Deep Eutectic Solvents for Starch Treatment
Abstract
:1. Introduction
2. DESs as Starch Solvents
Starch Origin | DES System | Solubility | Test Parameters | Reference | |
---|---|---|---|---|---|
Components | Molar Ratio | ||||
Corn | Choline chloride: Oxalic acid | 1:2 | 9%, (brown solution) | 100 °C | [15] |
Choline chloride: Urea | 1:2 | 9 wt% | 100 °C | [15] | |
Choline chloride: Zinc chloride | 1:2 | 5 wt% | 98 °C | [15] | |
Choline chloride: Citric acid | 1:2 | 6 wt% | 100 °C | [15] | |
Malic acid: Monosodium glutamate: Water | 3:1:1, 3:1:2, 3:1:10 | 0.95; 1.03; 1.11 wt% | 60 °C | [20] | |
Malic acid: Sucrose: Water | 1:1:1, 1:1:2, 1:1:10, 1:2:10, 1:3:10 | 0.12; 0.25; 0.31; 0.92; 2.25 wt% | 60 °C | [20] | |
Calcium chloride: Urea | 1:2 | gelled | 80 °C | [15] | |
n.d. * | Alanine: Lactic acid | 1:9 | 0.26 wt% | 60 °C | [17] |
Alanine: Malic acid | 1:1 | 0.59 wt% | 100 °C | [17] | |
Betaine: Malic acid | 1:1 | 0.81 wt% | 100 °C | [17] | |
Choline chloride: 1,2-Propanediol: Water | 1:1:1 | 2.47 g/molsolvent | 100 °C | [18] | |
Choline chloride: Glucose: Water | 5:2:5 | 7.55 g/molsolvent | 100 °C | [18] | |
Choline chloride: Lactic acid | 1:10 | 0.13 wt% | 60 °C | [17] | |
Choline chloride: Malic acid | 1:1 | 7.10 wt% | 100 °C | [17] | |
Choline chloride: Oxalic acid anhydrous | 1:1 | 0.15 wt% | 60 °C | [17] | |
Choline chloride: Oxalic acid dihydrate | 1:1 | 2.50 wt% | 60 °C | [17] | |
Glucose: Lactic acid: Water | 1:5:3 | 1.67 g/molsolvent | 100 °C | [18] | |
Glycine: Malic acid | 1:1 | 7.65 wt% | 100 °C | [17] | |
Histidine: Lactic acid | 1:9 | 0.13 wt% | 60 °C | [17] | |
Nicotinic acid: Oxalic acid dihydrate | 1:9 | 2.83 wt% | 60 °C | [17] | |
Proline: Malic acid | 2:1, 3:1 | 0.32%, 5.90% | 100 °C | [17] | |
Proline: Oxalic acid anhydrous | 1:1 | 0.15 wt% | 60 °C | [17] | |
Potato | Choline acetate: Urea | 1:2 | 10 wt% starch, partially dissolved | 110 °C, 30 min | [21] |
Choline chloride: Citric acid | 2:1 | 5 wt%, brown viscous liquid | 120 °C, 60 min | [16] | |
Choline chloride: Imidazole | 3:7 | 10 wt%, transparent gel | 100 °C, 60 min | [19] | |
Choline chloride: Succinic acid | 1:1 | 5 wt% brown viscous liquid | 135 °C, 60 min, | [16] | |
Choline chloride: Urea | 1:2 | 5 wt%, colourless, viscous liquid; | 118 °C, 60 min | [16] | |
10 wt%, dissolved | 110 °C, 30 min | [21] | |||
Choline chloride: Urea: Glycerol | 1:1:1 | 10 wt%, partially swollen and gelled | 110 °C, 30 min | [21] | |
Choline lactate: Urea | 1:2 | 10 wt%, foamed, after one week storage transparent gel | 110 °C, 30 min, | [21] | |
Glycerol: Imidazole | 1:1 | 10 wt%, slightly turbid gel | 100 °C, 60 min | [19] | |
3:7 | 10 wt%, transparent gel | 100 °C, 30 min | [19] | ||
Urea: Glycerol | 1:1 | 10 wt%, started to form gel 15 min at 80 °C, destruction of granule at 85 °C | 80–85 °C | [22] | |
1:2 | 10 wt%, started to form gel after 20 min at 90 °C; destruction of granule at 110 °C | 90–110 °C | [22] |
3. DESs for Starch Plasticization
4. Other DES Applications for Starch Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carvalho, A.J.F. Starch: Major Sources, Properties and Applications as Thermoplastic Materials. In Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications; Ebnesajjad, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 129–152. ISBN 978-1-4557-3003-2. [Google Scholar]
