Study on Flexural Behaviour of Ferrocement Composites Reinforced with Polypropylene Warp Knitted Fabric
Abstract
:1. Introduction
2. Materials and Methods
2.1. Matrix and Reinforcment
2.1.1. Testing of Warp Knitted Samples
2.1.2. Ferrocement Composite Preparation Process
2.1.3. Flexural Test Set up for Ferrocement Composites
2.1.4. Microstructure Analysis of Ferrocement Composites
3. Results and Discussion
3.1. Warp Knitted Fabric Characteristics
3.2. First Crack Load Analysis
3.3. Ultimate Load Analysis
3.4. Load Deflection Behavior
3.5. Micro Structure Analysis
3.6. Statistical Data Analysis
4. Conclusions
- Among the three warp knitted fabrics, marquisette net fabric possesses higher tensile properties than the sandfly net fabrics due to straight alignment of yarns in the fabrics. Also, the warp knitted fabrics possess good tensile strain properties due to the nature of its structure. For the 93 tex samples, big sandfly net has the highest tensile strain value of 98.4%, which is 61% higher than the 93 tex PP marquisette and 22% higher than 93 tex PP small sandfly warp knitted fabrics. Furthermore, small sandfly net exhibit higher tensile strain than the marquisette structure due to the geometry of filament arrangement in the fabric.
- First crack load of sandfly structure is better than the marquisette structure. The reason is due to the diagonal positioning of yarns in the structure. Among the two sandfly net, big mesh has better first crack load than the small sandfly net due to better cement mortar penetration. The same phenomenon reflects in the ultimate load of the composites also.
- Load deflection behaviour of the composites clearly indicates the higher breaking load of the warp knitted fabric reinforced ferrocement composites than the chicken mesh reinforced ferrocement composites.
- Marquisette fabric and small sandfly net composites possess high energy absorption factor than the other composites due to higher deflection in the composites for the given load. The reason is due to the lesser cement fabric bonding.
- All the warp knitted reinforced ferrocement composites has improved ductility factor compared to conventional chicken mesh reinforced ferrocement composites When using chicken mesh the corrosion factor is the main drawback, so replacing it with warp knitted fabrics enhances corrosion resistance.
- The filament denier has a positive impact in the flexural properties. With respect to number of layers, three layers in the laminate shows improved performance properties than the 2- and 4- layer composites.
- Microstructure analysis on ferrocement confirms the bonding between the mortar mix and warp knitted fabrics and the penetration of mortar mix inside the warp knitted stitches of the filaments is clearly visible. In big sandfly ferrocement composites, the mortar get tightly fixed between the diagonal strips postponed the first crack formation in flexure.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naaman, A.E. Ferrocement and Laminated Cementitious Composites; Techno Press 3000: An Arbor, MI, USA, 2000. [Google Scholar]
- MVarma, B.; Hajare, M.B. Ferrocement: Composite material and its applications. Int. J. Pure Appl. Res. Eng. Technol. 2015, 3, 296–307. [Google Scholar]
