Design and Engineering of Natural Cellulose Fiber-Based Biomaterials with Eucalyptus Essential Oil Retention to Replace Non-Biodegradable Delivery Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production and Characterization of MFC
2.3. Production and Characterization of CMC/EO Structure
2.4. Preparation and Characterization of Formulations
2.5. Preparation and Testing of Laboratory-Made Structures
2.6. Computational Studies and Statistics
3. Results and Discussion
3.1. Characterization of MFC
3.2. Characterization of CMC/EO Structure
3.3. Characterization and Analysis of Formulations
3.4. Characterization of Structures and Functional Properties Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Mousa, M.H.; Dong, Y.; Davies, I.J. Recent Advances in Bionanocomposites: Preparation, Properties, and Applications. Int. J. Polym. Mater. 2016, 65, 225–254. [Google Scholar] [CrossRef]
- Pacheco, G.; de Mello, C.V.; Chiari-Andréo, B.G.; Isaac, V.L.B.; Ribeiro, S.J.L.; Pecoraro, E.; Trovatti, E. Bacterial cellulose skin masks–Properties and sensory tests. J. Cosmet. Dermatol. 2017, 17, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Perugini, P.; Bleve, M.; Redondi, R.; Cortinovis, F.; Colpani, A. In vivo evaluation of the effectiveness of biocellulose facial masks as active delivery systems to skin. J. Cosmet. Dermatol. 2019, 19, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Reveny, J.; Tanuwijaya, J.; Stanley, M. Formulation and Evaluating Anti-Aging Effect of Vitamin E in Biocellulose Sheet Mask. Int. J. Chemtech. Res. 2017, 10, 322–330. [Google Scholar]
- Martins, V.D.F.; Cerqueira, M.A.; Fuciños, P.; Garrido-Maestu, A.; Curto, J.M.R.; Pastrana, L.M. Active bi-layer cellulose-based films: Development and characterization. Cellulose 2018, 25, 6361–6375. [Google Scholar] [CrossRef]
- Zhang, F.-Q.; Wang, B.; Xu, Y.-J.; Li, P.; Liu, Y.; Zhu, P. Convenient blending of alginate fibers with polyamide fibers for flame-retardant non-woven fabrics. Cellulose 2020, 27, 8341–8349. [Google Scholar] [CrossRef]
- Blessy, J.; Sagarika, V.K.; Chinnu, S.; Nandakumar, K.; Sabu, T. Cellulose nanocomposites: Fabrication and biomedical applications. J. Bioresour. Bioprod. 2020, 5, 223–237. [Google Scholar]
- Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Adv. Mater. 2021, 33, 2005569. [Google Scholar] [CrossRef]
- Ghayempour, S.; Mortazavi, S.M. Microwave curing for applying polymeric nanocapsules containing essential oils on cotton fabric to produce antimicrobial and fragrant textiles. Cellulose 2015, 22, 4065–4075. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Gao, M.; Zhao, Y.; Chen, Y. Sustained release of an essential oil by a hybrid cellulose nanofiber foam system. Cellulose 2020, 27, 2709–2721. [Google Scholar] [CrossRef]
- Sabbagh, F.; Muhamad, I.I.; Pa’e, N.; Hashim, Z. Strategies in improving properties of cellulose-based hydrogels for smart applications. In Cellulose-Based Superabsorbent Hydrogels, 1st ed.; Mondal, M., Ed.; Polymers and Polymeric Composites: A Reference Series; Springer: Cham, Switzerland, 2019; pp. 887–908. [Google Scholar]
