove 

non-linear influences on the quality outputs. The surface (appearance) quality comprises 

Figure 15. Main effect diagrams from the analysis of the CCI experimental design.

The R2 results of the regression model (using only the DOE factors) for weight were
98.08% and for Line 4 were 97.73% including the block effect in the models, however, the
R2 value for surface quality response stayed below 70%. A new set of regression models
were built using the DOE factors and sensors data. The R2 result for Line4 was 98.63% and
for weight was 99.26%. The accuracy of the model is not being better for surface quality
and the R2 remains at about 70%. Models were validated using the K-fold cross-validation
method with K = 10.

The precision of the dimensional measurement system was assessed as ±0.010 µm
in a previous study [5] and the length of the lines could be predicted with considerable
accuracy by regression models.

The main effects agree well with the state of the art when considering a dominant im-
pact of the pin gates and their sealing: Higher mold temperature, higher melt temperature
and higher injection speed (via increased shear heating) keep the pin gate longer open to
melt flow, thus the holding pressure can be more effective and overwhelms the greater
shrinkage potential with lower cooling of the polymer melt, in other words, more polymer
is pumped into the cavity with rising mold temperature, melt temperature, and injection
speed, making the parts heavier and larger. The minimum holding pressure time of 14 s
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was chosen to guarantee that the gate is sealed in all experiments within the DOE, thus, as
expected, holding pressure time showed no significant influence on dimensions and weight.
As predicted in our former simulation study [4], the process parameters prove non-linear
influences on the quality outputs. The surface (appearance) quality comprises sink marks,
weld-lines, and streaks. Sink marks are shrinkage-dominated surface defects, thus the same
dependencies as for dimensions and weight count. Higher contact temperature, higher
compression, and lower time for the formation of the frozen layer reduce the strength of
weld lines and flow lines, thus rising mold and melt temperatures, and injection speed re-
duce the visibility of the weld lines at the surface. Allegedly, the replication of (unplanned)
micro-scratches in the mirror-finished mold surface by the ABS polymer grows with high
mold and melt temperatures, making the part surface rougher, the surface gloss lower and
the surface (appearance) quality again worse. A phenomenon that has been reported, for
instance in [74,75].

4.2. In-Line Closed-Loop Control Results

During each controlling strategy, the machine parameters were changed manually to
make disturbances for the controller and investigate the behavior of the controller. These
changes were applied to the injection speed and/or holding pressure at some points, and
to the mold temperature and melt temperature at some other points.

4.2.1. Surface Quality Control

The result of the surface quality control is shown in Figure 16. The controller was
limited to a distance of three shots between the controlling actions. Additionally, it takes
between one to two cycles till the controller can observe the effect of changes on the machine
parameters (depending on the time of changes).
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The experiment for this control strategy was carried out at three different melt and
mold temperatures, respectively 250, 245, and 255 ◦C melt temperatures and 94, 90, and
98 ◦C mold temperatures (shown in blue, red, and green in Figure 16). The goal of
the controller was to achieve a surface quality value of 0.6 and higher. The injection
speed and/or holding pressure were changed respectively to 15 mm/s and 300 bar at the
orange triangle-marked shots. The direction of the changes was to decrease the surface
quality value.
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The result shows that the controller was able to detect the interference after a maximum
of two cycles. The controller calculated and applied the new set of machine parameters
(injection speed and holding pressure in this control strategy) as soon as it observed the
quality reduction. It took a maximum of three cycles for the controller to observe the results
of the controlling actions (because one part is under production, one part is on the scale for
weight measurement and one part is under the dimensional measurement).

The controller optimized the surface quality for melt temperatures of 250 and 255 ◦C
(along with mold temperatures of 96 and 98 ◦C) continuously without failure. However,
the controller underestimated the necessary controlling action at the melt temperature of
245 ◦C (along with the mold temperature of 90 ◦C). This could be addressed by correlations
between the surface quality, melt, and mold temperatures.

4.2.2. Linear Dimension Control, Strategy 1

The result for linear dimension control is given in Figure 17. The controlling goal was
a linear dimension of 120 ± 0.025 mm. The tolerance is shown with red dashed lines. The
controller was limited to a distance of three cycles between the controlling action. The melt
temperature and mold temperature were set to 94 ◦C and 250 ◦C respectively.
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Orange triangles are cycles with manual interference in the process. Arrows show the directions of
the change effect.

