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Abstract: In the process of rubber extrusion, the feed structure directly affects the extrusion quality,
extrusion uniformity, screw lateral force, and feed power consumption. Until now, the feed structure
was mainly based on empirical designs, and there was no theoretical model for the optimal design of
a feed structure. This paper focused on the squeezing mechanical analysis and model establishment
of the feeding process in which viscoelastic rubber strips are passed through feed-wedge clearance
in cold-feed extruders. The screw flight rotation squeezing process was simplified into a disc
rotation squeezing process; the instantaneous squeezing velocity

.
h(t) in the disc rotation squeezing

model was derived according to feed wedge clearance geometry and the disc rotating speed. By
transforming rotation squeezing into differential slab squeezing, mathematical expressions of the
velocity distribution, pressure distribution, total squeezing force, and power consumption in the
feeding process were derived in a rectangular coordinate system under isothermal and quasi-steady
assumptions and certain boundary conditions by using balance equations and a Newtonian viscous
constitutive relation. Theoretical calculations and experimental values showed the same trend.
Through comparison, it was found that the power consumption (P3) caused by sliding friction is
about 200–900 W according to theoretical calculations, while the experimental test results show
it to be about 300–700 W. Additionally, the difference between theoretical pressure value and the
experimental pressure value can be controlled within 5–15%. This could reflect the main factors
that affect the feeding process, so could be used for analyses of actual feeding problems, and to
contribute to rough quantitative descriptions of the feeding process, finite element simulation, and
the optimization of the feeding structure.

Keywords: squeezing mechanical analysis; rubber strip cold-feed process; viscoelastic rubber strip

1. Introduction

The extrusion process is an important step in rubber processing, and the vast majority
of rubber compounds are extruded at least once during the molding process [1]. The feeding
process has a significant impact on extrusion quality [2,3], extrusion stability, the side force
applied to screw, and extruder power consumption. In modern research and applications,
in order to realize a uniform feed rate in rubber extruders, rubber strip feeding has been
used in either rarely used hot-feed extruders or widely used cold-feed extruders. Because
rubber has relatively strong adhesiveness at room temperature in a highly elastic state, the
cost of the granulation process will increase if a rubber extruder is fed granulated material.
A large number of separating agents can be added to prevent the adhesion phenomenon of
rubber granulates, resulting in changes in the formulation properties [4]. For a cold-feed
extruder fed with a rubber strip form, regardless of whether a free-feeding structure or the
widely used forced-feeding structure with a feed roll is used, the feed wedge clearance is
always designed at the feed port. Figure 1a shows the common feeding model (feed roll
structure) of a cold-feed rubber extruder. The feed wedge clearance is formed between the
screw flight crest and the undercut groove on the inner wall of the feed barrel. The feed
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wedge clearance is a key structure when feeding the rubber strip into the screw channel:
the rubber strip is gradually squeezed (compressed) and thinned when the rotating screw
flight drags the rubber strip through the feed wedge clearance. At the same time, the screw
flight is more deeply embedded into the rubber strip (Figure 1b). When the rubber strip
approaches the minimum wedge gap (the design gap between the outer diameter of the
screw and the inner wall of the feed barrel), it is longitudinally broken off [5], thus entering
the channels at both sides of the screw flight and completing the feeding process of the
rubber strip. In a combined structure of a feed roll/screw system and the feed wedge
clearance, the feed roll only increases the pushing force [6] when feeding the rubber strip or
creating an additional pressure build-up [7]. Therefore, when using rubber extruders, the
rubber strip is dragged through the feed wedge clearance and broken off longitudinally at
the end of the feed wedge clearance; this is the key to successfully carrying out rubber strip
feeding. In the vicinity of the minimum wedge gap, the thin strip easily causes longitudinal
break-off under the axial thrust action of the screw flight. Since rubber is essentially a
viscoelastic liquid at room temperature [8], a special kind of squeezing (compression) flow
occurs in the feed wedge clearance. The feed wedge clearance geometry is a nonlinear
wedge region with a narrow width (the width of the screw flight). The squeezing force
is generated by dynamic viscous pressurization in the nonlinear wedge region through
the rotation drag motion of the screw flight, and rubber flows in the nonlinear wedge
region occur only in the directions towards both sides of the screw flight, because the
minimum wedge gap is very small, and can be neglected for rubber compounds with very
high viscosity.
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Figure 1. (a) Feed wedge clearance; (b) A-A section view; Feeding model of a cold-feed rubber
extruder. (1) Feed barrel; (2) screw; (3) feed wedge clearance; (4) scraper; (5) feed roll; (6) feed door;
(7) rubber strip; (8) feed opening; (9) screw flight.