- Wang, J.L.; Cheng, F.; Zhu, P.X. Structure and properties of urea-plasticized starch films with different urea contents. Carbohydr. Polym. 2014, 101, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Talja, R.A.; Helén, H.; Roos, Y.H.; Jouppila, K. Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr. Polym. 2007, 67, 288–295. [Google Scholar] [CrossRef]
- Alee, M.; Duan, Q.; Chen, Y.; Liu, H.; Ali, A.; Zhu, J.; Jiang, T.; Rahaman, A.; Chen, L.; Yu, L. Plasticization Efficiency and Characteristics of Monosaccharides, Disaccharides, and Low-Molecular-Weight Polysaccharides for Starch-Based Materials. ACS Sustain. Chem. Eng. 2021, 9, 11960–11969. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J. Formamide as the plasticizer for thermoplastic starch. J. Appl. Polym. Sci. 2004, 93, 1769–1773. [Google Scholar] [CrossRef]
- Nafchi, A.M.; Moradpour, M.; Saeidi, M.; Alias, A.K. Thermoplastic starches: Properties, challenges, and prospects. Starch Staerke 2013, 65, 61–72. [Google Scholar] [CrossRef]
- Hansen, B.B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J.M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B.W.; et al. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem. Rev. 2021, 121, 1232–1285. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; de la Guardia, M.; Andruch, V.; Vilková, M. Deep eutectic solvents vs ionic liquids: Similarities and differences. Microchem. J. 2020, 159, 105539. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [Green Version]
- Francisco, M.; Van Den Bruinhorst, A.; Kroon, M.C. Low-transition-temperature mixtures (LTTMs): A new generation of designer solvents. Angew. Chem. Int. Ed. 2013, 52, 3074–3085. [Google Scholar] [CrossRef]
- Aroso, I.M.; Craveiro, R.; Rocha, Â.; Dionísio, M.; Barreiros, S.; Reis, R.L.; Paiva, A.; Duarte, A.R.C. Design of controlled release systems for THEDES—Therapeutic deep eutectic solvents, using supercritical fluid technology. Int. J. Pharm. 2015, 492, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [Green Version]
- Roda, A.; Matias, A.A.; Paiva, A.; Duarte, A.R.C. Polymer science and engineering using deep eutectic solvents. Polymers 2019, 11, 912. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Shogren, R.L.; Stevenson, D.G.; Willett, J.L.; Bhowmik, P.K. Ionic liquids as solvents for biopolymers: Acylation of starch and zein protein. Carbohydr. Polym. 2006, 66, 546–550. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Spychaj, T. Ionic liquids as starch plasticizers or solvents. Polimery 2011, 56, 861–864. [Google Scholar] [CrossRef]
- Francisco, M.; Van Den Bruinhorst, A.; Kroon, M.C. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing. Green Chem. 2012, 14, 2153–2157. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Spychaj, T.; Maka, H. Imidazole-based deep eutectic solvents for starch dissolution and plasticization. Carbohydr. Polym. 2016, 140, 416–423. [Google Scholar] [CrossRef]
- Yiin, C.L.; Quitain, A.T.; Yusup, S.; Sasaki, M.; Uemura, Y.; Kida, T. Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification. Bioresour. Technol. 2016, 199, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Zdanowicz, M. Starch treatment with deep eutectic solvents, ionic liquids and glycerol. A comparative study. Carbohydr. Polym. 2020, 229, 115574. [Google Scholar] [CrossRef] [PubMed]