- Asif, M.; Saleem, M.; Saadullah, M.; Yaseen, H.S.; Zarzour, R.A. COVID-19 and therapy with essential oils having antiviral, anti-infammatory, and immunomodulatory properties. Inflammopharmacology 2020, 28, 1153–1161. [Google Scholar] [CrossRef]
- Da Silva, J.K.R.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential Oils as Antiviral Agents. Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In−Silico Investigation. Int. J. Mol. Sci. 2020, 21, 3426. [Google Scholar] [CrossRef]
- Silva, J.; Abebe, W.; Sousa, S.M.; Duarte, V.G.; Machado, M.I.L.; Matos, F.J.A. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J. Ethnopharmacol. 2003, 89, 277–283. [Google Scholar] [CrossRef]
- Soares, M.C.M.S.; Damiani, C.E.N.; Moreira, C.M.; Stefanon, I.; Vassallo, D.V. Eucalyptol, an essential oil, reduces contractile activity in rat cardiac muscle. Braz. J. Med. Biol. Res. 2005, 38, 453–461. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. Forest Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Hafsa, J.; Smach, M.; Khedher, M.R.B.; Charfeddine, B.; Limem, K.; Majdoub, H.; Rouatbi, S. Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. LWT Food Sci. Technol. 2016, 68, 356–364. [Google Scholar] [CrossRef]
- Orchard, A.; van Vuuren, S. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases. Evid.-Based Complement. Altern. Med. 2017, 2017, 4517971. [Google Scholar] [CrossRef]
- Da Silva, P.H.M.; Brito, J.O.; da Silva Junior, F.G. Potential of Eleven Eucalyptus Species for the Production of Essential Oils. Sci. Agric. 2006, 63, 85–89. [Google Scholar] [CrossRef]
- Elaissi, A.; Rouis, Z.; Salem, N.A.B.; Mabrouk Salem, Y.B.; Salah, K.B.H.; Aouni, M.; Farhat., F.; Chemli, R.; Harzallah-Skhiri, F.; Khouja., M.L. Chemical composition of 8 eucalyptus species’ essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC Complement. Altern. Med. 2012, 12, 81. [Google Scholar] [CrossRef]
- Almas, I.; Innocent, E.; Machumi, F.; Kisinza, W. Chemical composition of essential oils from Eucalyptus globulus and Eucalyptus maculata grown in Tanzania. Sci. Afr. 2021, 12, e00758. [Google Scholar] [CrossRef]
- Sabbagh, F.; Muhamad, I.I. Physical and chemical characterisation of acrylamide-based hydrogels, Aam, Aam/NaCMC and Aam/NaCMC/MgO. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1439–1449. [Google Scholar] [CrossRef]
- Zambrano, F.; Starkey, H.; Wang, Y.; de Assis, C.A.; Venditti, R.; Pal, L.; Jameel, H.; Hubbe, M.A.; Rojas, O.J.; Gonzalez., R. Using Micro- and Nanofibrillated Cellulose as a Means to Reduce Weight of Paper Products: A Review. BioResources 2021, 15, 4553–4590. [Google Scholar] [CrossRef]
- Morais, F.P.; Carta, A.M.M.S.; Amaral, M.E.; Curto, J.M.R. Micro/nano-fibrillated cellulose (MFC/NFC) fibers as an additive to maximize eucalyptus fibers on tissue paper production. Cellulose 2021, 28, 6587–6605. [Google Scholar] [CrossRef]
- Beuther, P.D.; Veith, M.W.; Zwick, K.J. Characterization of Absorbent Flow Rate in Towel and Tissue. J. Eng. Fibers Fabr. 2010, 5, 1–7. [Google Scholar] [CrossRef]
- Miller, J.; Sumnicht, D.; Bernard, A.; Wahal, S. Multi-Ply Wiper/Towel Product with Cellulose Microfibers. U.S. Patent 8632658, 21 January 2014. [Google Scholar]
