A Honeycomb-like Ammonium-Ion Fiber Battery with High and Stable Performance for Wearable Energy Storage
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.1.1. The CNT Fiber
2.1.2. NH4V4O10@CNT Electrode
2.1.3. PANI@CNT Electrode
2.2. Material Characterization
2.3. Electrochemical Test
2.4. Preparation of Fiber-Shaped NH4-Ion Full Cell
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.; Wang, S.; Chou, S.; Jin, H. Research Development on Aqueous Ammonium-Ion Batteries. Adv. Funct. Mater. 2022, 32, 2112179. [Google Scholar] [CrossRef]
- Han, J.; Varzi, A.; Passerini, S. The Emergence of Aqueous Ammonium-Ion Batteries. Angew. Chem. Int. Ed. 2022, 61, e202115046. [Google Scholar] [CrossRef]
- Deepa, N.; Pham, Q.-V.; Nguyen, D.C.; Bhattacharya, S.; Prabadevi, B.; Gadekallu, T.R.; Maddikunta, P.K.R.; Fang, F.; Pathirana, P.N. A survey on blockchain for big data: Approaches, opportunities, and future directions. Future Gener. Comput. Syst. 2022, 131, 209–226. [Google Scholar] [CrossRef]
- Diao, W.; Kulkarni, C.; Pecht, M. Development of an Informative Lithium-Ion Battery Datasheet. Energies 2021, 14, 5434. [Google Scholar] [CrossRef]
- Kotak, B.; Kotak, Y.; Brade, K.; Kubjatko, T.; Schweiger, H.-G. Battery Crush Test Procedures in Standards and Regulation: Need for Augmentation and Harmonisation. Batteries 2021, 7, 63. [Google Scholar] [CrossRef]
- Kotobuki, M. Recent progress of ceramic electrolytes for post Li and Na batteries. Funct. Mater. Lett. 2021, 14, 2130003. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Grundish, N.S.; Goodenough, J.B.; Chen, Y.; Guo, L.; Peng, Z.; Qi, X.; Yang, F.; Qie, L.; et al. The 2021 battery technology roadmap. J. Phys. D Appl. Phys. 2020, 54, 183001. [Google Scholar] [CrossRef]
- Xiang, F.; Cheng, F.; Sun, Y.; Yang, X.; Lu, W.; Amal, R.; Dai, L. Recent advances in flexible batteries: From materials to applications. Nano Res. 2021, 1–34. [Google Scholar] [CrossRef]
- Karkera, G.; Reddy, M.A.; Fichtner, M. Recent developments and future perspectives of anionic batteries. J. Power Source 2020, 481, 228877. [Google Scholar] [CrossRef]
- Titirici, M. Sustainable Batteries—Quo Vadis? Adv. Energy Mater. 2021, 11, 2003700. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, J.; Wang, W.; Bayhan, Z.; Alshareef, H.N. Status of rechargeable potassium batteries. Nano Energy 2021, 83, 105792. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, M.; Kong, X.; Huang, W.; Zhang, Q. Recent Advance in Ionic-Liquid-Based Electrolytes for Rechargeable Metal-Ion Batteries. Adv. Sci. 2021, 8, 2004490. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xie, X.; Lv, R.; Na, B.; Wang, B.; He, Y. Nanostructured Polypyrrole Composite Aerogels for a Rechargeable Flexible Aqueous Zn-Ion Battery with High Rate Capabilities. Energy Technol. 2019, 7, 1801092. [Google Scholar] [CrossRef]