The history of rubber extruders dates back more than 140 years, to the invention of
hot-feed extruders in 1879. The continuous development of feeding technology is mainly
reflected in the improvements to the feeding structure [9–13] and the control of feeding
uniformity [4,14–16]. However, there has been little research into the feeding theory of
rubber extruders, especially cold-feed extruders. The existing research on the theory of
the rubber-strip feeding process has either analyzed the mechanical conditions of rubber
strips being drawn into the feed wedge clearance [6], or used a disc rotation squeezing
model device to carry out experimental research on the strip feeding process [5]. Since the
study by Jianbin Li did not consider the contribution of the flight flanks to the additional
drag effect [6], it reached the incorrect conclusion that the feeding mechanical condition of
the friction coefficient µs between the flight crest and the rubber strip was greater than the
friction coefficient µb between the barrel inner wall and rubber strip. Other experimental
results in the studies of Yanchang Liu [5] included single-peak pressure distribution and the
obvious power consumption when the rubber strip passed through the model clearance. To
date, little theory of the rubber strip feeding process exists, which makes the feeding theory
for rubber extruders lag far behind engineering practice. The side force applied to the
screw and the feed power consumption have not been calculated theoretically, and the feed
structure and technology have not been improved or innovated by theoretical guidance.
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In order to establish a feeding process theory of cold-feed rubber extruders, the
squeezing flow dynamics during this process must be analyzed. However, most studies of
squeezing flow deal with the pure squeezing flow of viscoelastic materials [17–28], or vis-
coelastic materials [29–40], or non-Newtonian liquids with a squeezing–extrusion combined
flow [41] between two parallel plates; very little research has considered the squeezing
flow between two non-parallel plates. The squeezing and sliding flow of Oldroyd-B fluid
was examined by N. Phan-Thien [42] in a wedge geometry of semi-wedge angle a(t) with
a wedge apex, using a numerical method. In this wedge, the flat plane boundaries of the
wedge were closing at a rate

.
a(t) and were sliding along the direction perpendicular to the

two-dimensional wedge with a constant velocity. However, there was no consideration of
the squeezing flow of non-Newtonian liquids in a nonlinear wedge region, in which the
lubrication approximation was not valid due to large wedge angle or slip boundary condi-
tion. The squeezing flow in feed wedge clearance belongs to the latter category, because the
rubber strip slides along the cylinder wall in the feeding process. Therefore, in this study,
we attempted to analyze the dynamics of squeezing flow caused by the drag action of the
screw flights in the nonlinear wedge region under sliding boundary conditions. In order to
obtain an approximate analytical solution of the motion equation which reflects the basic
characteristics of the squeezing flow, under some assumptions (Newton material, isother-
mal quasi-steady flow), the physical model was simplified (disc rotation squeezing model)
and the motion transformation (differential slab squeezing flow) was applied. To verify the
accuracy of the theoretical model, a comparison between the theoretical calculations and
the experimental data was carried out. The theoretical model that was established could
provide guidance and suggestions for the design and optimization of actual feed structures.

2. Physical Model and Squeezing Velocity

In this section, a physical model of feeding process is established and the calculation
formula of squeezing velocity in the feed wedge clearance is obtained by analyzing the
relationship between the rotation angle and the wedge gap.

2.1. Physical Model

At the feed port, the basic screw configuration of the cold feed extruder is a single
screw section with double-flighted design. When rubber strips pass through the feed
wedge clearance, the screw flight crest will always contact and squeeze the rubber strip. If
expanded along the outer diameter of the screw, the contact traces between the screw flight
crest and the rubber strip are two inclined narrow strips (the black areas in Figure 2). In
Figure 2, β is the helical angle and w is the axial width of the flight. To describe the behavior
of the feeding process, the geometry of the helix feed wedge clearance is simplified, and
then motion transformation is applied, as discussed in Section 3.1. As the rubber strip passes
through the feed wedge clearance, the effective flight compression path is perpendicular
to the screw axis. Therefore, each feed’s screw flight can be simplified to a disc (helical
angle β = 0◦), and the diameter and width of the disc are screw diameter D and screw flight
axial width w, respectively. An effective feed wedge clearance is formed between the disc
and the undercut groove on the inner wall of the feed barrel. In this way, a disc rotation
squeezing model is built with a disc and a barrel (Figure 3). Because the two screw flights
have the same geometry, one was chosen for mathematical description.

For all general specifications of cold-feed extruders, a standardized design of the feed
wedge clearance has been achieved. In Figure 3, a = 0.03− 0.04D, b = 0.06− 0.08D, R = 0.5D,
R1 ≈ 0.5D, H is the start position or maximum value of the wedge gap (on the extended
line of O and O1, that is H = ss′), hmin is the end position or minimum value of the wedge
gap (the typical value is 0.0045R), and θ0 is the center angle of the circular arc of the outer
diameter of the disc in the whole range of the feed wedge clearance. For example, for a
cold-feed extruder with D = 65 mm, a = 2 mm, b = 5 mm, R = R1 = 32.5 mm, H = 5.4 mm,
hmin = 0.146 mm, and θ0 = 85◦ ≈ 1.483 rad.
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2.2. Squeezing Velocity

An analysis of squeezing flow needs to determine either the squeezing force or the
squeezing velocity. In the disc rotation squeezing model, the squeezing force is unknown,
and the squeezing velocity can be derived according to the geometry of the feed wedge
clearance and the disc speed. Figure 4 shows the relationship between the gap h(θ) and the
angle θ.

If the initial thickness of the fed rubber strip is equal to the maximum value H of the
wedge gap, the position of the line segment ss can be set as the initial point at which the
rubber strip enters into the wedge clearance. When the disc rotates through an angle θ
(rad) from time t = 0 to t(s), the strip is squeezed (compressed) from thickness H to h(θ)
(Figure 4). The mathematical relationship between h(θ) and θ is

h(θ) = (Om + mn)− R = c cos θ +
√

R2
1 − (c sin θ)2 − R (1)

where c = OO1 =
√

a2 + b2.
By expanding the term with the root sign on the right side of Equation (1) into a

power series, √
R2

1 − (c sin θ)2 = R1

[
1− 1

2
(c sin θ)2

R1
2 + . . .