- Zdanowicz, M. Deep eutectic solvents based on urea, polyols and sugars for starch treatment. Int. J. Biol. Macromol. 2021, 176, 387–393. [Google Scholar] [CrossRef]
- Wilpiszewska, K.; Spychaj, T. Termoplastyfikacja skrobi na drodze wytłaczania w obecności plastyfikatorów. Polimery 2006, 51, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.P.; Abolibda, T.Z.; Davis, S.J.; Emmerling, F.; Lourdin, D.; Leroy, E.; Wise, W.R. Glycol based plasticisers for salt modified starch. RSC Adv. 2014, 4, 40421–40427. [Google Scholar] [CrossRef] [Green Version]
- Abbott, A.P.; Ballantyne, A.D.; Conde, J.P.; Ryder, K.S.; Wise, W.R. Salt modified starch: Sustainable, recyclable plastics. Green Chem. 2012, 14, 1302–1307. [Google Scholar] [CrossRef]
- Leroy, E.; Decaen, P.; Jacquet, P.; Coativy, G.; Pontoire, B.; Reguerre, A.L.; Lourdin, D. Deep eutectic solvents as functional additives for starch based plastics. Green Chem. 2012, 14, 3063–3066. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Staciwa, P.; Spychaj, T. Low Transition Temperature Mixtures (LTTM) Containing Sugars as Potato Starch Plasticizers. Starch Stärke 2019, 71, 1900004. [Google Scholar] [CrossRef]
- Martins, M.; Aroso, I.M.; Reis, R.L.; Duarte, A.R.C.; Craveiro, R.; Paiva, A. Enhanced performance of supercritical fluid foaming of natural-based polymers by deep eutectic solvents. AIChE J. 2014, 60, 3701–3706. [Google Scholar] [CrossRef] [Green Version]
- Zdanowicz, M.; Johansson, C. Mechanical and barrier properties of starch-based films plasticized with two- or three component deep eutectic solvents. Carbohydr. Polym. 2016, 151, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Zdanowicz, M.; Jędrzejewski, R.; Pilawka, R. Deep eutectic solvents as simultaneous plasticizing and crosslinking agents for starch. Int. J. Biol. Macromol. 2019, 129, 1040–1046. [Google Scholar] [CrossRef] [PubMed]
- Zdanowicz, M.; Staciwa, P.; Jedrzejewski, R.; Spychaj, T. Sugar alcohol-based deep eutectic solvents as potato starch plasticizers. Polymers 2019, 11, 1385. [Google Scholar] [CrossRef] [Green Version]
- Favero, J.; Belhabib, S.; Guessasma, S.; Decaen, P.; Reguerre, A.L.; Lourdin, D.; Leroy, E. On the representative elementary size concept to evaluate the compatibilisation of a plasticised biopolymer blend. Carbohydr. Polym. 2017, 172, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A.P.; Conde, J.P.; Davis, S.J.; Wise, W.R. Starch as a replacement for urea-formaldehyde in medium density fibreboard. Green Chem. 2012, 14, 3067–3070. [Google Scholar] [CrossRef]
- Grylewicz, A.; Spychaj, T.; Zdanowicz, M. Thermoplastic starch/wood biocomposites processed with deep eutectic solvents. Compos. Part A Appl. Sci. Manuf. 2019, 121, 517–524. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Johansson, C. Impact of additives on mechanical and barrier properties of starch-based films plasticized with deep eutectic solvents. Starch Staerke 2017, 69, 1700030. [Google Scholar] [CrossRef]
