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Abstract: The transport behaviors of proton into nanoporous materials were investigated using
different Monte Carlo simulation codes such as GEANT4, Deeper and SRIM. The results indicated
that porous structure could enhance the proton scattering effects due to a higher specific surface area
and more boundaries. The existence of voids can deepen and widen the proton distribution in the
targets due to relatively lower apparent density. Thus, the incident protons would transport deeper
and form a wider Bragg peak in the end of the range, as the target materials are in a higher porosity
state and/or have a larger pore size. The existence of voids also causes the local inhomogeneity of
proton/energy distribution in micro/nano scales. As compared, the commonly used SRIM code
can only be used to estimate roughly the incident proton range in nanoporous materials, based on
a homogeneous apparent density equivalence rule. Moreover, the estimated errors of the proton
range tend to increase with the porosity. The Deeper code (designed for evaluation of radiation
effects of nuclear materials) can be used to simulate the transport behaviors of protons or heavy ions
in a real porous material with porosity smaller than 52.3% due to its modeling difficulty, while the
GEANT4 code has shown advantages in that it is suitable and has been proven to simulate proton
transportation in nanoporous materials with porosity in its full range of 0~100%. The GEANT4
simulation results are proved consistent with the experimental data, implying compatibility to deal
with ion transportation into homogeneously nanoporous materials.

Keywords: Monte Carlo; nanoporous matter; proton; transport behavior; GEANT4 code

1. Introduction

With the development of nuclear energy and space exploration, materials with excel-
lent irradiation tolerance are receiving extensive attention [1,2]. Numerous effects have
been devoted to investigate the damage behaviors and mechanisms of nuclear protection
materials under various irradiation resource [3–7]. For metals or inorganic crystal mate-
rials, energetic particle radiation was found to cause point defects, and the accumulation
of point defects would form dislocation loops, voids, stacking fault tetrahedrons (SFTs),
etc. [8]. The key to design the radiation tolerant materials is that the point defects can
be partly recovered or eliminated during the radiation process [1,9]. The most popular
approach is to introduce interfaces inside the materials [1,9,10], using a free surface to
attract, absorb and annihilate point and line defects [7,10,11]. Chen [12] investigated the
radiation response and mechanisms in a helium ion-irradiation immiscible coherent Cu/Co
nanolayer and found that the interface of Cu/Co can effectively reduce the population of
irradiation-induced defects.

Recently, owing to its lightweight, ultra-low metal consumption and large free surface
area per unit volume [10,13], nanoporous (NP) metal shows great potential to become a new
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class of radiation-resistant material. Bringa [9] reported the existence of a radiation-resistant
window between the ligament size of NP foams and the irradiation dose rate. Li [10] studied
the irradiation response of nanoporous Au under heavy ion beam bombardment in situ and
indicated that the radiation-induced defects can be absorbed/eliminated by nanopores.

To date, the previous research has demonstrated that NP metals can be reasonably
designed with strength, stability and radiation resistance [9,14], but there is still a lack
of corresponding simulation calculation about the ion transport behavior in nanoporous
matter (metal, inorganic and polymer). Compared to nanoporous metal and inorganic
materials, nanoporous polymers exhibit excellent flexibility, thermal insulation and stability
and have received extensive attentions recently [15]. Owing to their special structure (large
specific surface area and high porosity) and ultra-low density, which make them an ideal
material for some specific fields, such as filtration [16], catalysis and wastewater treatment
field [17–19], as well as the thermal/sound insulation and aerospace activity fields [20].
The stability of a nanoporous polymer must be considered under space irradiation environ-
ments. On-orbit experiments and ground-based irradiation simulation tests are expensive
and time-consuming [21], while computer simulation is a common and reliable method for
evaluating the radiation effects of materials. Porosity and pore size are the main structural
parameters of porous materials. However, what is not yet known is how porosity and pore
size affect the transport process. In the previous research, Stopping and Range of Ions in
Matter (SRIM) software [22] is always used to estimate the range of charged particles into
porous matter [9]. However, SRIM can only be used to handle homogeneous or multiple-
layered substances, nevertheless, it would fail in dealing with the transport behavior of
ions into heterogeneous matter. It is essential to model nanoporous matter and understand
the transport behavior of charged particles into nanoporous matter.