- Qiu, N.; Yang, Z.; Wang, Y.; Zhu, Y.; Liu, W. A high-power and long-life aqueous rechargeable Zn-ion battery based on hierarchically porous sodium vanadate. Chem. Commun. 2020, 56, 9174–9177. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yuan, Z.; Zhang, X.; Bi, S.; Zhou, Z.; Tian, J.; Zhang, Q.; Niu, Z. Non-Metal Ion Co-Insertion Chemistry in Aqueous Zn/MnO2 Batteries. Angew. Chem. Int. Ed. 2021, 60, 7056–7060. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tan, R.; Yang, Z.; Feng, Y.; Duan, X.; Ma, J. Stabilization Perspective on Metal Anodes for Aqueous Batteries. Adv. Energy Mater. 2020, 11, 2000962. [Google Scholar] [CrossRef]
- Yue, F.; Tie, Z.; Deng, S.; Wang, S.; Yang, M.; Niu, Z. An Ultralow Temperature Aqueous Battery with Proton Chemistry. Angew. Chem. Int. Ed. 2021, 60, 13882–13886. [Google Scholar] [CrossRef]
- Han, C.; Zhu, J.; Fu, K.; Deng, D.; Luo, W.; Mai, L. A high-capacity polyaniline-intercalated layered vanadium oxide for aqueous ammonium-ion batteries. Chem. Commun. 2021, 58, 791–794. [Google Scholar] [CrossRef]
- Kuchena, S.F.; Wang, Y. Superior Polyaniline Cathode Material with Enhanced Capacity for Ammonium Ion Storage. ACS Appl. Energy Mater. 2020, 3, 11690–11698. [Google Scholar] [CrossRef]
- Tian, Z.; Kale, V.S.; Wang, Y.; Kandambeth, S.; Czaban-Jóźwiak, J.; Shekhah, O.; Eddaoudi, M.; Alshareef, H.N. High-Capacity NH4+ Charge Storage in Covalent Organic Frameworks. J. Am. Chem. Soc. 2021, 143, 19178–19186. [Google Scholar] [CrossRef]
- Song, Y.; Pan, Q.; Lv, H.; Yang, D.; Qin, Z.; Zhang, M.; Sun, X.; Liu, X. Ammonium-Ion Storage Using Electrodeposited Manganese Oxides. Angew. Chem. Int. Ed. 2020, 60, 5718–5722. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Qi, Y.; Hong, J.J.; Li, Z.; Hernandez, A.S.; Ji, X. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System. Angew. Chem. Int. Ed. 2017, 56, 13026–13030. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, J.; Cheng, J.; He, T.; Wang, B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy 2019, 68, 104369. [Google Scholar] [CrossRef]
- Kuchena, S.F.; Wang, Y. A Full Flexible NH4+ Ion Battery Based on the Concentrated Hydrogel Electrolyte for Enhanced Performance. Chem.–A Eur. J. 2021, 27, 15450–15459. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Dong, H.; Zhou, M.; Zhang, C.; Wu, Y.; Li, W.; Dong, Y.; Lei, Y. Ammonium Vanadium Bronze as a Potassium-Ion Battery Cathode with High Rate Capability and Cyclability. Small Methods 2018, 3, 1800349. [Google Scholar] [CrossRef] [Green Version]
- Weng, W.; Yang, J.; Zhang, Y.; Li, Y.; Yang, S.; Zhu, L.; Zhu, M. A Route Toward Smart System Integration: From Fiber Design to Device Construction. Adv. Mater. 2019, 32, e1902301. [Google Scholar] [CrossRef]
- Esparcia, E.A.; Chae, M.S.; Ocon, J.D.; Hong, S.-T. Ammonium Vanadium Bronze (NH4V4O10) as a High-Capacity Cathode Material for Nonaqueous Magnesium-Ion Batteries. Chem. Mater. 2018, 30, 3690–3696. [Google Scholar] [CrossRef]
- Huang, L.; Guan, Q.; Cheng, J.; Li, C.; Ni, W.; Wang, Z.; Zhang, Y.; Wang, B. Free-standing N-doped carbon nanofibers/carbon nanotubes hybrid film for flexible, robust half and full lithium-ion batteries. Chem. Eng. J. 2018, 334, 682–690. [Google Scholar] [CrossRef]