]
(2)

By ignoring the terms greater than the quadratic term of the power series on the
right side of Equation (2) and substituting it into Equation (1) and considering R ≈ R1,
one obtains

h(θ) = ccosθ − c2

2R1
sin2 θ (3)
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If the rotating speed of the disc is Nrpm, then θ = πNt/30. Substituting the expression
of θ into Equation (3) gives

h(θ) = ccos
(

πNt
30

)
− c2

2R1
sin2

(
πNt
30

)
(4)

By differentiating both sides of Equation (4), one can obtain the instantaneous squeez-
ing velocity

.
h(t),

.
h(t) = −πNc

30

[
sin(

πN
30

t) +
c

2R1
sin(

πN
15

t)
]

(5)

where “−” indicates squeezing (compression). From Equation (5),
.
h is directly related to

the geometric parameters of the feed wedge gap clearance (c and R1) and the operating
parameters (N and t).
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To study the change in instantaneous squeezing velocity, according to Equation (5),
MATLAB software was used to calculate and draw

.
h− t curves at different disc speeds

(N = 30, 45 and 60 rpm) for the disc rotation squeezing model of D = 65 mm (c =
√

22 + 52 ≈
5.39 mm, R1 = 32.5 mm). Figure 5 shows that the

.
h− t curve is approximately composed

of two parts: a constant acceleration squeeze in the early stage and a constant velocity
squeeze in the later stage. The former accounts for most of the whole rotational squeezing
process, and the latter accounts for a small part. Setting t0 and tt to represent the time used
during the whole rotational squeezing process and the transition time from the constant
acceleration squeeze to the constant velocity squeeze, respectively, t0 can be calculated
according to the formula t0 = 30θ0/πN, and tt can be measured from the asymptotic
transition part of the

.
h− t curve in Figure 5. When N = 30, 45, and 60 rpm, t0 is 0.47, 0.31,

and 0.24 s, tt is 0.39, 0.27, and 0.21 s, and tt/ t0 is 0.83, 0.87, and 0.875, respectively. Figure 5
also shows that the squeezing velocity increases faster with increasing disc speed. Similar
results can be obtained by using the same method to calculate other disc rotation squeezing
models with different diameters (D = 90, 120, 150, 200, and 250 mm).
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The above analysis shows that, for a given disk rotating squeezing model and disc
rotating speed, the instantaneous squeezing velocity

.
h(t) changes rapidly for most of the

time taken for the whole squeezing process. This presents difficulties when analyzing the
squeezing flow. To simplify the theoretical analysis, the average squeezing velocity (−V)
was introduced, where ‘−’ also represents the squeezing direction, V = |−V|. According
to N, H, and θ0, it is easy to calculate V.

V = |−V| =
∣∣∣∣−H

t0

∣∣∣∣ = ∣∣∣∣−πNH
30θ0

∣∣∣∣ = πNH
30θ0

(6)

Equation (6) shows that, for a given disc rotation squeezing model, the average squeez-
ing velocity V is only proportional to N. For example, for the disc rotation squeezing model
with D = 65 mm, the average squeezing velocities calculated by Equation (6) at N = 30, 45,
and 60 rpm are −11.4, −17.1, and −22.8 mms−1, respectively. For the disc rotation squeez-
ing models for other general specifications of cold-feed extruders, when the rotational
speed N = 30 rpm, the average velocities calculated by Equations (5) and (6) in the whole
feed wedge gap are V(5) and V(6), respectively. The range of [(V(5) − V(6))/V(5)] × 100% is
approximately −0.51~1.30%, which strongly indicates that the simplified Equation (5) has
a very high level of accuracy.

3. Mathematical Model

The disc rotation squeezing model established in Section 2 was further simplified
into a differential slab squeezing model. According to the balance equations, mathemat-
ical formulas including velocity, pressure distribution, total squeezing force, and power
consumption in the wedge clearance were obtained.

3.1. Kinematic Exchange

During the actual feeding process, the rubber strip that is adhered to the screw flight
rotates with the rotational screw flight and slides along the barrel surface. Therefore, in the
disc rotation squeezing model, the disc drags the rubber strip to rotate through an angle θ
(rad) within time t, and the rubber strip is squeezed (compressed) from the initial thickness
H to the thickness h(t). This process can be regarded as one in which a “differential slab”
of arc length ∆l (Figure 4) squeezes the strip in parallel from the initial thickness H to
the thickness h(t) within time t at the squeezing velocity generated by the disc rotation.
The squeezing flow obtained from the kinematic exchange is called the differential slab
squeezing flow, which is shown in Figure 6. Since screw flight is always embedded into
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the rubber strip during the feeding process, this flow belongs to a constant area squeezing
flow [43].
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3.2. Velocity and Pressure Distributions

The theoretical analysis used the rectangular coordinate system shown in Figure 7.
First, the following assumptions about the differential slab squeezing flow were made
to solve the balance equations for the analytic solutions of the velocity and pressure
distributions:
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(i) The flow of the rubber compound is isothermal, has a quasi-steady state [42,44],
and is laminar. In the quasi-steady state, locally and instantaneously, the squeezing flow
may be regarded as a steady flow between fixed parallel plates [45].

(ii) The inertia, gravity, and normal stress terms in the momentum equation can
be ignored.