In this work, the study is divided into two sections. The first section is to simulate the
transport behavior of a proton into nanoporous matter, to make clear whether the porous
part takes special roles on the transport process (range, particle distribution and energy
deposition). The second section is to investigate the damage behaviors of nanoporous
matter (using polyimide aerogel as an example) under proton irradiation, to compare
with/verify the simulation results. The obtained results for transport behaviors in porous
matter would provide a path to future complex simulations calculation and irradiation-
resistant nanoporous materials design.

2. Materials and Methods
2.1. Simulation Codes

The software packages of SRIM (United States) are based on Monte Carlo method [22],
which is commonly used to simulate the interaction of ion beam with homogeneous or
quasi-homogeneous matters (such as laminated materials).

Deeper [23] (DamagE crEation and Particle transport in matter, China) is another
code based on Monte Carlo method, which can only be used to handle porous materials
transport process with porosity less than 52.3%.

GEANT4 [24] is a Monte Carlo application toolkit developed by CERN (European
Organization for Nuclear Research, Geneva, Switzerland), which is used to simulate the
physical process of particle transport in matter. In this work, Deeper and GEANT4 were
used to simulate the proton into nanoporous materials.

2.2. Proton Irradiation

The irradiation experiments were carried out using a ground simulator of space
particle-radiation environments in Harbin Institute of Technology. This irradiation equip-
ment can simulate proton, electron and ultraviolet radiation. The energy of proton and
electron can be set from 30 to 200 keV, and the equipment details are described else-
where [25]. In this work, the proton energy was set as 170 keV at a flux at 5 × 1011 cm−2s−1.
The proton fluence was set up to 5 × 1014 cm−2 in the tests. During the irradiation, the
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proton beam was incidented perpendicularl into the samples surface with scanning area of
10 × 10 mm. The tested chamber was kept in a vacuum better than 10−5 Pa.

2.3. Materials and Testing

In this work, the polyimide aerogels were obtained from Aerospace System Engi-
neering (Shanghai, China), with specimen size 10 × 10 × 5 mm. The synthesis detail is
described elsewhere [26], and the chemical structure is shown in Figure 1. The porosity
of the pristine samples is 94%, and the skeleton density of polyimide is 1.4 g·cm−3, which
is obtained using Helium pycnometer. The average pore size is measured as a diameter
of 51 nm using 3H-2000PS2 nitrogen isotherm adsorption instruments, and the specific
surface area is 293 m2/g calculated by BET (Brunauer–Emmett–Teller) model. After the
irradiation, the samples were notched from the non-irradiated side and fractured. The sam-
ples were coated with a platinum film for conductivity before observation, then A ZEISS
field emission scanning electron microscopy from Merlin Compact was used to investigate
the sample cross section. The acceleration voltage is 5 keV, and the working distance is
8 mm during tests.
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Figure 1. The chemical structure of the repeating unit of the PI aerogel.

3. Results and Discussion
3.1. Simulation Part
3.1.1. Porosity Effects

Figure 2 shows the comparison of the incident proton tracks in a solid and corre-
sponding geometric structure with voids. It can be seen that the apparent range of the
incident protons is seen much deeper and more scattered in the porous matter, implying
that large number of nano-voids in the materials may exert drastic change (such as proton
distribution, energy deposition, etc.) as compared with that in a normal solid matter.

In order to better understand the transport behavior of proton into nanoporous matter,
a simple model was proposed for simulating the particle transport parameter in nanoporous
solids, as shown in Figure 3.

Given that the nano-porous materials are composed of spherical pores homogeneously
distributed in a solid, the porous materials could be modeled as a continuous solid including
periodic distributed spherical nano-holes or voids. The spacing of the adjacent voids in
the coordination axes of X, Y and Z could be defined as a, b and c, respectively. The radius
of voids is set as r. In this case, the incident particles (such as protons) should transport
straightly within the voids. According to the above-defined scaling parameters, the porosity
of the defined materials can be calculated using Formula (1):

η =
4πr3

3abc
(1)
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Figure 3. The schematic diagram of spherical periodic porous structure.