- Basak, S.; Saxena, S.; Raja, A.S.M.; Patil, P.G.; Krishnaprasad, G.; Narkar, R.; Kambli, N. Development of cotton fibre based fragrance pack and its characterization. Cellulose 2021, 28, 7185–7200. [Google Scholar] [CrossRef]
- Bu, W.; Zhang, M.; Fang, F.; Wang, Q. An alternative application of tissue paper. JAAD Online Clin. Pearl 2020, 84, E1. [Google Scholar] [CrossRef] [PubMed]
- Reguera, J.; Zheng, F.; Shalan, A.E.; Lizundia, E. Upcycling discarded cellulosic surgical masks into catalytically active freestanding materials. Cellulose 2022, 29, 2223–2240. [Google Scholar] [CrossRef] [PubMed]
- Camargo, M.C.; Martinez-Silveira, M.S.; Lima, A.A.; Bastos, B.P.; Dos Santos, D.L.; Mota, S.E.C.; Silva, R.B.; Toledo, I.P. Effectiveness of the use of non-woven face mask to prevent coronavirus infections in the general population: A rapid systematic review. Cien. Saude Colet. 2020, 25, 3365–3376. [Google Scholar] [CrossRef]
- Crilley, L.R.; Angelucci, A.A.; Malile, B.; Young, C.J.; VandenBoer, T.C.; Chen, J.I.L. Non-woven materials for cloth-based face masks inserts: Relationship between material properties and sub-micron aerosol filtration. Environ. Sci. Nano 2021, 8, 1603–1613. [Google Scholar] [CrossRef]
- Morais, F.P.; Curto, J.M.R. Design of Porous Nano Cellulose Based Biopolymers for Nanomedicine Applications. Curr. Sci. Res. Biomed. Sci. 2018, 1, 180003. [Google Scholar]
- Morais, F.P.; Simões, R.M.S.; Curto, J.M.R. Biopolymeric Delivery Systems for Cosmetic Applications Using Chlorella vulgaris Algae and Tea Tree Essential Oil. Polymers 2020, 12, 2689. [Google Scholar] [CrossRef]
- Sood, S.; Gupta, V.K.; Agarwal, S.; Dev, K.; Pathania, D. Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly(lactic acid-co-itaconic acid) hydrogel. Int. J. Biol. Macromol. 2017, 101, 612–620. [Google Scholar] [CrossRef]
- Lan, W.; He, L.; Liu, Y. Preparation and Properties of Sodium Carboxymethyl Cellulose/Sodium Alginate/Chitosan Composite Film. Coatings 2018, 8, 291. [Google Scholar] [CrossRef] [Green Version]
- Wasim, M.; Mushtaq, M.; Khan, S.U.; Farooq, A.; Naeem, M.A.; Khan, M.R.; Salam, A.; Wei, Q. Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. J. Ind. Text 2020, 51, 1886S–1915S. [Google Scholar] [CrossRef]
- Ye, H.; Zhu, L.; Li, W.; Liu, H.; Chen, H. Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications. J. Mater. Chem. A 2017, 5, 9882–9890. [Google Scholar] [CrossRef]
- Cailetaud, J.; De Bleye, C.; Dumont, E.; Sacré, P.-Y.; Gut, Y.; Bultel, L.; Ginot, Y.-M.; Hubert, P.; Ziemons., E. Towards a spray-coating method for the detection of low-dose compounds in pharmaceutical tablets using surface-enhanced Raman chemical imaging (SER-CI). Talanta 2018, 188, 584–592. [Google Scholar] [CrossRef]
- Morais, F.P.; Carta, A.M.M.S.; Amaral, M.E.; Curto, J.M.R. Cellulose Fiber Enzymatic Modification to Improve the Softness, Strength, and Absorption Properties of Tissue Papers. BioResources 2020, 16, 846–861. [Google Scholar] [CrossRef]
- Tourtollet, G.E.P.; Cottin, F.; Cochaux, A.; Petit-Conil, M. The use of MorFi analyser to characterize mechanical pulps. In Proceedings of the International Mechanical Pulping Conference, Quebec City, QC, Canada, 2–5 June 2003; pp. 225–232. [Google Scholar]