(iii) The rubber compound is a noncompressible Newtonian liquid.
To simplify the analysis of the parallel plate squeezing flow, the component of mo-

mentum in the direction parallel to the plates (here, it is the x-component of momentum)
is usually assumed to be the most important, and the component of momentum in the
direction normal to the plates (here, it is the z-component of momentum) is not used [45];
that is, the component of velocity vz normal to the plates is neglected [46].

Because the minimum value hmin of the feed wedge gap is very small (hmin ≈ 0)
and there is an additional pressure build-up created by the feed roll/screw system in the
upstream position of the maximum wedge gap, the component of velocity vy in the direction
of the differential dimension (y-direction) can be assumed to be zero in the differential slab
squeezing flow. In other words, the rubber compound can only be squeezed out along the
directions on both sides of the disc (or flight) (x-direction) during the feeding process. This
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is an important boundary condition for the disc rotation squeezing model or the differential
slab squeezing flow.

Based on the above assumptions and analyses, and considering the isotropic pressure
and the component of velocity to be constant at the differential dimension dy, the equations
of momentum can be reduced to a one-dimensional form as follows:

η
∂2vx

∂z2 =
∂p
∂x

(7)

where vx is the x-component of velocity and p is isotropic pressure.
Because the rubber strip slides along the barrel surface during the feeding process,

it is assumed that there is no slippage at the moving slab (screw flight crest) and at the
stationary slab of the x-direction, that is, the boundary condition z = 0, vx = 0 and z = h,
vx = 0. Integrating Equation (7) twice with respect to z and applying the boundary condi-
tions can derive Equation (8):

vx =
1

2η

∂p
∂x

(z2 − hz) (8)

This vx velocity distribution must satisfy the following overall continuity relationship:

Vxdy =
∫ h

0
vxdydz (9)

By substituting Equation (9) into Equation (8) and considering dy as a constant value:

∂p
∂x

= −12ηV
h3 x (10)

Usually, the screw channel at the feed port is not fully filled with rubber [5]. Therefore,
it can be assumed that the pressure on both sides of the disc (screw flight) is atmospheric
pressure, that is, x = ±w/2, p = 0. Under this boundary condition, integrating Equa-
tion (10) can obtain:

p =
3ηVw2

2h3 − 6ηV
h3 x2 (11)

Equation (11) shows that the pressure distribution p in the model wedge p is related to
V, w, h, x, and η, and the effects of h, x, and w on p are particularly significant. For a given
disc rotation squeezing model, when the disc rotating speed N is constant, p is only related
to x at any squeezing thickness h, showing the parabolic distribution shown in Figure 8.
Figure 8 shows that, for an arbitrary h, the maximum pressure pmax can be obtained at x = 0.
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According to Equation (11), it is easy to calculate the average pressure p along w in
Figure 8:

p =

∫ w
2
− w

2
( 3ηVw2

2h3 −
6ηVx2

h3 )dxdy

wdy
=

ηVw2

h3 (12)
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Equation (12) shows that, for a given disc rotation squeezing model and rubber
compound, when the disc rotation speed is constant, p is inversely proportional to the cubic
power h, proportional to the quadratic power w, and proportional to η. As h decreases,
p increases rapidly, and when h→ 0 , p→ ∞ . However, p or p is always a finite value
because h has a minimum design value hmin (at θ = θ0). In addition, Liu Y. C. and Yu F [3]
used a disc rotation squeezing model device with D = 65 mm and found that the rubber
strip would be longitudinally broken off at a position of approximately h = 1 mm before the
design value of the minimum wedge gap hmin(=0.16 mm). hb and θb are set as the wedge
gap value and the corresponding center angle when the rubber strip is longitudinally
broken off, respectively. For the disc rotation squeezing model with D = 65 mm and
hb = 1 mm, the θb = 73◦ can be obtained by calculating or drawing, but the regularity of hb
and θb needs further experimental research.

A combination of Equations (8) and (10) obtains:

vx = −6Vx
h3 (z2 − hz) (13)

From Equation (13), vx depends on V, h, x, and z. When V, h, and x are fixed, the
relationship between vx and z shows a parabolic curve, and shear flow occurs along the
z-direction. When V, h, and z are fixed, vx is proportional to x and produces elongational
flow in the x direction. When V, x, and z are fixed, vx is inversely proportional to the cubic
power of h; that is, when h decreases, vx increases rapidly.

3.3. Total Squeezing Force

The total squeezing force refers to the resultant force of the pressures exerted on
the rubber strip in the radial direction of the disc (screw) within the whole feed wedge
clearance. In the design of a rubber extruder, for example, the total squeezing pressure is
used to calculate the elastic flex deformation of the screw caused by the side force, because
excessive flex deformation will cause scraping between the screw and the barrel.

The total squeezing force F can be deduced from the disc rotation squeezing model.
The method for calculating F is as follows: first, the coordinate system y′Oz′ shown
in Figure 9 was established, and the force dF acting on the area element wdl(= wRdθ) at
position θ in the radial direction of the disc was decomposed into dF y′ and dF z′ components,
as shown in the enlarged view. Second, the magnitudes of the F y′ and F z′ components

of the total squeezing force F were calculated by integral, that is, F y′ = ∑
∣∣∣dF y′

∣∣∣ and
F z′ = ∑ |dF z′ |. Finally, the magnitude and tangential direction angle of the total squeezing

force F were calculated, that is, F =
√

F y′
2 + F z′

2 and tan ψ = F z′/F y′ . ϕ + arctanψ is the
angle between the direction of the total squeezing force and the horizontal line.