- Sakthivel, P.B.; Jagannathan, A. Fiber reinforced ferrocement—A review study. In Proceedings of the 2nd International Conference on Advances in Mechanical, Manufacturing and Building Sciences (ICAMB-2012), Vellore, India, 9–11 January 2012; pp. 1172–1177. [Google Scholar]
- Navid, S.S.; Bhalsing, S.S.; Pankaj, B.A. Tensile strength of ferro cement with respect to specific surface. Int. J. Eng. Adv. Technol. 2013, 3, 473–475. [Google Scholar]
- Kumar, A. Ferrocement box sections-viable option for floors and roof of multi-storey buildings. Asian J. Civil Eng. Build. Hous. 2005, 6, 569–582. [Google Scholar]
- Rajendran, M.; Soundarapandian, N. Geopolymer ferrocement panels under flexural loading. Sci. Eng. Compos. Mater. 2015, 22, 331–341. [Google Scholar] [CrossRef]
- Shri, S.D.; Thenmozhi, R.; Anitha, M. Experimental validation of a theoretical model for flexural capacity of hybrid ferrocement slab. Eur. J. Sci. Res. 2012, 73, 512–526. [Google Scholar]
- Wang, S.; Naaman, A.E.; Li, V.C. Bending response of hybrid ferrocement plates with meshes and fibers. J. Ferrocement. 2004, 34, 275–288. [Google Scholar]
- Kaish, A.A.B.M.; Jamil, M.; Raman, S.N.; Zain, M.F.M.; Nahar, L. Ferrocement composites for strengthening of concrete columns: A review. Constr. Build. Mater. 2018, 160, 326–340. [Google Scholar] [CrossRef]
- Salgia, A.L.; Panganti, A.A. Ferro Cement as a Cost Effective Alternative to RCC. Int. J. Eng. Res. 2018, 7, 89–93. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties and Materials; ICI. Chennai India: Chennai, India, 1997; p. 548. [Google Scholar]
- Nadasan, L.; Onet, T. Durability of ferrocement, annals of the faculty of engineering Hunedoara. Int. J. Eng. 2013, 11, 89–92. [Google Scholar]
- Mansur, M.A.; Paramasivam, P.; Wee, T.H.; Lim, H.B. Durability of Ferrocement—A case study. J. Ferrocement. 1996, 26, 11–19. [Google Scholar]
- EDharan, A.M.; Ragunathapandian, E.P. Strengthening of flanged beam using ferrocement composites (Square Mesh) under static loading. Int. J. Eng. Sci. 2016, 6, 8444–8448. [Google Scholar]
- Akhtar, S.; Daniyal, M.; Quraishi, M.A. A review of corrosion control methods in ferrocement. J. Steel Struct. Const. 2015, 1, 2472-0437. [Google Scholar]
- Rashid, M.H.; Alam, Z.; Mahmud, F.; Anita, M.S. Durability and performance of ferrocement infill wall panel. Civil Eng. J. 2019, 5, 1–3. [Google Scholar] [CrossRef]
- Masood, A.; Arif, M.; Akhtar, S.; Haquie, M. Performance of ferrocement panels in different environments. Cem. Concr. Res. 2003, 33, 555–562. [Google Scholar] [CrossRef]
- Hanif, A.; Lu, Z.; Sun, M.; Parthasarathy, P.; Li, Z. Green lightweight ferrocement incorporating fly ash cenosphere based fibrous mortar matrix. J. Clean. Prod. 2017, 159, 326–335. [Google Scholar] [CrossRef]
- Christensen, K.A.; Williamson, R.B. Solving the Galvanic Cell Problem in Ferrocement; Report No. UC SESM71-14; University of California: Berkeley, CA, USA, 1971. [Google Scholar]
- Vinoth, R. Experimental study of flexural behaviour on ferrocement concrete beam. Int. J. Sci. Res. Eng. Dev. 2019, 2, 282–293. [Google Scholar]
- Mansur, M.A.; Maalej, M.; Ismail, M. Study on corrosion durability of ferrocement. ACI Mater. J. 2008, 105, 28–34. [Google Scholar]
- Pons, D.J.; Bayley, G.; Tyree, C.; Hunt, M.; Laurenson, R. Material properties of wire for the fabrication of knotted fences. Int. J. Metals 2014, 2014, 123195. [Google Scholar] [CrossRef]