- Silvy, J.; Romatier, G.; Chiodi, R. Méthodes pratiques de controle du raffinage. ATIP 1968, 22, 31–53. [Google Scholar]
- Smith, D.K.; Bampton, R.F.; Alexander, W.J. Use of new solvents for evaluating chemical cellulose for the viscose process. Ind. Eng. Chem. Proc. Des. Dev. 1963, 2, 57–62. [Google Scholar] [CrossRef]
- Costa, V.L.; Costa, A.P.; Simões, R.M.S. Nanofibrillated Cellulose Rheology: Effects of Morphology, Ethanol/Acetone Addition, and High NaCl Concentration. BioResource 2019, 14, 7636–7654. [Google Scholar] [CrossRef]
- Morais, F.P.; Curto, J.M.R. Challenges in Computational Materials Modelling and Simulation: A case-study to predict tissue paper properties. Heliyon 2022, 8, e09356. [Google Scholar] [CrossRef] [PubMed]
- Curto, J.M.R.; Conceição, E.L.T.; Portugal, A.T.G.; Simões, R.M.S. Three dimensional modeling of fibrous materials and experimental validation. Mater. Werkst. 2011, 42, 370–374. [Google Scholar] [CrossRef]
- Morais, F.P.; Curto, J.M.R. 3D Computational Simulation and Experimental Validation of Structured Materials: Case Studies of Tissue Papers. BioResource 2022, 17, 4206–4225. [Google Scholar] [CrossRef]
- Morais, F.P.; Carta, A.M.M.S.; Amaral, M.E.; Curto, J.M.R. Computational Simulation Tools to Support the Tissue Paper Furnish Management: Case Studies for the Optimization of Micro/Nano Cellulose Fibers and Polymer-Based Additives. Polymers 2021, 13, 3982. [Google Scholar] [CrossRef]
- Gao, J.; Yuan, Y.; Yu, Q.; Yan, B.; Qian, Y.; Wen, J.; Ma, C.; Jiang, S.; Wang, X.; Wang, N. Bio-inspired antibacterial cellulose paper–poly(amidoxime) composite hydrogel for highly efficient uranium(vi) capture from seawater. Chem. Comm. 2020, 56, 3935–3938. [Google Scholar] [CrossRef]
- Deeksha, B.; Sadanand, V.; Hariram, N.; Rajulu, A.V. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J. Bioresour Bioprod. 2021, 6, 75–81. [Google Scholar] [CrossRef]
- Benslimane, A.; Bekkour, K.; François, P.; Sadaoui, D.; Benchabane, A. Carboxymethyl Cellulose: Rheological and Pipe Flow Properties. Recent Adv. Petrochem. Sci. 2018, 5, 555675. [Google Scholar]
- Benslimane, A.; Bahlouli, I.M.; Bekkour, K.; Hammiche, D. Thermal gelation properties of carboxymethyl cellulose and bentonite-carboxymethyl cellulose dispersions: Rheological considerations. Appl. Clay Sci. 2016, 132–133, 702–710. [Google Scholar] [CrossRef]
- Benchabane, A.; Bekkour, K. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid. Polym. Sci. 2008, 286, 1173–1180. [Google Scholar] [CrossRef]
- Chandorkar, N.; Tambe, S.; Amin, P.; Madankar, C. A systematic and comprehensive review on current understanding of the pharmacological actions, molecular mechanisms, and clinical implications of the genus Eucalyptus. Phytomed. Plus 2021, 1, 100089. [Google Scholar] [CrossRef]
- Campos, J.E.; Berteina-Raboin, S. Eucalyptol, an All-Purpose Product. Catalysts 2022, 12, 48. [Google Scholar] [CrossRef]
