Modifications of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers—A Review
Abstract
:1. Introduction
- -
- an improvement in the aesthetic quality of the product, which is usually organo-leptically described as soft, smooth, fluffy, and with a more flexible grip,
- -
- a positive effect on such technological features of the product as antistatic, moisture absorption, flexibility, an improvement of sewing, wipeability, a reduction in the tendency to pilling, etc.,
- -
- for products composed of synthetic fibers, it is possible to correct the grip, making it similar to natural fibers [4].
- ease of use (e.g., solution stable after dilution),
- good compatibility and miscibility with other additives used in finishing baths,
- the simple finishing process,
- gives good softness,
- is skin-friendly—during treatment, no harmful gases are to be released and they cannot have an allergic or stimulating effect on the human body,
- does not cause yellowing (and to turn yellow itself) or discoloration, which does not affect the resistance of dyes to sunlight,
- they should not change the color of the staining,
- low-foam and resistant to shear forces,
- should not deposit on the surface of the padding machine rollers,
- have good or very good affinity for agents used in batch methods to the fiber,
- possibility of spray application,
- be non-toxic and anticorrosive,
- be easily biodegradable,
- does not require special restrictions for road transport and storage (flash point),
- good stability during high-temperature treatment in dyeing and finishing (e.g., non-volatile, not with water vapor),
- they should be stable during storage, biodegradable, and meet the requirements of environmental protection
- good washing resistance,
- a moderate price.
- -
- amino functional softeners (primary fatty amines of the general formula R–CH2–NH2 or secondary fatty amines of the formula R–CH2–NH–CH2–R), which in an acidic environment form quaternary salts;
- -
- fatty diamines R–NH–CH2–CH2–CH2–NH2;
- -
- fatty aminoesters (reaction products of fatty alcohols with fatty acids) with long alkyl chain substituents (R) contain one or more amino groups—in an acidic environment, they show a cationic character proportional to the number of amino groups in the molecule, but their ester groups are not very resistant to hydrolysis in alkaline media;
- -
- fatty aminoamides (condensation products of polyamines with fatty acids); they exist in the form of acetate, chloride, and sulfate salts;
- -
- imidazoles, which exhibit lower viscosity than the amines from which they were obtained and, therefore, have a better softening effect on the textile product; they cause yellowing to a lesser extent than their starting products;
- -
- quaternary ammonium salts [4].
- -
- sulfonated fatty alcohols, e.g., cetyl sulfate in the form of sodium salt,
- -
- sulfonated fatty acid amides or esters, e.g., the condensate of stearoyl chloride with the sodium salt of acid N-methylaminoacetic acid (sarcosine).
Period | Description of Innovations | References |
---|---|---|
1906–1909 |
| [13,18,19] |
1930s |
| |
| [13,20,21,22,23] | |
1940s and 1950s |
| [13,24,25,26,27,28,29,30] |
1950–1990 |
| [4,8,9,10,11,12,13,14] |
| [13,31,32,33,34,35,36,37,38,39,40,41] | |
1950 and 1960s | The first generation of silicone auxiliaries for textiles (very lubricating, low-cost PDMS oils, and telechelic hydroxyl-terminated PDMS) was introduced to the industry. They have also the advantages of the reduced color of the fabric after treatment but have poor washing resistance, the softness of the hand feeling, and poor rebound effect, and their emulsions can be unstable and stratified, resulting in the generation of silicone oil spots. The first-generation silicone softeners are very easy to demulsify and bleach the oil during use. At present, the first-generation products are rarely used as fabric softeners and generally are used as yarn lubricants, filler fiber treatment agents, or chemical fiber spinning finishes. | [9,13,15,42] |
1980s | Since the 1980s was developed the second generation of silicone softeners, which includes epoxy or/and amino-modified polysiloxanes. Both groups are non-hydrophilic and easy to demulsify. The epoxy modification provides dryness while amino modification gives smoothness. They greatly improve the washing durability of the fabric. Amino-modified silicone oil gives a smooth feel and rebound effect, good washing resistance, and can improve the tearing strength of fabrics. However, it also has the disadvantages of the instability and delamination of the emulsion (leading to the generation of silicone oil spots), and also, very small yellowing and color change problems appear. Currently, amino-silicone oils are still the most often used modified silicone fabric softener on the market. Epoxy-modified silicone oil feels dry, has a rebound effect, and can improve the tearing strength