The manual interference at points 1, 4, and 5 was a decrement of the injection speed
and holding pressure respectively to 15 mm/s and 300 bar, and was an increment of the
same parameters to 30 mm/s and 450 bar at point 3. The melt temperature and mold
temperature were increased respectively to 98 ◦C and 255 ◦C at point 2. The dimension
of the molded part was increasing cycle by cycle with constant machine parameters. The
process control was successful for linear dimension control. However, it seemed that more
than three cycles’ distance between the controlling actions is required.

4.2.3. Linear Dimension Control, Strategy 2

The controller was tested with the second strategy and the results are shown in
Figure 18. Since the mold temperature is a slow variable in the injection molding process,
the distance between the controlling actions was changed to ten cycles instead of three.
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the change effect.

The manual interference parameters were respectively incensement of injection speed
and holding pressure to 15 mm/s and 300 bar at points 1, 4, 5, and additionally decrement
of the mold temperature to 90 ◦C at point 4. The injection speed was decreased to 15 mm/s
individually at point 3, and injection speed and holding pressure were respectively in-
creased to 30 mm/s and 450 bar at point 2. The controller was disabled for 9 cycles after
point 4 to reset the stable conditions of the controller to initial conditions, and especially
observe the first new set point for mold temperature after enabling the controller. At
point 6, the melt temperature was increased to 255 ◦C but the other machine parameters
remained unchanged. The controller could successfully predict the appropriate machine
parameters (injection speed, holding pressure, and mold temperature) to set the linear
dimension within the set tolerance.

4.2.4. Weight Control

Despite that the controller was not tested for weight control, the results of correlations
between the weight and other controlling strategies are provided here to illustrate that
weight is a more stable and controllable parameter in the injection molding process.

The surface quality and weight are illustrated in Figure 19. As shown, the weight
(colored in red) follows the general trend of the changes, since the changing parameters are
injection speed, holding pressure, melt temperature, and mold temperature which affect the
surface quality and weight in a similar way, see Figure 15. The fluctuations of the weight
over the shots are less than for the surface quality.

To compare the fluctuations, we define signal-to-noise ratio (SNR) as shown in
Equation (2). Signal-to-noise ratio for the weight in Figure 18 is between 27 to 51 and
for the surface quality is between 1.3 to 1.75.

The correlations between linear dimension and weight are shown in Figure 20 for the
same experiment of the surface quality control. The SNR value for the linear dimensions is
between 4 to 9. The same correlation is given for linear dimension control (second strategy)
in Figure 21. The trend correlations match for the weight and linear dimension because of
similar main factor effects (as shown in Figure 20).
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The SNR value of the weight shows that weight has fewer fluctuations and higher
resolution rather than surface quality and dimensions against the same variations of the
machine parameters. Low fluctuations and high resolutions are two important variables
for the controllability of a quality feature.

SNR =
Averaged controlled quality value − Averaged low quality value

Max o f f luctuations − Min o f f luctuations
, (2)

5. Conclusions

In this paper, a novel in-line and fully automated closed-loop process control was
presented for the injection molding process. The automation was implemented over the
OPC UA network platform in compliance with Industry 4.0 framework for the injection
molding process. A novel in-line dimensional measurement system was used to measure
the as-molded dimensions of the parts. Therefore, three quality features of the molded
parts (weight, dimensional properties, and surface quality) were measured in an in-line and
as-molded manner. Initially, a set of experiments through a CCI type DOE were planned to
train eight types of AI models. Afterward, the models were applied along with a predictive
controller to control the injection molding process for a quality feature. The controller was
tested with three different control strategies for the control goal. The surface quality was
controlled to achieve a surface quality value higher than 0.6 (where 1 is the best surface
quality). The linear dimension (the average of three measured linear dimension lines) was
controlled for the goal of 120 mm with a tolerance of ±0.025 mm. The quality features were
predicted through the AI models and applied to make the control decision in comparison
with the in-line measurements. The controller could successfully control the process for all
the strategies. Since injection molding process is a discrete and slow process, the distance
between the controlling actions appears to be important in preventing fluctuations.

It would be possible to exclude the in-line measurements after training the AI models,
in future research. The process is influenced by many parameters including the environ-
mental variables. Monitoring the trend of the changes could be combined with the control
strategy to make decisions for the suitable cycle of control action. Multi-objective process
control is the next stage of this research to investigate the possibility of quality control in
multiple aspects.
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