- Bhikshma, V.; Srinivas, R. Durability of polymer and fly ash modified ferro cement elements. Procedia Eng. 2011, 14, 2642–2649. [Google Scholar] [CrossRef]
- Gaba, H.; Singh, H. The Study of Economy of Ferrocement with Fly Ash as an Admixture. In Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India, 1–6 October 2008; pp. 1–6. [Google Scholar]
- Sasiekala, K.; Malathy, R. Behaviour of mortar containing silica fume and fly ash used for ferrocement composites. J. Ind. Pollut. Control. 2012, 28, 13–20. [Google Scholar]
- Baltazar-Zamora, M.A.; Bastidas, D.M.; Santiago-Hurtado, G.; Mendoza-Rangel, J.M.; Gaona-Tiburcio, C.; Bastidas, J.M.; Almeraya-Calderón, F. Effect of silica fume and fly ash admixtures on the corrosion behavior of aisi 304 embedded in concrete exposed in 3.5% NaCl solution. Materials 2019, 12, 4007. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, T.; Arif, M.M.; Masood, A. Experimental investigations on ferrocement roof slab system for low cost housing. J. Inst. Eng. India Ser. A 2014, 95, 9–18. [Google Scholar] [CrossRef]
- Akthar, S. Improvement in durability of ferrocement using fly ash and silica fume modified mortar. Int. J. Sci. Res. Eng. Technol. 2014, 3, 966–969. [Google Scholar]
- Rathish, K.P. High performance superplasticized silica fume mortars for ferrocement works. Facta Univ.-Ser. Archit. Civ. Eng. 2010, 8, 129–134. [Google Scholar] [CrossRef]
- Mashrei, M.A.; Kamil, G.M.; Oleiwi, H.M. High performance of silica fume mortars for ferrocement applications. Eng. Technol. J. 2013, 31, 2477–2488. [Google Scholar]
- Shannag, M.J.; Mourad, S.M. Flowable high strength cementitious matrices for ferrocement applications. Constr. Build. Mater. 2012, 36, 933–939. [Google Scholar] [CrossRef]
- Gupta, K.; Ingole, S.; Girase, A.; Dahake, A. Corrosion effect over the flexural strenght of ferro-cement. Int. Res. J. Eng. Technol. 2019, 6, 516–518. [Google Scholar]
- Rajkumar, D.; Vidivelli, B. Performances of SBR latex modified ferrocement for repairing reinforced concrete beams. Aust. J. Basic Appl. Sci. 2010, 4, 520–531. [Google Scholar]
- Sakthivel, P.B.; Jagannathan, A. Study on flexural behaviour of ferrocement slabs reinforced with PVC-coated weld mesh. Int. J. Eng. Res. Devel. 2012, 1, 50–57. [Google Scholar]
- Iburahim, M.; Joseline, D.; Mohammed, H.S. Strength, durability and thermal performance of ferrocement panels for use in secondary roofing. Int. J. Appl. Eng. Res. 2017, 12, 6758–6768. [Google Scholar]
- Vicridge, I.G.; Ranjabar, M.M. The effect of aggressive environment on the flexural performance of ferreocement. In Proceedings of the 6th International Symposium on Ferrocement, Ann Arbor, MI, USA, 7–10 June 1998; pp. 313–328. [Google Scholar]
- Vickridge, I.G.; Ranjbar, M.M. The combined effect of crack, load and aggressive environment on the corrosion rate of ferrocement reinforcement. In Proceedings of the 6th International Symposium on Ferrocement, Ann Arbor, MI, USA, 7–10 June 1998; pp. 329–343. [Google Scholar]
- Dotto, J.M.R.; De Abreu, A.G.; Dal Molin, D.C.C.; Müller, I.L. Influence of silica fume addition on concrete physical properties and on corrosion behaviour of reinforcing bars. Cem. Concr. Compos. 2004, 26, 31–39. [Google Scholar] [CrossRef]