- Nwabor, O.F.; Singh, S.; Marlina, D.; Voravuthikunchai, S.P. Chemical characterization, release, and bioactivity of Eucalyptus camaldulensis polyphenols from freeze-dried sodium alginate and sodium carboxymethyl cellulose matrix. Food Qual. Saf. 2020, 4, 203–212. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential oils as additives in active food packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef]
- Baranska, M.; Schulz, H.; Reitzenstein, S.; Uhlemann, U.; Strehle, M.A.; Krüger, H.; Quilitzch, R.; Foley, W.; Popp, J. Vibrational spectroscopic studies to acquire a quality control method of Eucalyptus essential oils. Biopolymers 2005, 78, 237–248. [Google Scholar] [CrossRef]
- Al-Bayati, F.A. Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq. Ann. Clin. Microbiol. Antimicrob. 2009, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Ko, F.; Wan, Y. Introduction to Nanofiber Materials; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Han, Y.; Shchukin, D.; Fernandes, P.; Mutihac, R.-C.; Möhwald, H. Mechanism and kinetics of controlled drug release by temperature stimuli responsive protein nanocontainers. Soft Matter 2010, 6, 4942–4947. [Google Scholar] [CrossRef]
- Rojek, B.; Wesolowski, M. DSC supported by factor analysis as a reliable tool for compatibility study in pharmaceutical mixtures. J. Therm. Anal. Calorim. 2019, 138, 4531–4539. [Google Scholar] [CrossRef]
- Souza, H.J.B.; Botrel, D.A.; Fernandes, R.V.B.; Borges, S.V.; Felix, P.H.C.; Viana, L.C.; Lago, A.M.T. Hygroscopic, structural, and thermal properties of essential oil microparticles of sweet orange added with cellulose nanofibrils. J. Food Process Preserv. 2020, 44, e14365. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Vasilieva, N.Y.; Borovkova, V.S.; Fetisova, O.Y.; Issaoui, N.; Malyar, Y.N.; Elsuf’ev, E.V.; Karacharov, A.A.; Skripnikov, A.M.; Miroshnikova, A.V.; et al. Food Xanthan Polysaccharide Sulfation Process with Sulfamic Acid. Foods 2021, 10, 2571. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Ayoub, A.; Daystar, J.S.; Venditti, R.A.; Pawlak, J.J. Enhanced absorbent products incorporating cellulose and its derivatives: A Review. BioResource 2013, 8, 6556–6629. [Google Scholar] [CrossRef]
- Kazachenko, A.; Akman, F.; Medimagh, M.; Issaoui, N.; Vasilieva, N.; Malyar, Y.N.; Sudakova, I.G.; Karacharov, A.; Miroshnikova, A.; Al-Dossary, O.M. Sulfation of Diethylaminoethyl-Cellulose: QTAIM Topological Analysis and Experimental and DFT Studies of the Properties. ACS Omega 2021, 6, 22603–22615. [Google Scholar] [CrossRef]
- De Assis, T.; Reisinger, L.W.; Pal, L.; Pawlak, J.; Jameel, H.; Gonzalez, R.W. Understanding the effect of machine technology and cellulosic fibers on tissue properties—A review. BioResource 2018, 13, 4593–4629. [Google Scholar] [CrossRef]
- Mullins, B.J.; Braddock, R.D. Capillary rise in porous, fibrous media during liquid immersion. Int. J. Heat Mass Transf. 2012, 55, 6222–6230. [Google Scholar] [CrossRef] [Green Version]
Formulations | Eucalyptus Slush Pulp (%) | Softwood Pulp (%) | MFC (%) | CMC/EO (%) |
---|---|---|---|---|
F1 | 75 | 25 | - | - |
F2 | 75 | 25 | 2 | - |
F3 | 75 | 25 | - | 5 |
F4 | 75 | 25 | 2 | 5 |
F5 * | 75 | 25 | - | 5 |
F6 * | 75 | 25 | 2 | 5 |
F7 | 90 | 10 | - | - |
F8 | 90 | 5 | 5 | - |
F9 | 90 | - | 10 | - |