Based on the periodic nanoporous model, the transport behavior of proton into ma-
terials can be calculated using GEANT4 code. Figure 4a shows the simulated results of
protons incident into different porosity materials. It can be seen that increasing the porosity,
the proton range was observed increase together with a broadened Bragg peak. Moreover,
one could also observe multiple subpeaks overlying on the Bragg peak. In order to analyze
this phenomenon, the proton distribution curves at the porosity of 49.3% were enlarged,
as shown in Figure 4b. It is worth noting that the overlying subpeaks appear periodically,
and the periodic distance between adjacent sub-peaks is about 102 nm, the same as that
of the adjacent voids. To better understand this phenomenon, the peak/valley positions
and the corresponding numbers were counted, as shown in Figure 4c. Interestingly, there is
an obvious linear relationship between the position and number of these subpeaks/valleys.
The fitting slope of peaks and valleys is almost equivalent to the distance of adjacent voids
(102 nm). In addition, the intercept represents the first apparent subpeak or subvalley in the
distribution curves. In addition, the intercept of the peaks linear fitting equal to 14.6 times
the adjacent void’s distance (102 nm), while the intercept of the valleys is equal to 16 times
the adjacent void’s distance (102 nm). The results indicate the existence of voids would
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cause the local inhomogeneity of proton distribution. More specifically, there are fewer
protons deposited at the center position (namely, subvalleys position) of the spherical voids,
and more protons deposited at the right of the spherical void’s edge (namely, subpeaks
position). Figure 4d depicts the relationship between energy deposition distribution and
porosity. It shows similar characteristic to the proton distributions in the porous materials,
namely energy deposition, tend to be deeper and broader in the materials when increasing
the porosity. The results indicate that the existence of voids would magnify the transport
process of protons and cause local inhomogeneity around the spherical voids.
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166 nm, respectively); (b) a zoom view of 49.3% porosity in (a); (c) the position of peaks and valleys
as a function of number; (d) the relationship between energy deposition and porosity.

However, due to the limitation of the geometric structure (2 × r < a), the porosity of
this periodic model cannot exceed 52.3%. In this case, as the spherical pores are replaced
by cubic ones, for modeling the porous materials, the porosity of the porous matter can
vary from 0% to 100%. Figure 5 shows the relationship between proton distribution and
porosity ranged from 0%~100%. One can see similar behaviors of proton incidents, into
the materials with various porosities as the above simulated results, namely larger ranges,
apparently broaden Bragg peak with overlying subpeaks and lower intensity in the end of
the range.



Polymers 2022, 14, 3563 6 of 10Polymers 2021, 13, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 5. The relationship between porosity and proton distribution (the voids were set as a 100 nm 
cube, and the distance between the adjacent voids was set as 102 nm, 105 nm, 115 nm, 126.6 nm and 
155 nm, respectively). 

As comparison, the software of SRIM was also applied to evaluate the proton 
transport behavior in the porous materials, only if one assumes the porous materials as 
homogeneous, with lower density according to the porosity. Hence, the porous matter can 
be homogenized through Formula (2) and then the apparent density could be used for the 
SRIM simulation. 

0= (1 )ρ η ρ− ⋅  (2) 

where ρ0 is the density of the skeleton medium, ρ is the apparent density after ho-
mogenization and η is the porosity. 