- Adamus, J.; Spychaj, T.; Zdanowicz, M.; Jędrzejewski, R. Thermoplastic starch with deep eutectic solvents and montmorillonite as a base for composite materials. Ind. Crops Prod. 2018, 123, 278–284. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Yan, S. Starch as a reinforcement agent for poly(ionic liquid) hydrogels from deep eutectic solvent via frontal polymerization. Carbohydr. Polym. 2021, 263, 117996. [Google Scholar] [CrossRef]
- Ramesh, S.; Shanti, R.; Morris, E. Exerted influence of deep eutectic solvent concentration in the room temperature ionic conductivity and thermal behavior of corn starch based polymer electrolytes. J. Mol. Liq. 2012, 166, 40–43. [Google Scholar] [CrossRef]
- Ramesh, S.; Shanti, R.; Morris, E. Studies on the plasticization efficiency of deep eutectic solvent in suppressing the crystallinity of corn starch based polymer electrolytes. Carbohydr. Polym. 2012, 87, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Selvanathan, V.; Azzahari, A.D.; Adyani, A.A.; Yahya, R. Ternary natural deep eutectic solvent (NADES) infused phthaloyl starch as cost efficient quasi-solid gel polymer electrolyte. Carbohydr. Polym. 2017, 167, 210–218. [Google Scholar] [CrossRef]
- Deng, X.; Han, X.; Hu, X.; Zheng, S.; Liu, K. Enzyme-Catalyzed Starch Esterification in Deep Eutectic Solvent. ChemistrySelect 2019, 4, 565–569. [Google Scholar] [CrossRef]
- Akman, F.; Kazachenko, A.S.; Vasilyeva, N.Y.; Malyar, Y.N. Synthesis and characterization of starch sulfates obtained by the sulfamic acid-urea complex. J. Mol. Struct. 2020, 1208, 127899. [Google Scholar] [CrossRef]
- Kazachenko, A.S.; Vasilyeva, N.Y.; Malyar, Y.N.; Kazachenko, A.S. Optimization of starch sulfation process with a deep eutectic solvent-mixture of sulfamic acid: Urea. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 1679, p. 052082. [Google Scholar]
- Abbott, A.P.; Abolibda, T.Z.; Qu, W.; Wise, W.R.; Wright, L.A. Thermoplastic starch-polyethylene blends homogenised using deep eutectic solvents. RSC Adv. 2017, 7, 7268–7273. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Thakur, R.; Das, A.B. Effect of natural deep eutectic solvents on thermal stability, syneresis, and viscoelastic properties of high amylose starch. Int. J. Biol. Macromol. 2021, 187, 575–583. [Google Scholar] [CrossRef] [PubMed]
Starch Origin | DES System | References | |
---|---|---|---|
Components | Molar Ratio | ||
Corn | Choline chloride: Ethylene glycol | 1:2 | [24] |
Choline chloride: Glycerol | 1:2 | [24,30,32] | |
Choline chloride: Urea | 1:2 | [24,25,32] | |
Potato | Betaine: Glycerol | 1:2, 1:3 | [21] |
Choline acetate: Urea | 1:2 | [21] | |
Choline bitartrate: Glycerol | 1:12, 1:10, 1:8, 1:6, 1:4 | [30] | |
Choline chloride: Citric Acid | 2:1 | [16] | |
Choline chloride: Glycerol | 1:2 | [21,27,29] | |
1:3 | [21] | ||
Choline chloride: Glycerol: Urea | 1:1:1 | [21] | |
1:2:2 | [29] | ||
Choline chloride: Imidazole | 3:7, 2:3 | [19] | |
Choline chloride: Maltitol | 1:4 | [31] | |
Choline chloride: Sorbitol | 1:2 | [29,31] | |
Choline chloride: Sorbitol: Urea | 1:1:1 | [29] | |
Choline chloride: Succinic acid | 1:1 | [16] | |
Choline chloride: Urea | 1:2 | [16,19,21,29] | |
Choline chloride: Xylitol | 1:2 | [31] | |
Choline dihydrogencitrate: Glycerol | 1:2, 1:4, 1:6, 1:8 | [29,30] | |
1:10, 1:12 | [30] | ||
Choline dihydrogencitrate: Urea | 1:2 | [29] | |
Choline dihydrogencitrate: Urea: Glycerol | 1:2:2 | [29] | |