Properties * | MFC (%) * |
---|---|
Morphological properties | |
NF—Number of fibers (million/g) | 24.7 ± 0.8 |
FL—Fiber Length weighted by Length (mm) | 0.708 ± 0.004 |
FW—Fiber Width (µm) | 22.3 ± 0.1 |
C—Coarseness (mg/100 m) | 7.03 ± 0.01 |
KF—Kinked Fibers (%) | 31.9 ± 0.8 |
Curl (%) | 7.9 ± 0.0 |
RM—Rate of Macrofibrils (% in length) | 1.182 ± 0.064 |
FE—Fine Elements (% in length) | 46.9 ± 1.4 |
Water interaction properties | |
°SR | 93 ± 0 |
WRV (%) | 481.9 ± 8.5 |
Chemical properties | |
Viscosity (mL/g) | 976.95 ± 0.05 |
DP | 1713.95 ± 0.08 |
CCOOH (mmol/100 g) | 11.3 ± 0.2 |
Compounds | Relative % | Retention Time (min) |
---|---|---|
β-Methylbutanal | 0.16 | 2.683 |
Acetic Acid | 0.01 | 2.790 |
1-Butanol | 0.03 | 4.010 |
Isopropylacetone | 0.01 | 4.109 |
Toluene | 0.01 | 4.852 |
Isoamyl acetate | 0.01 | 8.891 |
β-Pinene | 0.04 | 10.377 |
α-Pinene | 12.45 | 10.993 |
α-Fenchene | 0.04 | 11.426 |
Camphene | 0.16 | 11.474 |
2,4-Thujadiene | 0.07 | 11.696 |
1,2,4,4-Tetramethylcyclopentene | 0.01 | 12.439 |
β-Pinene | 0.27 | 12.505 |
β-Myrcene | 0.09 | 13.111 |
α-Phellandrene | 0.33 | 13.521 |
cis-Anhydrolinalool oxide | 0.02 | 13.651 |
α-Terpinene | 0.05 | 13.957 |
p-Cymene | 2.58 | 14.297 |
1,8-Cineole | 59.19 | 14.573 |
γ-Terpinene | 0.11 | 15.406 |
Nortricyclene | 0.20 | 15.812 |
α -Dimethyl-1-Benzene | 0.64 | 16.393 |
α-Ocimen | 0.03 | 16.670 |
Linalool | 0.07 | 16.751 |
γ-Methylene | 0.01 | 16.877 |
Butanoic Acid | 0.11 | 16.943 |
α-Fenchol | 0.16 | 17.180 |
α-Campholenal | 0.06 | 17.557 |
Isocitronellene | 0.02 | 17.867 |
cis-Pinocarveol | 3.08 | 17.993 |
Spiro[4.5]dec-6-ene | 0.04 | 18.163 |
m-Mentha-4,8-diene | 0.03 | 18.273 |
Trichloroacetic Acid | 0.02 | 18.455 |
Methyl-1,4-heptadiene | 0.03 | 18.543 |
Bicyclo[3.1.1]heptan-3-one | 0.14 | 18.628 |
Bicyclo[2.2.1]heptan-3-one | 0.77 | 18.695 |
Borneol | 0.26 | 18.824 |
Bicyclo[3.1.1]heptan-3-one | 0.37 | 19.049 |
Terpinen-4-ol | 0.18 | 19.164 |
p-Cymen-8-ol | 0.06 | 19.401 |
Thujol | 0.43 | 19.482 |
α-Terpineol | 0.97 | 19.578 |
2-Pinen-10-ol | 0.25 | 19.748 |
α-Phellandrene Epoxide | 0.03 | 19.899 |
2-Pinen-4-one | 0.02 | 20.088 |
trans-Carveol | 0.10 | 20.398 |
2-Oxabicyclo[2.2.2]octan-6-ol | 0.02 | 20.513 |
trans-3-Pinen-2-ol | 0.24 | 20.657 |
2-Methyladamantane | 0.13 | 20.712 |
Myrtenyl Acetate | 0.03 | 21.041 |
2-Cyclohexen-1-one | 0.06 | 21.104 |
2-Cyclohexen-1-one | 0.03 | 21.215 |
2,4-Octadienoic Acid | 0.01 | 21.318 |
Piperitone | 0.01 | 21.392 |
Borneol Acetate | 0.03 | 22.338 |
2-Pinen-10-ol | 0.02 | 22.715 |
p-Cymen-2-ol | 0.02 | 22.797 |
β-Pinene | 0.03 | 23.185 |
2-Oxabicyclo[2.2.2]octan-6-ol | 0.07 | 23.853 |
α-Terpinyl Acetate | 0.93 | 24.057 |
Isoledene | 0.07 | 24.751 |
α-Copaene | 0.06 | 24.829 |
Δ-Cadinene | 0.06 | 24.892 |
α-Bourbonene | 0.01 | 25.077 |
Junipene | 0.03 | 25.383 |
Zingiberene | 0.01 | 25.653 |
α-Gurjunene | 0.42 | 25.727 |
Alloaromadendrene | 0.07 | 25.849 |
β-Caryophyllene | 0.13 | 25.978 |
β-Patchoulene | 0.17 | 26.189 |
β-Gurjunene | 0.46 | 26.311 |
Cyclohexene | 0.03 | 26.377 |
Aromadendrene | 7.72 | 26.508 |
α-Selinene | 0.23 | 26.581 |
Pentalene | 0.02 | 26.773 |
α-Humulene | 0.07 | 26.843 |