As mentioned in Equation (7), the pressure in the model wedge is isotropic. Therefore,
the pressure in the radial direction in Figure 9 is equal to the pressures calculated by
Equations (11) and (12). To simplify the calculation, the average pressure p was used. Hence:

dFy′ = pwR cos θdθ (14)

dFz′ = pwR sin θdθ (15)

Putting Equation (12) into Equations (14) and (15) and integrating them obtains:

Fy′ =
∫ θb

0
pw cos θRdθ = −ηπNHw3R

30θ0c3 k1 (16)

Fz′ =
∫ θb

0
pw sin θRdθ = −ηπNHw3R

60θ0c3 k2 (17)

where k1 = tanθb, k2 =

[(
1− θb

2

2 + θb
4

4!

)−2
− 1
]

.
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Substituting Equations (16) and (17) into the above expressions of F and tan ψ, respec-
tively, can obtain:

F =
√
(Fy′)2 + (Fz′)2 =

ηπNHw3R
60θ0c3

√
4k1

2 + k22 (18)

tan(ψ) =
Fz′

Fy′
=

k1

2k2
(19)

For each given model wedge, ϕ is known; therefore, according to Equation (19), the
angle ϕ + arctanψ between the direction of the total squeezing force and the horizontal line
can be obtained.

3.4. Power Consumption

When the rubber strip passes through the model wedge, the power consumption
comes from the following three parts:

(i) The increase in kinetic energy when the rubber compound is squeezed out from
both sides of the disc (screw flight);

(ii) Viscous dissipation in squeezing flow;
(iii) Friction loss of the rubber strip sliding along the barrel.
(1) Power consumption P1 caused by an increase in kinetic energy
As h decreases, vx shows a rapid increasing trend (Equation (13)), which increases

the kinetic energy of the rubber in the extrusion direction (x direction); the kinetic energy
reaches its maximum at the edges at both sides of the disc (screw flight). In Figure 7, the
volumetric flow rate in the direction of +x or −x caused by the moving slab squeezing
downwards is Vxdy (V is the average squeezing velocity, which is shown in Equation (6)).
Therefore, the average extrusion velocity vx at the x position is:

vx =
Vxdy
hdy

=
Vx
h

(20)

If the flow between the approaching slabs is regarded as potential flow, the average
velocity vx in the x direction is a function of x, not h [16]. The average velocity of the rubber
extruded from the edges of the slabs (x = ±w/2) is vw/2 = Vw/2h (only the magnitude of
the velocity considered). Therefore, the rate of work performed on a moving slab with dy
length elements is equal to the rate of change of the kinetic energy of rubber dP1.

dP1 =
d
dt
(

1
2

mv w
2

2) =
V2w2

8h2
dm
dt

(21)
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where dm/dt is the mass flow rate of the extruded rubber, which is equal to 2hdy(Vw/2h)ρ,
and ρ is the density of rubber, so Equation (21) becomes:

dP1 =
ρV3w3

8h2 dy (22)

According to Figure 2, considering dy = Rdθ and integrating Equation (22) along the
whole wedge gap yields P1:

P1 =
∫ θb

0

ρV3w3

8h2 Rdθ (23)

Considering the expression of h(θ) (Equation (3)) will make the integral operation of
Equation (23) very complex. Therefore, the simple arithmetic mean H/2 of h(θ) was used to
replace h(θ) to obtain the simple approximate solution of P1:

P1 =
RθbρV3w3

2H2 (24)

(2) Power consumption P2 caused by viscous dissipation.
The velocity gradient of vx in the z direction (Equation (13)) will cause viscous heat

generation. Therefore, the shear rate
.
γ can be obtained by differentiating Equation (13)

with respect to z:
.
γ =

∂vx

∂z
= −6Vx

h3 (2z− h) (25)

From Equation (25): 1) at x = 0,
.

γ = 0; 2) at x = ±w/2 and z = 0 or h, the absolute
value of the

.
γ can take the maximum,

∣∣ .
γ
∣∣
max = 3Vw/h2 . To simplify the calculation, the

corresponding shear rate at h = H/2 can be taken as the average shear rate
.
γ in the whole

squeezing flow process: that is,
.
γ = 12Vw/H2 . Therefore, the rate of viscous dissipation

of rubber compound per unit volume is:

η
.
γ

2
=

144ηV2w2

H4 (26)

If the volume of the whole model wedge is Vw and the very small volume remaining
after the longitudinal break-off of rubber strip is ignored, the power consumption P2 caused
by viscous dissipation is:

P2 =
144ηV2w2Vw

H4 (27)

Through the geometric relationship in Figure 3, Vw can be obtained:

Vw =
w(αR1

2 − θbR2 + Rc sin θb)

2
(28)

(3) Power consumption P3 caused by sliding friction.
During the sliding process of rubber strips dragged by the disc (screw flight) along the

barrel, the shape of the rubber strip is bent, and the local pressure is continuously changed.
As shown in Figure 10, for a rubber element at position θ, setting ∠OnO1 = β, according to
the cosine theorem:

cos β =
(R + h)2 + R1

2 − c2

2(R + h)R1
(29)
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Figure 10. Velocity vector analysis of the rubber strip during squeezing; (a) enlarged drawing of
velocity vector analysis.

