Formulation and Evaluation of Fenbendazole Extended-Release Extrudes Processed by Hot-Melt Extrusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermal Characterization by DSC and TGA/DTG
2.3. Fourier Transform Infrared Spectroscopy
2.4. X-ray Diffraction Spectroscopy
2.5. Melt Flow Index
2.6. Preparation of Hot-Melt Extrudates
2.7. Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy
2.8. In Vitro Drug Release Measurements
3. Results and Discussions
3.1. Thermal, Physical and Chemical Properties of Extrudates
3.1.1. Thermal Analysis by DSC and TGA/DTG
3.1.2. Physical and Chemical Evaluation by FTIR and XRD
3.2. Material Melt Viscosity by MFI
3.3. Drug Dispersion Assessment by SEM and EDX
3.4. Drug Release from Extrudates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Page, S.W. Antiparasitic drugs. In Small Animal Clinical Pharmacology, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Sanyal, P.K.; Singh, D.K. The uptake of fenbendazole by cattle and buffalo following long-term low-level administration in urea-molasses blocks. Veter.-Res. Commun. 1993, 17, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, P. Plasma levels of fenbendazole metabolites in buffalo and cattle after long-term intraruminal administration. Veter.-Q. 1993, 15, 157–159. [Google Scholar] [CrossRef] [PubMed]
- Lanusse, C.E.; Prichard, R.K. Clinical pharmacokinetics and metabolism of benzlmidazole anthelmintics in ruminants. Drug Metab. Rev. 1993, 25, 235–279. [Google Scholar] [CrossRef] [PubMed]
- Grehan, L.; Killion, J.A.; Devine, D.M.; Kenny, E.K.; Devery, S.; Higginbotham, C.L.; Geever, L.M. The Development of Hot Melt Extruded Biocompatible Controlled Release Drug Delivery Devices. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 476–485. [Google Scholar] [CrossRef]
- Ren, Y.; Mei, L.; Zhou, L.; Guo, G. Recent Perspectives in Hot Melt Extrusion-Based Polymeric Formulations for Drug Delivery: Applications and Innovations. AAPS PharmSciTech 2019, 20, 92. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, R.; Thakkar, R.; Pillai, A.; Ashour, E.A.; Repka, M.A. Systematic screening of pharmaceutical polymers for hot melt extrusion processing: A comprehensive review. Int. J. Pharm. 2020, 576, 118989. [Google Scholar] [CrossRef]
- Hurley, D.; Davis, M.; Walker, G.M.; Lyons, J.G.; Higginbotham, C.L. The Effect of Cooling on the Degree of Crystallinity, Solid-State Properties, and Dissolution Rate of Multi-Component Hot-Melt Extruded Solid Dispersions. Pharmaceutics 2020, 12, 212. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Kim, K.S.; Kim, S.H. Effect of poly(ethylene oxide) on the release behaviors of poly(ε-caprolactone) microcapsules containing erythromycin. Colloids Surf. B Biointerfaces 2005, 43, 238–244. [Google Scholar] [CrossRef]
- Pepic, D.; Nikolic, M.S.; Grujic, S.; Lausevic, M.; Djonlagic, J. Release behaviour of carbamazepine-loaded poly(€-caprolactone)/ poly(ethylene oxide) microspheres. J. Microencapsul. 2013, 30, 151–160. [Google Scholar] [CrossRef]
- Lyons, J.G.; Blackie, P.; Higginbotham, C.L. The significance of variation in extrusion speeds and temperatures on a PEO/PCL blend based matrix for oral drug delivery. Int. J. Pharm. 2008, 351, 201–208. [Google Scholar] [CrossRef]
- Nyamweya, N.N. Applications of polymer blends in drug delivery. Future J. Pharm. Sci. 2021, 7, 1–15. [Google Scholar] [CrossRef]
- Ma, L.; Deng, L.; Chen, J. Applications of poly(ethylene oxide) in controlled release tablet systems: A review. Drug Dev. Ind. Pharm. 2013, 40, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, G.S.N.; Colbert, D.M.; O’Donnell, C.; Cao, Z.; Geever, J.; Geever, L. Compatibility Study between Fenbendazole and Poly(Ethylene Oxide) with Application in Solid Dispersion Formulations Using Hot-Melt Extrusion. J. Pharm. Innov. 2022, 1–13. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Residues of Some Veterinary Drugs in Foods And Animals. 1998. Available online: http://www.fao.org/food/food-safety-quality/scientific-advice/jecfa/jecfa-vetdrugs/details/en/c/26/ (accessed on 1 August 2022).