Figure 6 shows the simulation results calculated using different codes. It is under-
standable that for three cases simulated using GEANT4, Deeper and SRIM codes, the av-
erage proton ranges increase with the porosity in that the apparent density of the porous 
matter decreases accordingly (Figure 6a). However, the results of GEANT4/Deeper show 
some differences from those obtained using SRIM code. On one hand, the proton ranges 
simulated by any of the three codes (GEANT4, Deeper and SRIM) are almost the same as 
the porosity is smaller (Figure 6a), but when the porosity is larger than 50%, the calculated 
range using GEANT4 is smaller than that of SRIM. Hence, when the porosity is as large 
as 94%, the ranges calculated by GEANT4 and SRIM were 25.5 and 29.8 μm, respectively. 
It is worth noting that this deviation becomes more pronounced as the porosity increases 
(Figure 6a). However, the FWHM (full width at half maxima) of the Bragg peak calculated 
by GEANT4 with cube voids is about 9 μm at the porosity of 94%, while the FWHM is 
about 2 μm using SRIM (Figure 6b). It can be concluded that existence of voids 
(GEANT4/Deeper) in solid causes more broaden distribution of incident particles than the 
density of the homogenized porous matter (SRIM), since that inhomogeneity in matter 
could enhance the scattering processes of the incident particle. When the porosity is less 
than 50%, SRIM [22] can be used to calculate the range of proton into porous matter, but 
when porosity increases, it is necessary to use GEANT4 [24] to deal with it. 

Figure 5. The relationship between porosity and proton distribution (the voids were set as a 100 nm
cube, and the distance between the adjacent voids was set as 102 nm, 105 nm, 115 nm, 126.6 nm and
155 nm, respectively).

As comparison, the software of SRIM was also applied to evaluate the proton transport
behavior in the porous materials, only if one assumes the porous materials as homogeneous,
with lower density according to the porosity. Hence, the porous matter can be homogenized
through Formula (2) and then the apparent density could be used for the SRIM simulation.

ρ = (1 − η) · ρ0 (2)

where ρ0 is the density of the skeleton medium, ρ is the apparent density after homogeniza-
tion and η is the porosity.

Figure 6 shows the simulation results calculated using different codes. It is understand-
able that for three cases simulated using GEANT4, Deeper and SRIM codes, the average
proton ranges increase with the porosity in that the apparent density of the porous matter
decreases accordingly (Figure 6a). However, the results of GEANT4/Deeper show some dif-
ferences from those obtained using SRIM code. On one hand, the proton ranges simulated
by any of the three codes (GEANT4, Deeper and SRIM) are almost the same as the porosity
is smaller (Figure 6a), but when the porosity is larger than 50%, the calculated range using
GEANT4 is smaller than that of SRIM. Hence, when the porosity is as large as 94%, the
ranges calculated by GEANT4 and SRIM were 25.5 and 29.8 µm, respectively. It is worth
noting that this deviation becomes more pronounced as the porosity increases (Figure 6a).
However, the FWHM (full width at half maxima) of the Bragg peak calculated by GEANT4
with cube voids is about 9 µm at the porosity of 94%, while the FWHM is about 2 µm using
SRIM (Figure 6b). It can be concluded that existence of voids (GEANT4/Deeper) in solid
causes more broaden distribution of incident particles than the density of the homogenized
porous matter (SRIM), since that inhomogeneity in matter could enhance the scattering
processes of the incident particle. When the porosity is less than 50%, SRIM [22] can be
used to calculate the range of proton into porous matter, but when porosity increases, it is
necessary to use GEANT4 [24] to deal with it.
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Figure 8 depicts the change rules of the proton range and the FWHM of Bragg peak 
as functions of the porous size. One can see that the proton range (Figure 8a) and FWHM 
(Figure 8b) increase with void radius without changing the porosity. On the other hand, 
there is an important parameter, called specific area, for a porous matter to define its per-
formances. As we know, smaller void size means a larger specific surface area, as the mat-
ter porosity is constant [27]. Thus, the results shown in Figure 8 imply that with a constant 
porosity, the smaller the void size, the larger the specific surface area, and then the proton 

Figure 6. The transport results calculated by different software (G4-Ball represents the GEANT4
simulation results with spherical voids, while the G4-Box represents the GEANT4 simulation results
with cubic ones, and Deeper-ball represents the Deeper simulation results with spherical voids): (a) the
relationship between average range and porosity; (b) the relationship between FWHM and porosity.