- Torri, K.; Kawamura, M. Chloride induced corrosion of steel reinforcement made with various mineral admixtures. Trans. Jpn. Conc. Inst. 1990, 12, 183–190. [Google Scholar]
- Ramesht, M.H. Effect of corrosion on flexural behaviour of ferrocement in corrosive environment. J. Ferrocement. 1995, 27, 7–18. [Google Scholar]
- Hemapriya, V.; Prabakaran, M.; Parameswari, K.; Chitra, S.; Kim, S.H.; Chung, I.M. Experimental and theoretical studies on inhibition of benzothiazines against corrosion of mild steel in acidic medium. Anti-Corros. Methods Mater. 2017, 64, 306–314. [Google Scholar] [CrossRef]
- Devi, G.N.; Unnisa, C.B.N.; Roopan, S.M.; Hemapriya, V.; Chitra, S.; Chung, I.M.; Kim, S.H.; Prabakaran, M. Floxacins: As mediators in enhancing the corrosion inhibition efficiency of natural polymer dextrin. Macromol. Res. 2020, 28, 558–566. [Google Scholar] [CrossRef]
- Unnisa, C.B.N.; Chitra, S.; Devi, G.N.; Kiruthika, A.; Roopan, S.M.; Hemapriya, V.; Chung, I.M.; Kim, S.H.; Prabakaran, M. Electrochemical and nonelectrochemical analyses of cardo polyesters at the metal/0.5 M H2SO4 interface for corrosion protection. Res. Chem. Intermed. 2019, 45, 5425–5449. [Google Scholar] [CrossRef]
- Hemapriya, V.; Chung, I.M.; Parameswari, K.; Chitra, S.; Kim, S.H.; Prabakaran, M. Corrosion inhibition behavior of benzothiazine derivative on low carbon steel in acid medium: Adsorption and quantum chemical investigations. Surf. Rev. Lett. 2019, 26, 1950066. [Google Scholar] [CrossRef]
- Chung, I.M.; Hemapriya, V.; Kanchana, P.; Arunadevi, N.; Chitra, S.; Kim, S.H.M. Prabakaran Active-polyphenolic- compounds-rich green inhibitor for the surface protection of low carbon steel in acidic medium. Surf. Rev. Lett. 2020, 27, 1950154. [Google Scholar] [CrossRef]
- Malathy, R.; Sentilkumar, S.R.R.; Prakash, A.R.; Das, B.B.; Chung, I.M.; Kim, S.H.; Prabakaran, M. Use of industrial silica sand as a fine aggregate in concrete-An explorative study. Buildings 2022, 12, 1273. [Google Scholar] [CrossRef]
- Malathy, R.; Shanmugam, R.; Chung, I.M.; Kim, S.H.; Prabakaran, M. Mechanical and microstructural properties of composite mortars with lime, silica fume and rice husk ash. Processes 2022, 10, 1424. [Google Scholar] [CrossRef]
- Chung, I.M.; Malathy, R.; Priyadharshini, R.; Hemapriya, V.; Kim, S.H.; Prabakaran, M. Inhibition of mild steel corrosion using Magnolia kobus extract in sulphuric acid medium. Mater. Today Commun. 2020, 25, 101687. [Google Scholar] [CrossRef]
- Malathy, R.; Prabakaran, M.; Kalaiselvi, K.; Chung, I.M.; Kim, S.H. Comparative polyphenol composition, antioxidant and anticorrosion properties in various parts of Panax ginseng extracted in different solvents. Appl. Sci. 2021, 11, 93. [Google Scholar] [CrossRef]
- Malathy, R.; Arivoli, M.; Chung, I.M.; Prabakaran, M. Effect of surface-treated energy optimized furnace steel slag as coarse aggregate in the performance of concrete under corrosive environment. Constr. Build. Mater. 2021, 284, 122840. [Google Scholar] [CrossRef]
- Liu, X.M.; Jiang, J.H.; Chen, N.L.; Feng, X.W. Effect of manufacturing parameters on the tensile properties and yarn damage of glass fiber warp-knittedted net preforms. J. Ind. Text. 2009, 38, 233–249. [Google Scholar] [CrossRef]