Choline lactate: Glycerol | 1:8 | [30] | |
Choline lactate: Urea | 1:2 | [21] | |
Choline malate: Glycerol | 1:8 | [30] | |
Citric acid: Glycerol | 1:8 | [30] | |
Citric acid: Imidazole | 3:7 | [19] | |
Fructose: Glycerol | 1:2, 1:3, 1:4, 1:5, 1:6 | [27] | |
Glucose: Glycerol | 1:3, 1:4, 1:5, 1:6 | [27] | |
Glycerol: Imidazole | 1:1, 3:7 | [19] | |
Malic acid: Imidazole | 3:7 | [19] | |
Maltitol: Glycerol | 1:6 | [31] | |
Sorbitol: Betaine | 2:1 | [31] | |
Sorbitol: Glycerol | 2:1, 1:2 | [31] | |
Sucrose: Glycerol | 1:6 | [27] | |
Urea: Fructose: Glycerol | 1:1:2 | [22] | |
Urea: Glucose: Glycerol | 1:1:2 | [22] | |
Urea: Glycerol | 1:1, 1:2 | [22] | |
Urea: Sorbitol | 1:1 | [22] | |
Urea: Sorbitol: Glycerol | 2:1:1 | [22] | |
Xylitol: Glycerol | 1:2 | [31] | |
Hylon VII (high amylose starch) | Choline chloride: Imidazole | 3:7 | [19] |
Glycerol: Imidazole | 3:7, 1:1 | [19] | |
HOPS (hydroxypropylated and oxidized potato starch) | Choline chloride: Glycerol | 1:2 | [29,33] |
Choline chloride: Glycerol: Urea | 1:2:2 | [29] | |
Choline chloride: Sorbitol | 1:2 | [29] | |
Choline chloride: Sorbitol: Urea | 1:1:1 | [29] | |
Choline chloride: Urea | 1:2 | [29] | |
Choline dihydrogencitrate: Glycerol | 1:8, 1:6, 1:4, 1:2 | [29] | |
Choline dihydrogencitrate: Urea | 1:2 | [29] | |
Choline dihydrogencitrate: Urea: Glycerol | 1:2:2 | [29,33] | |
SPCL (blend of starch and poly-ε-caprolactone) | Choline chloride: Citric Acid | 1:1 | [28] |
Choline chloride: Sucrose | 1:1, 4:1 | [28] | |
Choline chloride: Xylitol | 2:1, 3:1 | [28] | |
Citric acid: Sucrose | 1:1 | [28] | |
Glucose: Citric acid | 1:1 | [28] | |
Tartaric acid: Glucose | 1:1 | [28] |
Application | Starch Origin | DES System | References | |
---|---|---|---|---|
Components | Molar Ratio | |||
chemical modification | Corn | Acrylic acid: acrylamide: Choline chloride | 1:1:1 | [37] |
Potato | Sulfamic acid: Urea | 1:1, 1:2, 1:3 | [43] | |
polymer electrolyte preparation | Corn | Choline chloride: Urea | 1:2 | [38,39] |
Potato | Choline chloride: Glycerol | 1:2 | [40] | |
Choline chloride: Urea | 1:2 | [40] | ||
Choline chloride: Urea: Glycerol | 4:7:1, 4:6:2, 4:5:3, 4:4:4, 4:3:5, 4:2:6, 4:1:7 | [40] | ||
homogenisation | Corn | Choline chloride: Ethylene glycol | 1:2 | [44] |
Choline chloride: Glycerol | 1:2 | [44] | ||
Choline chloride: Urea | 1:2 | [44] | ||
reaction medium | n.d. * | Choline chloride: Ethylene glycol | 2:1 | [41] |
starch dispersion | Joymoti rice | Citric acid: Glycerol | 1:2 | [45] |
Lactic acid: Fructose | 5:1 | [45] | ||
Lactic acid: Glucose | 5:1 | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skowrońska, D.; Wilpiszewska, K. Deep Eutectic Solvents for Starch Treatment. Polymers 2022, 14, 220. https://doi.org/10.3390/polym14020220
Skowrońska D, Wilpiszewska K. Deep Eutectic Solvents for Starch Treatment. Polymers. 2022; 14(2):220. https://doi.org/10.3390/polym14020220
Chicago/Turabian StyleSkowrońska, Dorota, and Katarzyna Wilpiszewska. 2022. "Deep Eutectic Solvents for Starch Treatment" Polymers 14, no. 2: 220. https://doi.org/10.3390/polym14020220
APA StyleSkowrońska, D., & Wilpiszewska, K. (2022). Deep Eutectic Solvents for Starch Treatment. Polymers, 14(2), 220. https://doi.org/10.3390/polym14020220