3.1.2. Voids Size Effect

In order to further explore the voids size effects on the transport process, the proton
distribution was calculated while the porosity remains the same, and the results are shown
in Figure 7. Interestingly, the distribution of protons became broader, while the range deep-
ened, when increasing the pore radius, even though the porosity is same. Correspondingly,
energy deposition in the porous matter distributes more broadly and tends to have deeper
positions. The results indicated that the pore size would also magnify the transport strag-
gling process of ion beam in matter, due to the coupling behavior between the scattering
effects from the porous boundaries and the longer linear-transporting characteristic within
the larger void.
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46.3%, and the radius was set as 96, 144, 192, 240 and 480 nm, respectively); (b) the relationship
between energy deposition and pore size.

Figure 8 depicts the change rules of the proton range and the FWHM of Bragg peak
as functions of the porous size. One can see that the proton range (Figure 8a) and FWHM
(Figure 8b) increase with void radius without changing the porosity. On the other hand,
there is an important parameter, called specific area, for a porous matter to define its
performances. As we know, smaller void size means a larger specific surface area, as
the matter porosity is constant [27]. Thus, the results shown in Figure 8 imply that with
a constant porosity, the smaller the void size, the larger the specific surface area, and then
the proton range and also the FWHM of its Bragg peak tend to be smaller. It is reasonable to
say that the larger a specific surface area is, the more opportunities for the incident protons
to interact with the surface/boundary and the higher the possibilities to be scattered and
stopped [27], thus, a smaller proton average range and FWHM can be obtained.
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at 46.3%, the radius was set as 24, 48, 96, 144, 192, 240 and 480 nm, respectively; when the porosity
was kept at 26.8%, the radius was set as 40, 80, 120, 160, 320 and 400 nm, respectively; when the
porosity was kept at 11.3%, the radius was set as 15, 30, 60, 90, 120, 150 and 300 nm, respectively);
(b) the relationship between FWHM and radius of voids.

3.2. Experiments Part

In order to verify the simulated results, a proton irradiation experiment was carried out.
Figure 9 depicts the SEM cross-section images of the polyimide aerogels (with a porosity
of 98%) irradiated up to a proton fluence of 5 × 1014 cm−2. The cross-section image can
be divided into two areas: damage area (proton effect area) and a damage-free one (out of
proton range). It can be seen that the cross-section morphologies of the proton-irradiated
sample show distinct features between the damaged area and damage-free aera. The proton
effect region is smoother and denser than the damage-free area, as reported in our previous
work [28]. The average ranges calculated by GEANT4 and SRIM were 25.5 and 29.8 µm (as
shown in Figure 6), respectively. Hence, the thickness of the damaged zone is about 22.7 µm,
which is slightly smaller than the GEANT4 calculated result. This slight deviation should
be attributed to the shrinkage of the aerogel during irradiation. However, there is a larger
deviation to that simulated using SRIM code. It means that for a porous matter, there is
some risk to evaluate the range or damaged behaviors with simulation methodology using
the traditional SRIM code or density-homogenized equivalence modeling, and the higher
the porosity is, the more risk for the evaluation process.Polymers 2021, 13, x FOR PEER REVIEW 9 of 11 
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Figure 9. SEM cross-section images of polyimide aerogels after proton irradiations at fluences of
5 × 1014 cm−2 (the orange dashed line is the upper edge of the sample’ section, and the white dashed
line is the boundary between the damaged area and damage-free area.).
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4. Conclusions

The transport behaviors of protons into nanoporous matter were investigated. The
proton distribution moves to a deeper position and becomes wider as porosity increases,
and the existence of voids causes the local inhomogeneity of proton distribution. Fur-
thermore, the pore size affects the proton distribution, even though the porosity keeps
same. The larger the void’s size, the deeper the proton average range is, and the broader
the FWHM of the Bragg peak. Comparing the different simulation codes, GEANT4 code
could be more suitable to simulate the particle transporting processes, thus, to evaluate the
inhomogeneous interaction and energy deposition behaviors, and to determine precisely
the particle range.
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