- Peled, A.; Cohen, Z.; Pasder, Y.; Roye, A.; Gries, T. Influences of textile characteristics on the tensile properties of warp knittedted cement based composites. Cem. Concr. Compos. 2008, 30, 174–183. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Consistency | 36% |
Intial setting time | 40 min |
Final setting time | 600 min |
Specific gravity | 3.15 |
Property | Value |
---|---|
Specific gravity | 2.63(no unit) |
Grading zone | II |
Water absorption | 1% |
Fineness modulus | 2.6 (no unit) |
Bulk density (a) Loose (b) Compacted | 1530 kg/m3 1630 kg/m3 |
Property | Value |
---|---|
Raw material | Galvanized Iron |
Mesh shape | Hexagonal |
Diameter of wire, mm | 0.71 mm |
Weight g/sq.m | 390 |
Density | 7820 kg/m3 |
Sample Code | Structure and Mesh Size | Sample Code | Structure and Mesh Size | Sample Code | Structure and Mesh Size | Filament Denier | No. of Layers |
---|---|---|---|---|---|---|---|
1-PP/MFL/2 | Marquisette net structure 5 × 5 mm mesh size | 1-PP/SSFL/2 | Sandfly small net structure 5 mm × 5 mm mesh size | 1-PP/BSFL/2 | Sandfly big net structure 10 mm × 10 mm mesh size | 93 tex | 2 |
1-PP/MFL/3 | 1-PP/SSFL/3 | 1-PP/BSFL/3 | 3 | ||||
1-PP/MFL/4 | 1-PP/SSFL/4 | 1-PP/BSFL/4 | 4 | ||||
2-PP/MFL/2 | 2-PP/SSFL/2 | 2-PP/BSFL/2 | 187 tex | 2 | |||
2-PP/MFL/3 | 2-PP/SSFL/3 | 2-PP/BSFL/3 | 3 | ||||
2-PP/MFL/4 | 2-PP/SSFL/4 | 2-PP/BSFL/4 | 4 | ||||
3-PP/MFL/2 | 3-PP/SSFL/2 | 3-PP/BSFL/2 | 280 tex | 2 | |||
3-PP/MFL/3 | 3-PP/SSFL/3 | 3-PP/BSFL/3 | 3 | ||||
3-PP/MFL/4 | 3-PP/SSFL/4 | 3-PP/BSFL/4 | 4 |
Sample Code | Sample Description |
---|---|
CFL/2 | 2 layer chicken mesh reinforced ferrocement laminate |
CFL/3 | 3 layer chicken mesh reinforced ferrocement laminate |
CFL/4 | 4 layer chicken mesh reinforced ferrocement laminate |
Variance Analysis | Degrees of Freedom (df) | Sum of Square Value (s) | Mean Square Value (ms) | F-Value | p-Value |
---|---|---|---|---|---|
First crack load kN | |||||
Marquisette net structure | 3 | 5.446667 | 1.815556 | 4.431186 | 0.057566 a |
Small sandfly net structure | 3 | 9.146667 | 3.048889 | 22.4918 | 0.001154 a |
Big sandfly net structure | 3 | 24.52917 | 8.176389 | 24.36672 | 0.000927 a |
Ultimate load kN | |||||
Marquisette net structure | 3 | 5.316667 | 1.772222 | 3.883141 | 0.074112 a |
Small sandfly net structure | 3 | 6.633333 | 2.211111 | 4.769323 | 0.049742 a |
Big sandfly net structure | 3 | 22.9425 | 7.6475 | 22.22034 | 0.001193 a |
Energy absorption factor kN.mm | |||||
Marquisette net structure | 3 | 3.853333 | 1.284444 | 0.340375 | 0.797495 |
Small sandfly net structure | 3 | 12.17 | 4.056667 | 0.838299 | 0.520392 |
Big sandfly net structure | 3 | 15.35 | 5.116667 | 3.459155 | 0.091495 |
Ductility factor | |||||
Marquisette net structure | 3 | 0.046158 | 0.015386 | 2.114122 | 0.199799 |
Small sandfly net structure | 3 | 0.432967 | 0.144322 | 11.23373 | 0.007109 |
Big sandfly net structure | 3 | 0.562558 | 0.187519 | 1.82274 | 0.243383 |
Variance Analysis | Degrees of Freedom (df) | Sum of Square Value (s) | Mean Square Value (ms) | F-Value | p-Value |
---|---|---|---|---|---|
First crack load kN | |||||
Between marquisette and small sandfly | 1 | 0.067222 | 0.067222 | 0.183681 | 0.679535 |
Between small sandfly and big sandfly | 1 | 5.445 | 5.445 | 4.229126 | 0.073762 a |