- Shi, X.-H.; Chen, L.; Liu, B.-W.; Long, J.-W.; Xu, Y.-J.; Wang, Y.-Z. Carbon Fibers Decorated by Polyelectrolyte Complexes Toward Their Epoxy Resin Composites with High Fire Safety. Chin. J. Polym. Sci. 2018, 36, 1375–1384. [Google Scholar] [CrossRef]
- Zong, Q.; Du, W.; Liu, C.; Yang, H.; Zhang, Q.; Zhou, Z.; Atif, M.; Alsalhi, M.; Cao, G. Enhanced Reversible Zinc Ion Intercalation in Deficient Ammonium Vanadate for High-Performance Aqueous Zinc-Ion Battery. Nano-Micro Lett. 2021, 13, 116. [Google Scholar] [CrossRef]
- Wang, J.; Polleux, J.; Lim, A.J.; Dunn, B. Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Liang, G.; Wang, Y.; Huang, Z.; Mo, F.; Li, X.; Yang, Q.; Wang, D.; Li, H.; Chen, S.; Zhi, C. Initiating Hexagonal MoO3 for Superb-Stable and Fast NH4+ Storage Based on Hydrogen Bond Chemistry. Adv. Mater. 2020, 32, e1907802. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Meng, J.; Li, Q.; Huang, M.; Liu, X.; Owusu, K.A.; Liu, Z.; Mai, L. Finely Crafted 3D Electrodes for Dendrite-Free and High-Performance Flexible Fiber-Shaped Zn-Co Batteries. Adv. Funct. Mater. 2018, 28, 1802016. [Google Scholar] [CrossRef]
- Zeng, Y.; Meng, Y.; Lai, Z.; Zhang, X.; Yu, M.; Fang, P.; Wu, M.; Tong, Y.; Lu, X. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode. Adv. Mater. 2017, 29, 1702698. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, C.; Liu, J.; Zeng, X.; Qu, S.; Han, X.; Deng, Y.; Hu, W.; Lu, J. Atomically Thin Mesoporous Co3O4 Layers Strongly Coupled with N-rGO Nanosheets as High-Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries. Adv. Mater. 2017, 30, 1703657. [Google Scholar] [CrossRef]
- Ye, L.; Hong, Y.; Liao, M.; Wang, B.; Wei, D.; Peng, H. Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater. 2020, 28, 364–374. [Google Scholar] [CrossRef]
- Wessells, C.D.; Peddada, S.V.; McDowell, M.T.; Huggins, R.A.; Cui, Y. The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes. J. Electrochem. Soc. 2011, 159, A98–A103. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Nie, W.; Xu, S.; Gao, P.; Sun, S.; Zheng, X.; Hu, Q.; Xu, Z. A Honeycomb-like Ammonium-Ion Fiber Battery with High and Stable Performance for Wearable Energy Storage. Polymers 2022, 14, 4149. https://doi.org/10.3390/polym14194149
Sun J, Nie W, Xu S, Gao P, Sun S, Zheng X, Hu Q, Xu Z. A Honeycomb-like Ammonium-Ion Fiber Battery with High and Stable Performance for Wearable Energy Storage. Polymers. 2022; 14(19):4149. https://doi.org/10.3390/polym14194149
Chicago/Turabian StyleSun, Jiangdong, Wenqi Nie, Shuai Xu, Pengxiang Gao, Shuang Sun, Xianhong Zheng, Qiaole Hu, and Zhenzhen Xu. 2022. "A Honeycomb-like Ammonium-Ion Fiber Battery with High and Stable Performance for Wearable Energy Storage" Polymers 14, no. 19: 4149. https://doi.org/10.3390/polym14194149
APA StyleSun, J., Nie, W., Xu, S., Gao, P., Sun, S., Zheng, X., Hu, Q., & Xu, Z. (2022). A Honeycomb-like Ammonium-Ion Fiber Battery with High and Stable Performance for Wearable Energy Storage. Polymers, 14(19), 4149. https://doi.org/10.3390/polym14194149