Equation (29) shows that, in the feeding process, the value of β will change with h
or θ. Since the center and radius of the cylinder arc ˆe s′ are O1 and R1, respectively, the
tangential velocity vbt of the rubber element sliding along the cylinder at position θ is:

vbt = vb cos β =
πN(R + h)

30
cos β (30)

Obviously, vbt changes with h or θ.
Assuming that the total squeezing force F (Equation (18)) is evenly distributed on

arc ê s′, and the sliding friction coefficient f between the rubber strip and the barrel is a
constant, the friction force dFf generated by the barrel on the rubber element at position
θ is:

dFf = f
F

αR1
(R + h)dθ (31)

where α = ∠eO1s′ for a given model wedge gap and α is a known constant.
From Equations (30) and (31), the friction power dP3 generated by the barrel to the

rubber element at position θ can be obtained:

dP3 = dFf vbt =
πNF f
30αR1

(R + h)2 cos βdθ (32)

The power consumption P3 caused by sliding friction in the whole feeding wedge is:

P3 =
f πNF

∫ θb
0 (R + h)2 cos βdθ

30αR1
(33)

To simplify the integral operation of Equation (33), the average value β of β is used,
that is, β = ∠OeO1/2. For a given model wedge gap, ∠OeO1 is known, and β and cos β
are known constants. For example, for the disk rotating squeezing model with D = 65 mm,
∠OeO1 ≈ 9.5

◦
, β = 4.75

◦
, and cos β ≈ 0.9966. So Equation (34) becomes

P3 =
f πNF cos βk3

30αR1
(34)
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where

k3 =
∫ θb

0 (R + h)2dθ = R2θb + 2R
[
c sin θb − c2

2R (
1
2 θb − 1

4 sin 2θb)
]

+
[
c2 ∗ ( 1

2 θb +
1
4 sin 2θb)− c3

3R1
sin3 θb +

c4

4R1
2 (

sin 4θb
32 − sin 2θb

4 + 3θb
8 )
]

By combining Equations (24), (27) and (34), the power consumption P in the process
of the rubber strip passing through the model wedge gap is obtained:

P = P1 + P2 + P3 (35)

That is:

P =
RθbρV3w3

2H2 +
144ηV2w3

H4 Vw +
f πNF cos βk3

30αR1
(36)

It should be noted that the above mathematical expressions of total squeezing force and
power consumption only consider a single disc. However, for an actual cold feed extruder,
there are usually at least double-threaded flights at the feed port, and the calculation of
the total squeezing pressure and the power consumption needs to multiply the above
expressions by the number of flights.

The theoretical analysis model of the feeding process of cold-feed rubber extruders
has important guiding significance for analyzing feeding problems and optimizing and
innovating feeding structures: (1) the side force applied to the screw and the feeding power
consumption can be roughly calculated without a feed roll, which provides basic calculation
parameters for rubber extruder design and overcomes the pure experience of feed structure
design. (2) The width of the screw flight at the feed screw segment should be as narrow
as possible, because the total squeezing force and power consumption are proportional
to the third power of the width of the screw flight. However, a screw width that is too
narrow can reduce the drag-in force of the screw flight crest so that the rubber strip cannot
be dragged through the feed wedge clearance. For a screw flight with a narrower width,
shallow grooves can be opened on the top or the side of the screw flight to increase friction
drag action, or else the screw flight can be interrupted to increase “penetration” drag action.
The latter is often used in the feed screw segment of modern cold-feed extruders. (3) Under
the condition of the same feed wedge clearance length, the maximum value (H) in the feed
wedge clearance should be as large as possible, because the total squeezing force and the
power consumption are proportional to the reciprocal of the power of H. In other words, a
thicker rubber strip should be used for feeding. Therefore, the improvement direction of
the structure of the feed wedge clearance was to increase the eccentricity values a and b
and select the appropriate eccentric arc radius R. This design can shorten the feeding time
and improve the feeding efficiency. (4) Because the power consumption mainly depends
on the frictional resistance of the barrel to the rubber strip (see Section 5), the inner wall of
the barrel should have a lower friction coefficient at the feed port; that is, the inner wall of
the barrel should be smoother than it has been in previous designs. (5) If the feed wedge
clearance, feed screw flight, and feed barrel are fully optimized, the effect of feed roll can
be reduced or even rendered unnecessary, and the feeding power consumption can be
further decreased.

4. Materials and Methods
4.1. Experiment and Materials

The pressure and power data obtained by using the disc rotation squeezing model
device (Figure 11) were chosen. Test device: this model device comprises disc 2 driven by
motor 1, semicylinder 4 with an eccentric undercut groove on the inner surface, pressure
sensor 5, and a control system (which is not shown in the figure). The top surface of the
disc, and the inner wall of the groove under the semicylindrical feed wedge clearance 6 and
7, using feeding rubber strips. The disc and drive device are supported by bracket 3. The
DJYZ-10 cylindrical pressure sensors were installed in the upper (U), middle (M), and lower
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(L) positions of the semicylinder, and were used to measure the pressures of the rubber
strip through the feed wedge clearance. The pressure sensor had a measurement range of
0–500 kg and a nonlinearity of 0.3–0.5%. The pressure and power data were automatically
calculated, recorded, and stored by upper computer software. The disc speed was changed
by a variable frequency speed-regulating motor. The temperature of the laboratory was set
at 23 ± 2 ◦C. The geometric parameters of the model device are shown in Table 1.
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Table 1. Geometric parameters of the model device used in this experiment.