Between marquisette and big sandfly | 1 | 6.722222 | 6.722222 | 5.591497 | 0.045627 a |
Ultimate load kN | |||||
Between marquisette and small sandfly | 1 | 0.035556 | 0.035556 | 0.089888 | 0.771962 |
Between small sandfly and big sandfly | 1 | 6.242222 | 6.242222 | 7.557424 | 0.025095 |
Between marquisette and big sandfly | 5.335556 | 5.312682 | 0.050084 a | ||
Energy absorption factor kN. mm a | |||||
Between marquisette and small sandfly | 1 | 1.62 | 1.62 | 0.698276 | 0.427614 |
Between small sandfly and big sandfly | 1 | 0.680556 | 0.680556 | 0.135858 | 0.721997 |
Between marquisette and big sandfly | 4.400556 | 4.400556 | 0.697194 | 0.427958 | |
Ductility factor | |||||
Between marquisette and small sandfly | 1 | 0.0002 | 0.000200 | 0.016495 | 0.900977 |
Between small sandfly and big sandfly | 1 | 0.025689 | 0.025689 | 0.316701 | 0.589015 |
Between marquisette and big sandfly | 1 | 0.021356 | 0.021356 | 0.177955 | 0.684244 |
Variance Analysis | Degrees of Freedom (df) | Sum of Square Value (s) | Mean Square Value (ms) | F-Value | p-Value |
---|---|---|---|---|---|
First crack load kN | |||||
Between 2 layer and 3 layer | 1 | 0.98 | 0.98 | 2.473186 | 0.053654 a |
Between 3 layer and 4 layer | 1 | 1.027222 | 1.027222 | 5.111265 | 0.154448 |
Between 2 layer and 4 layer | 1 | 0.000556 | 0.000556 | 0.965974 | 0.001937 a |
Ultimate load kN | |||||
Between 2 layer and 3 layer | 1 | 1.933889 | 1.933889 | 7.888952 | 0.062888 a |
Between 3 layer and 4 layer | 1 | 2.067222 | 2.067222 | 6.542418 | 0.033762 |
Between 2 layer and 4 layer | 0.002222 | 0.002222 | 0.953625 | 0.0036 a | |
Energy absorption factor kN.mm | |||||
Between 2 layer and 3 layer | 1 | 2.347222 | 2.347222 | 2.017429 | 0.19328 |
Between 3 layer and 4 layer | 1 | 0.005 | 0.005 | 0.00099 | 0.975666 |
Between 2 layer and 4 layer | 2.89 | 2.89 | 0.656818 | 0.444361 | |
Ductility factor | |||||
Between 2 layer and 3 layer | 1 | 0.043022 | 0.043022 | 0.668985 | 0.437087 |
Between 3 layer and 4 layer | 1 | 0.00245 | 0.00245 | 0.221219 | 0.650669 |
Between 2 layer and 4 layer | 1 | 0.066006 | 0.066006 | 1.016752 | 0.342812 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rameshkumar, M.; Malathy, R.; Chandiran, P.; Paramasivam, S.; Chung, I.-M.; Kim, S.-H.; Prabakaran, M. Study on Flexural Behaviour of Ferrocement Composites Reinforced with Polypropylene Warp Knitted Fabric. Polymers 2022, 14, 4093. https://doi.org/10.3390/polym14194093
Rameshkumar M, Malathy R, Chandiran P, Paramasivam S, Chung I-M, Kim S-H, Prabakaran M. Study on Flexural Behaviour of Ferrocement Composites Reinforced with Polypropylene Warp Knitted Fabric. Polymers. 2022; 14(19):4093. https://doi.org/10.3390/polym14194093
Chicago/Turabian StyleRameshkumar, Manickam, Ramalingam Malathy, Priyalatha Chandiran, Sundararajan Paramasivam, Ill-Min Chung, Seung-Hyun Kim, and Mayakrishnan Prabakaran. 2022. "Study on Flexural Behaviour of Ferrocement Composites Reinforced with Polypropylene Warp Knitted Fabric" Polymers 14, no. 19: 4093. https://doi.org/10.3390/polym14194093
APA StyleRameshkumar, M., Malathy, R., Chandiran, P., Paramasivam, S., Chung, I. -M., Kim, S. -H., & Prabakaran, M. (2022). Study on Flexural Behaviour of Ferrocement Composites Reinforced with Polypropylene Warp Knitted Fabric. Polymers, 14(19), 4093. https://doi.org/10.3390/polym14194093