Direct-Writable and Thermally One-Step Curable “Water-Stained” Epoxy Composite Inks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Direct Ink Writing (DIW)
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pashayi, K.; Fard, H.R.; Lai, F.; Iruvanti, S.; Plawsky, J.; Borca-Tasciuc, T. High thermal conductivity epoxy-silver composites based on self-constructed nanostructured metallic networks. J. Appl. Phys. 2012, 111, 104310. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, X.; Yuen, M.M. Enhanced conductivity induced by attractive capillary force in ternary conductive adhesive. Compos. Sci. Technol. 2016, 137, 109–117. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, R.; Ruan, K.; Ma, T.; Guo, Y.; Gu, J. Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. 2021, 82, 239–249. [Google Scholar] [CrossRef]
- Xiao, C.; Chen, L.; Tang, Y.; Zhang, X.; Zheng, K.; Tian, X. Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105511. [Google Scholar] [CrossRef]
- Lee, W.; Wie, J.; Kim, J. Enhancement of thermal conductivity of alumina/epoxy composite using poly(glycidyl methacrylate) grafting and crosslinking. Ceram. Int. 2021, 47, 18662–18668. [Google Scholar] [CrossRef]
- Yang, X.; Fan, S.; Li, Y.; Guo, Y.; Li, Y.; Ruan, K.; Zhang, S.; Zhang, J.; Kong, J.; Gu, J. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 2019, 128, 105670. [Google Scholar] [CrossRef]
- Song, S.H.; Park, K.H.; Kim, B.H.; Choi, Y.W.; Jun, G.H.; Lee, D.J.; Kong, B.-S.; Paik, K.-W.; Jeon, S. Enhanced Thermal Conductivity of Epoxy-Graphene Composites by Using Non-Oxidized Graphene Flakes with Non-Covalent Functionalization. Adv. Mater. 2012, 25, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Muraki, N.; Matoba, N.; Hirano, T.; Yoshikawa, M. Determination of thermal stress distribution in a model microelectronic device encapsulated with alumina filled epoxy resin using fluorescence spectroscopy. Polymer 2002, 43, 1277–1285. [Google Scholar] [CrossRef]
- Kokatev, A.N.; Iakovleva, N.M.; Stepanova, K.V.; Ershova, N.Y.; Belov, K.V. Monitoring of properties of epoxy molding compounds used in electronics for protection and hermetic sealing of microcircuits. IOP Conf. Ser. Mater. Sci. Eng. 2019, 665, 012006. [Google Scholar] [CrossRef]
- Zhang, R.-H.; Shi, X.-T.; Tang, L.; Liu, Z.; Zhang, J.-L.; Guo, Y.-Q.; Gu, J.-W. Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride Fillers. Chin. J. Polym. Sci. 2020, 38, 730–739. [Google Scholar] [CrossRef]
- Vaisakh, S.S.; Mohammed, A.A.P.; Hassanzade, M.; Tortorici, J.F.; Metz, R.; Ananthakumar, S. Effect of Nano-Modified SiO2/Al2O3 Mixed-Matrix Micro-Composite Fillers on Thermal, Mechanical, and Tribological Properties of Epoxy Polymers. Polym. Adv. Technol. 2016, 27, 905–914. [Google Scholar] [CrossRef]
- Compton, B.G.; Lewis, J.A. 3D-Printing of Lightweight Cellular Composites. Adv. Mater. 2014, 26, 5930–5935. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C.K.; Dunn, M.L.; Wang, T.; Qi, H.J. Recyclable 3D printing of vitrimer epoxy. Mater. Horizons 2017, 4, 598–607. [Google Scholar] [CrossRef]
- Chen, K.; Kuang, X.; Li, V.; Kang, G.; Qi, H.J. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter 2018, 14, 1879–1886. [Google Scholar] [CrossRef]
- Nguyen, N.; Melamed, E.; Park, J.G.; Zhang, S.; Hao, A.; Liang, R. Direct Printing of Thermal Management Device Using Low-Cost Composite Ink. Macromol. Mater. Eng. 2017, 302, 1700135. [Google Scholar] [CrossRef]
- Truby, R.; Lewis, J.A. Printing soft matter in three dimensions. Nature 2016, 540, 371–378. [Google Scholar] [CrossRef]
- Kokkinis, D.; Schaffner, M.; Studart, A.R. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 2015, 6, 8643. [Google Scholar] [CrossRef] [Green Version]
- Minas, C.; Carnelli, D.; Tervoort, E.; Studart, A.R. 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics. Adv. Mater. 2016, 28, 9993–9999. [Google Scholar] [CrossRef]
- Mason, T.G.; Weitz, D.A. Linear Viscoelasticity of Colloidal Hard Sphere Suspensions near the Glass Transition. Phys. Rev. Lett. 1995, 75, 2770–2773. [Google Scholar] [CrossRef] [Green Version]