D (mm) w (mm) R (mm) R1 (mm) a (mm) b (mm) H (mm) θ0 (◦)

65 10 32.5 32.5 2 5 5.4 85

Test materials: truck radial tire compound, ruck tire inner liner compound (TTI)
((51 ML1 + 4 (100 ◦C); the Mooney viscosity of the rubber obtained by testing at 100 ◦C is 51),
truck tire sidewall compound (TTS) (55 ML1 + 4 (100 ◦C)), and truck tire tread compound
(TTT) (65 ML1 + 4 (100 ◦C)), provided by Shandong Anchi Tire Co., Ltd. The size of the
feeding rubber strip was approximately 5.4 (thick) × 65 (width) × 100 (length) mm.

Test method: rotation squeezing tests were carried out at room temperature using the
above three kinds of rubber compounds to measure the pressure distribution and power
consumption of the feed wedge clearance under different disc speeds (30, 45, and 60 rpm).

4.2. Measurements of Viscosity and the Sliding Friction Coefficient

The shear viscosity and sliding friction coefficient of the above three compounds at
room temperature are two physical parameters required by the theoretical model. These
two parameters must be measured.

(1) Viscosity

Due to the high viscosity of the rubber compound, it was necessary to use a parallel
plate plastometer to measure the shear viscosity. The model of parallel plate plastometer
used is the MZ-4014. The measurement was made at 23 ± 2 ◦C. The measurement principle
is that, under a given temperature, for a squeezing flow with constant volume, the shear
viscosity η can be calculated with the following formula using applied load FN, load time t,
measured sample heights of h0 and h before and after the load FN, and measured sample
volume Vr [47]:

FNt
3ηVr

= (
1
h
− 1

h0
) +

Vr

8π
(

1
h4 −

1
h04 ) (37)
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The sample was a cylindrical sample with a diameter of 16 mm and a thickness of
3 mm. The applied load was 49 N, and the applied load time was 60 s. For the above three
rubber compounds, the shear viscosity values obtained by calculation are shown in Table 2.

Table 2. Viscosity values of different rubber compounds at room temperature.

Rubber Compound TTI TTS TTT

Viscosity (MPa·s) 0.24 0.22 0.21

Since the temperature changes from 23 ◦C to 50 ◦C during the experiment in previous
studies, the viscosity corresponding to the temperature change can calculate according to
the theoretical formula.

(2) Sliding friction coefficient

The sliding friction coefficient of the rubber compounds at room temperature was
measured by Anton Paar TRB3, and the measurement was made at 23 ± 2 ◦C. To obtain the
approximate value of the sliding friction coefficient between the rubber strip and the inner
wall of the barrel, the measured linear speed was made close to the linear speed of the
disc rotation squeezing model, and the unit area pressure applied to the test metal element
close to the average pressure in the disc rotation squeezing model. The test metal element
material is Q235-A. The values of the sliding friction coefficient obtained by measurement
are shown in Table 3.

Table 3. Sliding friction coefficients of different rubber compounds at room temperature.

Rubber Compound TTI TTS TTT

Sliding friction coefficient * 1.0 ± 0.015 0.9 ± 0.01 1.0 ± 0.021
* Average approximation at different disc speeds (30, 45, and 60 rpm) in a disc rotation squeezing model with
D = 65 mm.

5. Results and Discussion

(1) Pressure distribution

In Section 2.2, according to Equation (6), the average squeezing velocity V of the
model device in Table 1 at N = 30, 45, and 60 rpm was −11.4, −17.1, and −22.8 mm·s−1,
respectively. In Figure 11, the h1(= H), h2, and h3 of the design wedge gap at the different
positions of the pressure sensor installed in the upper (U), middle (M), and lower (L)
sections were 5.4, 4.7, and 2.6 mm, respectively.

The w value in Table 1, the η value of different rubber compounds in Table 2, the
V value at different disc speeds, and the h value at different positions were substituted
into Equation (12) ( p = ηVw2/h3 ) to obtain the pressure distributions of different rubber
compounds at different disc speeds. Figure 12 shows the pressure distribution of TTI, TTS,
and TTT at N = 30 rpm. Figure 13 shows the pressure changes of TTI, TTS, and TTT in the
position of h2 = 4.7 mm at different disc speeds.

Figure 12 shows that, under a given disc speed, for different kinds of rubber strips,
both theoretical prediction and experimental data had approximate pressure distribution
curves, and the increase in pressure with the decrease in h in the region of large h was much
slower than that in the region of small h, because p was proportional to the reciprocal of
the third power of h (Equation (12)). However, except for the start position of squeezing
h1(= H), the difference between the theoretical predicted pressure and the experimental
value is 0.5–2 Mpa. This is the result of two main factors: average squeezing velocity V and
viscosity η. In the initial stage of squeezing, V is greater than the instantaneous squeezing
velocity

.
h (Figure 5), and the theoretical pressure obtained using Equation (12) is higher

than the test data. In the middle and end stages of squeezing, V is less than
.
h (Figure 5),

and there are also obvious shear thinning and viscous heat generation effects. Although
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the pressure in the last two stages was calculated by using V, which was smaller than
.
h, the

original viscosity data were larger, and the viscosity decrease caused by shear thinning and
viscous heat generation was not considered; therefore, the theoretical prediction pressure
was higher than that attained in the experimental data.
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and TTT at different disc speeds.