α-Gurjunene | 0.03 | 26.932 |
(-)-Alloaromadendrene | 1.57 | 27.035 |
γ-Gurjunene | 0.10 | 27.301 |
γ-Muurolene | 0.07 | 27.390 |
β-Selinene | 0.22 | 27.663 |
Ledene | 0.11 | 27.722 |
Ledene | 0.63 | 27.870 |
α-Muurolene | 0.02 | 27.966 |
γ-Muurolene | 0.01 | 28.073 |
β-Maaliene | 0.02 | 28.144 |
α-Amorphene | 0.05 | 28.317 |
Aromadendrene | 0.03 | 28.461 |
l-Calamenene | 0.05 | 28.517 |
β-Humulene | 0.03 | 29.249 |
Epiglobulol | 0.36 | 29.426 |
Palustrol | 0.12 | 29.622 |
9-Norpresilphiperfolan-9-one | 0.02 | 29.681 |
Spathulenol | 0.04 | 29.843 |
(+)-Ledol | 1.03 | 30.002 |
Veridiflorol | 0.23 | 30.195 |
4′-Hydroxy-3′,5′-dimethylacetophenone | 0.04 | 30.420 |
β-Eudesmene | 0.04 | 30.450 |
Eremophila-1(10),11-diene | 0.05 | 30.704 |
1H-Indene | 0.08 | 30.886 |
β-Guaiene | 0.02 | 30.982 |
β-Eudesmol | 0.03 | 31.514 |
α-Eudesmol | 0.02 | 31.584 |
Cyclododeca-4,8-dien-1-one | 0.01 | 33.339 |
4-Ethyl-3-oxabicyclo[4.4.0]decane | 0.01 | 33.524 |
Total identified: 105 compounds | 99.95% |
Properties | F1 | F2 | F7 | F8 | F9 |
---|---|---|---|---|---|
Morphological properties | |||||
NF—Number of fibers (million/g) | 20.0 ± 0.2 | 20.1 ± 0.2 | 19.1 ± 0.5 | 21.2 ± 0.1 | 22.0 ± 0.4 |
FL—Fiber Length weighted by Length (mm) | 0.8 ± 0.0 | 0.7 ± 0.0 | 0.8 ± 0.0 | 0.8 ± 0.0 | 0.7 ± 0.0 |
FW—Fiber Width (µm) | 19.6 ± 0.1 | 19.5 ± 0.1 | 19.6 ± 0.1 | 19.4 ± 0.1 | 19.4 ± 0.1 |
C—Coarseness (mg/100 m) | 7.6 ± 0.1 | 7.7 ± 0.1 | 7.5 ± 0.2 | 6.9 ± 0.04 | 6.8 ± 0.1 |
KF—Kinked Fibers (%) | 46.9 ± 0.5 | 45.8 ± 0.6 | 39.2 ± 0.6 | 37.7 ± 0.1 | 37.4 ± 0.6 |
Curl (%) | 10.6 ± 0.1 | 10.5 ± 0.1 | 9.2 ± 0.1 | 8.8 ± 0.1 | 8.9 ± 0.1 |
RM—Rate of Macrofibrils (% in length) | 0.610 ± 0.009 | 0.632 ± 0.010 | 0.520 ± 0.007 | 0.540 ± 0.019 | 0.561 ± 0.008 |
FE—Fine Elements (% in length) | 42.0 ± 0.4 | 43.2 ± 0.3 | 37.7 ± 0.5 | 38.0 ± 0.2 | 39.1 ± 0.2 |
Water interaction properties | |||||
°SR | 23 ± 0 | 26 ± 0 | 23 ± 0 | 27 ± 0 | 34 ± 0 |
WRV (%) | 113.2 ± 0.1 | 123.4 ± 1.5 | 100.1 ± 1.0 | 142.8 ± 2.7 | 296.6 ± 7.2 |
NF | FL | FW | C | KF | Curl | RM | FE | °SR | WRV | ||
---|---|---|---|---|---|---|---|---|---|---|---|
NF | Pearson’s correlation | 1 | −0.663 | −0.790 * | −0.887 ** | −0.544 | −0.532 | −0.198 | −0.562 | 0.845 ** | 0.669 * |
p-value | 0.052 | 0.011 | 0.001 | 0.130 | 0.140 | 0.610 | 0.115 | 0.004 | 0.049 | ||
FL | Pearson’s correlation | −0.663 | 1 | 0.762 * | 0.279 | −0.018 | −0.083 | −0.484 | −0.162 | −0.807 ** | −.0755 * |
p-value | 0.052 | 0.017 | 0.467 | 0.963 | 0.831 | 0.187 | 0.677 | 0.009 | 0.019 | ||
FW | Pearson’s correlation | −0.790 * | 0.762 * | 1 | 0.660 | 0.567 | 0.513 | 0.131 | 0.390 | −0.805 ** | −0.668 * |
p-value | 0.011 | 0.017 | 0.053 | 0.111 | 0.158 | 0.738 | 0.299 | 0.009 | 0.049 | ||
C | Pearson’s correlation | −0.887 ** | 0.279 | 0.660 | 1 | 0.829 ** | 0.840 ** | 0.625 | 0.879 ** | −0.662 | −0.472 |
p-value | 0.001 | 0.467 | 0.053 | 0.006 | 0.005 | 0.072 | 0.002 | 0.052 | 0.200 | ||
KF | Pearson’s correlation | −0.544 | −0.018 | 0.567 | 0.829 ** | 1 | 0.995 ** | 0.881 ** | 0.944 ** | −0.447 | −0.310 |
p-value | 0.130 | 0.963 | 0.111 | 0.006 | 0.000 | 0.002 | 0.000 | 0.228 | 0.418 | ||