- Barabanova, A.I.; Lokshin, B.V.; Kharitonova, E.P.; Afanasyev, E.S.; Askadskii, A.A.; Philippova, O. Curing cycloaliphatic epoxy resin with 4-methylhexahydrophthalic anhydride: Catalyzed vs. uncatalyzed reaction. Polymer 2019, 178, 121590. [Google Scholar] [CrossRef]
- Koos, E.; Willenbacher, N. Capillary Forces in Suspension Rheology. Science 2011, 331, 897–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dittmann, J.; Koos, E.; Willenbacher, N. Ceramic Capillary Suspensions: Novel Processing Route for Macroporous Ceramic Materials. J. Am. Ceram. Soc. 2012, 96, 391–397. [Google Scholar] [CrossRef]
- Yang, J.; Park, H.-S.; Kim, J.; Mok, J.; Kim, T.; Shin, E.-K.; Kwak, C.; Lim, S.; Bin Kim, C.; Park, J.-S.; et al. Yield Stress Enhancement of a Ternary Colloidal Suspension via the Addition of Minute Amounts of Sodium Alginate to the Interparticle Capillary Bridges. Langmuir 2020, 36, 9424–9435. [Google Scholar] [CrossRef] [PubMed]
- Marmur, A. Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be? Langmuir 2003, 19, 8343–8348. [Google Scholar] [CrossRef]
- Maurath, J.; Willenbacher, N. 3D printing of open-porous cellular ceramics with high specific strength. J. Eur. Ceram. Soc. 2017, 37, 4833–4842. [Google Scholar] [CrossRef]
- Hodaei, A.; Akhlaghi, O.; Khani, N.; Aytas, T.; Sezer, D.; Tatli, B.; Menceloglu, Y.Z.; Koc, B.; Akbulut, O. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions. ACS Appl. Mater. Interfaces 2018, 10, 9873–9881. [Google Scholar] [CrossRef]
- Kwak, C.; Ryu, S.Y.; Park, H.; Lim, S.; Yang, J.; Kim, J.; Kim, J.H.; Lee, J. A pickering emulsion stabilized by chlorella microalgae as an eco-friendly extrusion-based 3D printing ink processable under ambient conditions. J. Colloid Interface Sci. 2020, 582, 81–89. [Google Scholar] [CrossRef]
- Matějka, L.; Lövy, J.; Pokorný, S.; Bouchal, K.; Dušek, K. Curing epoxy resins with anhydrides. Model reactions and reaction mechanism. J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 2873–2885. [Google Scholar] [CrossRef]
- Barabanova, A.I.; Lokshin, B.V.; Kharitonova, E.P.; Karandi, I.V.; Afanasyev, E.S.; Askadskii, A.A.; Philippova, O.E. Cycloaliphatic epoxy resin cured with anhydride in the absence of catalyst. Colloid Polym. Sci. 2018, 297, 409–416. [Google Scholar] [CrossRef]
- Behr, S.; Vainio, U.; Müller, M.; Schreyer, A.; Schneider, G.A. Large-scale parallel alignment of platelet-shaped particles through gravitational sedimentation. Sci. Rep. 2015, 5, 9984. [Google Scholar] [CrossRef]
- Song, P.; Liu, B.; Liang, C.; Ruan, K.; Qiu, H.; Ma, Z.; Guo, Y.; Gu, J. Lightweight, Flexible Cellulose-Derived Carbon Aerogel@Reduced Graphene Oxide/PDMS Composites with Outstanding EMI Shielding Performances and Excellent Thermal Conductivities. Nano-Micro Lett. 2021, 13, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ruan, K.; Gu, J. Janus (BNNS/ANF)-(AgNWs/ANF) Thermal Conductivity Composite Films with Superior Electromagnetic Interference Shielding and Joule Heating Performances. Nano Res. 2022, 15, 4747–4755. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, Q.; Dang, J.; Yin, C.; Chen, S. Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites. J. Appl. Polym. Sci. 2011, 124, 132–137. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Yang, J.; Kim, J.; Ryu, S.Y.; Cho, H.; Kim, Y.S.; Lee, J. Direct-Writable and Thermally One-Step Curable “Water-Stained” Epoxy Composite Inks. Polymers 2022, 14, 4191. https://doi.org/10.3390/polym14194191
Kim S, Yang J, Kim J, Ryu SY, Cho H, Kim YS, Lee J. Direct-Writable and Thermally One-Step Curable “Water-Stained” Epoxy Composite Inks. Polymers. 2022; 14(19):4191. https://doi.org/10.3390/polym14194191
Chicago/Turabian StyleKim, Suyeon, Jeewon Yang, Jieun Kim, Seoung Young Ryu, Hanbin Cho, Yern Seung Kim, and Joohyung Lee. 2022. "Direct-Writable and Thermally One-Step Curable “Water-Stained” Epoxy Composite Inks" Polymers 14, no. 19: 4191. https://doi.org/10.3390/polym14194191
APA StyleKim, S., Yang, J., Kim, J., Ryu, S. Y., Cho, H., Kim, Y. S., & Lee, J. (2022). Direct-Writable and Thermally One-Step Curable “Water-Stained” Epoxy Composite Inks. Polymers, 14(19), 4191. https://doi.org/10.3390/polym14194191