Figure 13 shows that both pressures obtained by theoretical calculation and experi-
mental measurement increase almost linearly with increasing disc speed; the reason for
this phenomenon is that p is proportional to the disc speed (Equations (6) and (13)). Addi-
tionally, the difference between theoretical pressure and the experimental value is about
0.05–0.52 Mpa. However, Figure 13 also shows that the theoretical value was greater than
the experimental data, and the difference increased significantly with increasing N. This
is because the position of h2 = 4.7 mm occurs in the middle stage of squeezing. With the
increase in disc speed N, the effects of shear thinning and viscous heat generation caused by
the increase in shear rate (Equation (27)) increase. It has been reported in the literature [3]
that the temperature of the squeezed TTI rubber compound is approximately 27 ◦C higher
than room temperature when the disc rotation squeezing model test for TTI strips was
carried out under N = 60 rpm without cooling the disc and the semicylinder.

(2) Power consumption

The density of the rubber compound is approximately 1.5 × 103 kg·m−3. The relevant
parameter values were substituted into Equation (37) to obtain the power consumptions
of P1, P2, and P3 for the TTI, TTS, and TTT at different disc speeds. The range of P1 is
1.8 × 10−6~1.5 × 10−5 W, P2 is 2.5~13 W, and P3 is 200~900 W. Compared with P3, P1
and P2 were small and negligible. In other words, during the feeding process, the power
consumption of the strip through the feed wedge clearance mainly comes from the sliding
friction of the strip along the barrel. This conclusion is of great significance for the feed
structure design of a cold-feed extruder.
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Figure 14 shows the comparison of the calculated power (P3) and experimental power
for TTI, TTS, and TTT at different disc speeds.
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Figure 14 shows that the power consumption obtained by theoretical calculation and
by experimental measurement increased linearly with increasing disc speed, and the former
increased faster than the latter. The difference between the theoretical predicted pressure
and the experimental value is about 40–200 W. Moreover, from the data comparison, it
was found that the theoretical value is almost greater than the experimental value. This is
mainly because the large viscosity data were used for the calculation of the total squeezing
force without considering the significant decrease in viscosity caused by shear thinning
and viscous heat generation, especially in the middle and end stages of the feeding process
at a high disc speeds. In other words, during the test, with the increase in disc speed, the
decrease in rubber viscosity would make the squeezing force small, eventually resulting in
a decrease in power consumption. However, in the theoretical calculation, a constant and
high value of rubber viscosity was used, so the theoretical value of the power consumption
was greater than its experimental value.

However, in the actual feeding process of the cold feed extruder, due to the cooling
of the screw and the feed barrel, the temperature rise in the rubber compound in the feed
wedge clearance would be greatly limited. The effect of the decrease in viscosity caused by
the temperature rise would be smaller, and the viscosity decrease mainly arises due to the
contribution of shear thinning. This would increase the measured values of the pressure
and power consumption, and lessen the difference between the theoretical prediction and
the experimental data.

Therefore, for the feeding process of a cold feeding rubber extruder, the piecewise
change in the squeezing velocity, shear thinning, viscous heat generation, and heat transfer
must be considered if we are to develop a more accurate mathematical model. Since the
Deborah number of the rubber compound passing through the feed wedge clearance at a
high screw speed is probably large, feeding analysis theory should also consider the elastic
response of the rubber compound [23,44,48].

6. Conclusions

This paper offered a theoretical analysis of the feeding process of rubber strips passing
through a feed wedge clearance in a cold-feed extruder. First, by simplifying the screw
flight rotation squeezing process into a disc rotation squeezing process, the instantaneous
squeezing velocity

.
h(t) in the disc rotation squeezing model was derived according to the

feed wedge clearance geometry and the disc rotating speed. The
.
h− t curve comprised

two general parts: a constant acceleration squeeze in the early stage and a constant velocity
squeeze in the later stage. To simplify the theoretical analysis, the squeezing process of
the whole feed wedge clearance was regarded as constant velocity squeezing, and the
average squeezing velocity V was used to replace the instantaneous squeezing velocity

.
h.

Second, by transforming rotation squeezing into differential slab squeezing, mathematical
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expressions of the velocity distribution, pressure distribution, total squeezing force, and
power consumption in the process of the rubber strip passing through the model wedge
were derived; this analysis utilized the rectangular coordinate system under isothermal and
quasi-steady assumptions and certain boundary conditions by using balance equations and
the Newtonian viscous constitutive relation. Third, the shear viscosity and sliding friction
coefficient of three kinds of rubber compounds were measured at room temperature and
under conditions close to the actual feeding process by using a parallel plate plastometer
and a CSM Anton Paar TRB3. The measured shear viscosity and sliding friction coefficient
were substituted into the theoretical formulas to compare the theoretical prediction with
previous experimental data. The comparison of pressure distribution and power consump-
tion showed that the established theoretical model of the feeding process of cold-feed
rubber extruders was not very accurate, on a quantitative level; however, it might reflect
the main factors that affect the feeding process, and can reveal the main trends in feeding
behavior. It was also noted that the piecewise change of the squeezing velocity, shear
thinning, viscous heat generation, and heat transfer must be considered in a more accurate
mathematical model, and the elastic response of the rubber compound should also be
considered at a high screw speeds.
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