Curl | Pearson’s correlation | −0.532 | −0.083 | 0.513 | 0.840 ** | 0.995 ** | 1 | 0.912 ** | 0.969 ** | −0.395 | −0.252 |
p-value | 0.140 | 0.831 | 0.158 | 0.005 | 0.000 | 0.001 | 0.000 | 0.292 | 0.513 | ||
RM | Pearson’s correlation | −0.198 | −0.484 | 0.131 | 0.625 | 0.881 ** | 0.912 ** | 1 | 0.920 ** | −0.021 | 0.082 |
p-value | 0.610 | 0.187 | 0.738 | 0.072 | 0.002 | 0.001 | 0.000 | 0.956 | 0.835 | ||
FE | Pearson’s correlation | −0.562 | −0.162 | 0.390 | 0.879 ** | 0.944 ** | 0.969 ** | 0.920 ** | 1 | −0.345 | −0.191 |
p-value | 0.115 | 0.677 | 0.299 | 0.002 | 0.000 | 0.000 | 0.000 | 0.363 | 0.623 | ||
°SR | Pearson’s correlation | 0.845 ** | −0.807 ** | −0.805 ** | −0.662 | −0.447 | −0.395 | −0.021 | −0.345 | 1 | 0.936 ** |
p-value | 0.004 | 0.009 | 0.009 | 0.052 | 0.228 | 0.292 | 0.956 | 0.363 | 0.000 | ||
WRV | Pearson’s correlation | 0.669 * | −0.755 * | −0.668 * | −0.472 | −0.310 | −0.252 | 0.082 | −0.191 | 0.936** | 1 |
p-value | 0.049 | 0.019 | 0.049 | 0.200 | 0.418 | 0.513 | 0.835 | 0.623 | 0.000 |
HF | TS7 | TI | ABS | CR | ||
---|---|---|---|---|---|---|
NF | Pearson’s correlation | −0.526 | 0.704 * | 0.634 | −0.620 | 0.067 |
p-value | 0.146 | 0.034 | 0.067 | 0.075 | 0.864 | |
FL | Pearson’s correlation | 0.562 | −0.782 * | −0.868 ** | 0.232 | 0.440 |
p-value | 0.115 | 0.013 | 0.002 | 0.548 | 0.235 | |
FW | Pearson’s correlation | 0.539 | −0.601 | −0.612 | 0.631 | −0.028 |
p-value | 0.135 | 0.087 | 0.080 | 0.069 | 0.942 | |
C | Pearson’s correlation | 0.404 | −0.445 | −0.293 | 0.754 * | −0.411 |
p-value | 0.281 | 0.231 | 0.445 | 0.019 | 0.271 | |
KF | Pearson’s correlation | 0.314 | −0.147 | 0.033 | 0.799 ** | −0.638 |
p-value | 0.411 | 0.707 | 0.932 | 0.010 | 0.065 | |
Curl | Pearson’s correlation | 0.268 | −0.105 | 0.082 | 0.782 * | −0.664 |
p-value | 0.486 | 0.789 | 0.834 | 0.013 | 0.051 | |
RM | Pearson’s correlation | 0.010 | 0.223 | 0.426 | 0.592 | −0.764 * |
p-value | 0.979 | 0.564 | 0.253 | 0.093 | 0.017 | |
FE | Pearson’s correlation | 0.211 | −0.092 | 0.113 | 0.732 * | −0.670 * |
p-value | 0.585 | 0.814 | 0.772 | 0.025 | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, F.P.; Curto, J.M.R. Design and Engineering of Natural Cellulose Fiber-Based Biomaterials with Eucalyptus Essential Oil Retention to Replace Non-Biodegradable Delivery Systems. Polymers 2022, 14, 3621. https://doi.org/10.3390/polym14173621
Morais FP, Curto JMR. Design and Engineering of Natural Cellulose Fiber-Based Biomaterials with Eucalyptus Essential Oil Retention to Replace Non-Biodegradable Delivery Systems. Polymers. 2022; 14(17):3621. https://doi.org/10.3390/polym14173621
Chicago/Turabian StyleMorais, Flávia P., and Joana M. R. Curto. 2022. "Design and Engineering of Natural Cellulose Fiber-Based Biomaterials with Eucalyptus Essential Oil Retention to Replace Non-Biodegradable Delivery Systems" Polymers 14, no. 17: 3621. https://doi.org/10.3390/polym14173621
APA StyleMorais, F. P., & Curto, J. M. R. (2022). Design and Engineering of Natural Cellulose Fiber-Based Biomaterials with Eucalyptus Essential Oil Retention to Replace Non-Biodegradable Delivery Systems. Polymers, 14(17), 3621. https://doi.org/10.3390/polym14173621