- Vandamme, T.; Ellis, K. Issues and challenges in developing ruminal drug delivery systems. Adv. Drug Deliv. Rev. 2004, 56, 1415–1436. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, M.J.; Martinez, M.N. Modified release drug delivery in veterinary medicine. Drug Discov. Today 2002, 7, 823–829. [Google Scholar] [CrossRef]
- Gomes, M.L.S.; Da Silva Nascimento, N.; Borsato, D.M.; Pretes, A.P.; Nadal, J.M.; Novatski, A.; Gomes, R.Z.; Fernandes, D.; Farago, P.V.; Zanin, S.M.W. Long-lasting anti-platelet activity of cilostazol from poly(ε-caprolactone)-poly(ethylene glycol) blend nanocapsules. Mater. Sci. Eng. C 2018, 94, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Ikehara, T.; Nishi, T. Miscibility and crystallization of poly(ethylene oxide) and poly(ε-caprolactone) blends. Polymer 2003, 44, 3101–3106. [Google Scholar] [CrossRef]
- Melian, M.E.; Munguía, A.B.; Faccio, R.; Palma, S.; Domínguez, L. The Impact of Solid Dispersion on Formulation, Using Confocal Micro Raman Spectroscopy as Tool to Probe Distribution of Components. J. Pharm. Innov. 2017, 13, 58–68. [Google Scholar] [CrossRef]
- Li, Y.; Pang, H.; Guo, Z.; Lin, L.; Dong, Y.; Li, G.; Lu, M.; Wu, C. Interactions between drugs and polymers influencing hot melt extrusion. J. Pharm. Pharmacol. 2013, 66, 148–166. [Google Scholar] [CrossRef]
- Li, L.; Abubaker, O.; Shao, Z.J. Characterization of Poly(Ethylene Oxide) as a Drug Carrier in Hot-Melt Extrusion. Drug Dev. Ind. Pharm. 2006, 32, 991–1002. [Google Scholar] [CrossRef]
- Apicella, A.; Cappello, B.; Del Nobile, M.; La Rotonda, M.; Mensitieri, G.; Nicolais, L. Poly(Ethylene oxide) (PEO) and different molecular weight PEO blends monolithic devices for drug release. Biomaterials 1993, 14, 83–90. [Google Scholar] [CrossRef]
- Capone, C.; Di Landro, L.; Inzoli, F.; Penco, M.; Sartore, L. Thermal and mechanical degradation during polymer extrusion processing. Polym. Eng. Sci. 2007, 47, 1813–1819. [Google Scholar] [CrossRef]
- Crowley, M.M.; Zhang, F.; Koleng, J.J.; McGinity, J.W. Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials 2002, 23, 4241–4248. [Google Scholar] [CrossRef]
- Attia, A.K.; Saad, E.E.; Alaraki, M.S.; Elzanfaly, E. Study of Thermal Analysis Behavior of Fenbendazole and Rafoxanide. Adv. Pharm. Bull. 2017, 7, 329–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto, C.; Otipka, R.; Contreras, D.; Yáñez, J.; Toral, M.I. Co-determination of two antiparasitics drugs by derivative spectrophotometry and its photodegradation studies. J. Chil. Chem. Soc. 2013, 58, 1824–1829. [Google Scholar] [CrossRef] [Green Version]
- Surov, A.O.; Vasilev, N.A.; Vener, M.V.; Parashchuk, O.D.; Churakov, A.V.; Magdysyuk, O.V.; Perlovich, G.L. Pharmaceutical Salts of Fenbendazole with Organic Counterions: Structural Analysis and Solubility Performance. Cryst. Growth Des. 2021, 21, 4516–4530. [Google Scholar] [CrossRef]
- Gondaliya, N.; Kanchan, D.K.; Sharma, P.; Joge, P. Structural and Conductivity Studies of Poly(Ethylene Oxide)–Silver Triflate Polymer Electrolyte System. Mater. Sci. Appl. 2011, 2, 1639–1643. [Google Scholar] [CrossRef] [Green Version]
- Wong, R.S.H.; Dodou, K. Effect of Drug Loading Method and Drug Physicochemical Properties on the Material and Drug Release Properties of Poly (Ethylene Oxide) Hydrogels for Transdermal Delivery. Polymers 2017, 9, 286. [Google Scholar] [CrossRef]
- Yogeshwar Chakrapani, A.V.; Gnanamani, V.R.; Giridev, M. Madhusoothanan, G.S. Electrospinning of Type I Collagen and PCL Nanofibers Using Acetic Acid. J. Appl. Polym. Sci. 2012, 125, 3221–3227. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, L.; Zhou, Z.; Wu, X.; Wang, Y. Preparation and Properties of Electrospun Soy Protein Isolate/Polyethylene Oxide Nanofiber Membranes. ACS Appl. Mater. Interfaces 2012, 4, 4331–4337. [Google Scholar] [CrossRef]
- Balu, R.; Kumar, T.S.S.; Ramalingam, M.; Ramakrishna, S. Electrospun Polycaprolactone/Poly(1,4-butylene adipate-co-polycaprolactam) Blends: Potential Biodegradable Scaffold for Bone Tissue Regeneration. J. Biomater. Tissue Eng. 2011, 1, 30–39. [Google Scholar] [CrossRef]
- Jang, K.-S. Mechanics and rheology of basalt fiber-reinforced polycarbonate composites. Polymer 2018, 147, 133–141. [Google Scholar] [CrossRef]
- Upadhye, S.B.; Rajabi-Siahboomi, A.R. Properties and Applications of Polyethylene Oxide and Ethylcellulose for Tamper Resistance and Controlled Drug Delivery. In Melt Extrusion; Springer: New York, NY, USA, 2013; pp. 145–158. [Google Scholar]
- Girão, A.V.; Caputo, G.; Ferro, M.C. Application of Scanning Electron Microscopy–Energy Dispersive X-Ray Spectroscopy (SEM-EDS). Compr. Anal. Chem. 2017, 75, 153–168. [Google Scholar] [CrossRef]
- Quinten, T.; De Beer, T.; Almeida, A.; Vlassenbroeck, J.; Van Hoorebeke, L.; Remon, J.; Vervaet, C. Development and evaluation of injection-molded sustained-release tablets containing ethylcellulose and polyethylene oxide. Drug Dev. Ind. Pharm. 2010, 37, 149–159. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 3334, Fenbendazole. 2021. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Fenbendazole (accessed on 30 August 2022).
- Wang, S.; Liu, R.; Fu, Y.; Kao, W.J. Release mechanisms and applications of drug delivery systems for extended-release. Expert Opin. Drug Deliv. 2020, 17, 1289–1304. [Google Scholar] [CrossRef]
- Vandamme, T.; Mukendi, J.-F.N. Controlled release of levamisole from poly-(ε-caprolactone) matrices II. Effects of water-soluble polymer and iron powder incorporated into the matrices. Int. J. Pharm. 1996, 132, 153–163. [Google Scholar] [CrossRef]
- Hasan, M.; ElKhoury, K.; Kahn, C.J.F.; Arab-tehrany, E.; Linder, M. Preparation, Characterization, and Release Kinetics of Chitosan-Coated Nanoliposomes Encapsulating Curcumin in Simulated Environments. Molecules 2019, 24, 2023. [Google Scholar] [CrossRef] [Green Version]
- Sanna, V.; Gavini, E.; Giunchedi, P. Bilayer tablets based on poly (ε-caprolactone) and polymethylmethacrilates as controlled-release systems for ruminants. Pharm. Dev. Technol. 2004, 9, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, J.R. Intraruminal devices. Adv. Drug Deliv. Rev. 1997, 28, 303–322. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0169409X97000860 (accessed on 30 August 2022). [CrossRef]
- Rabišková, M.; Třináctý, J.; Sýkora, T.; Doležal, P. Post-ruminal delivery systems. Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 52, 143–148. Available online: http://acta.mendelu.cz/doi/10.11118/actaun200452020143.html (accessed on 30 August 2022). [CrossRef]
Composition | Formulation 1 | Formulation 2 | Formulation 3 |
---|---|---|---|
PEO + Fen | 90% | 80% | 70% |
PCL | 10% | 20% | 30% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, G.S.N.; de Lima, T.A.d.M.; Colbert, D.M.; Geever, J.; Geever, L. Formulation and Evaluation of Fenbendazole Extended-Release Extrudes Processed by Hot-Melt Extrusion. Polymers 2022, 14, 4188. https://doi.org/10.3390/polym14194188
Bezerra GSN, de Lima TAdM, Colbert DM, Geever J, Geever L. Formulation and Evaluation of Fenbendazole Extended-Release Extrudes Processed by Hot-Melt Extrusion. Polymers. 2022; 14(19):4188. https://doi.org/10.3390/polym14194188
Chicago/Turabian StyleBezerra, Gilberto S. N., Tielidy A. de M. de Lima, Declan M. Colbert, Joseph Geever, and Luke Geever. 2022. "Formulation and Evaluation of Fenbendazole Extended-Release Extrudes Processed by Hot-Melt Extrusion" Polymers 14, no. 19: 4188. https://doi.org/10.3390/polym14194188
APA StyleBezerra, G. S. N., de Lima, T. A. d. M., Colbert, D. M., Geever, J., & Geever, L. (2022). Formulation and Evaluation of Fenbendazole Extended-Release Extrudes Processed by Hot-Melt Extrusion. Polymers, 14(19), 4188. https://doi.org/10.3390/polym14194188