of the fabric after treatment. However, after finishing, the fabric lacks fullness and softness, and due to the instability and delamination of the emulsion, the generation of silicone oil spots was observed. The water-absorbent fabric is not hydrophilic after finishing. Thus, it is mainly used in water-repellent soft finishing. In the production process, emulsion polymerization and the emulsification of silicone oil are carried out at the same time, the production cost is low, the emulsion particles are larger, and the smoothness is very good. The main disadvantage is that the softness of the hand feeling is not good, and there will be a small amount of precipitate during the storage of the product. It is mainly used in the smooth-feeling treatment of various fiber fabrics. | [42] |
1990s | In the 1990s, the third generation of polyether-modified silicone softeners, containing polyether active groups grafted on the side chains of polysiloxane chains, was elaborated. They do not easily break the emulsion, and after finishing, give good hydrophilic properties to the fabrics, which are slightly worse when touching. They also include amino (epoxy)/polyether-modified silicone oils. The pure polyether-modified silicone oil has water-dispersible/water-soluble characteristics without emulsification, delamination, and oil spots, and the fabric can be re-dyed after treatment, it can provide instant water absorption function, and the fabric has no yellowing and color change after treatment. However, the finished fabric has poor smoothness, no plump and soft feeling, the hydrophilicity and softness are not durable, and the tearing strength of the fabric is not improved. This type of product is only suitable for those that need instantaneous water absorption and require general soft finishing. In comparison with monopolyether-modified silicone oil, amino (epoxy)/polyether-modified silicone oil has a better hand feeling than mono-polyether-modified silicone oil and slightly higher yellowing. It is mainly used as a general-purpose hydrophilic soft finishing for general fabric agents. | [42] |
~2000 | Around 2000 the fourth generation of silicone softeners was developed—linear multiblock polysiloxane copolymers, exhibiting good hydrophilicity, a soft feeling, low yellowing, and being difficult to break. The fourth-generation silicone softeners have the advantages of the first three generations of products and excellent comprehensive performance. It is very easy to disperse in water and it is convenient and simple to use them without any emulsifiers or with a small amount of emulsifiers. High-concentration products can be used directly, showing very good compatibility, excellent stability to strong acids, strong bases, high electrolytes, etc., very good high temperature and high shear stability, and extremely high adaptability and flexibility to processes and equipment. They find many practical applications for modifications of various fibers and fabrics. This kind of silicone softener uses no demulsification, does not stick to rollers and to cylinders, has good washing resistance, leaves no oil spots and very low yellowing and discoloration, and also provides a full, fluffy, and silky texture. It gives a natural comfort feeling, which overcomes the shortcomings of traditional amino silicone oil which is rather “too greasy”. It has a very good feel and can be super soft. It has medium or higher hydrophilicity, which can be the same as organic fluorine’s easy decontamination and finishing. It enables color repair, peelability, re-dyeing and over-dyeing, and no secondary pollution; it basically does not affect the heat migration fastness of dispersed dyes on polyester and maintains the color fastness to washing and rubbing before soft finishing. | [42] |
2000–2022 | Further progress in the development and many examples of applications of functional silanes and silicone-based softeners for the surface modifications of different kinds of fibers and textile materials is presented in the course of this publication. |
2. Chemical Structures of Silicone-Based Additives and Their Uses in the Textile Industry
- excellent fiber-to-fiber lubrication,
- good stretch and recovery,
- improved elasticity and resiliency,
- excellent surface protection,
- a “premium”, soft hand feeling,
- hydrophobic or hydrophilic properties (depending on the type),
- good durability.
3. Modification of Surface Properties of Fibers and Textiles with Functional Silanes (and Silicones)
- -
- improved dyeing,
- -
- increased abrasion,
- -
- decreased inflammation,
- -
- electrical conductivity,
- -
- UV protection,
- -
- water, oil, and soil repellency,
- -
- controlled release of oil and flavor,
Modification of Textiles Surfaces with Quaternary Ammonium (Alkoxy)Silanes
- (1)
- a very rapid substitution of protons from water on the surface by the cation of QASs, in an ion-exchange process;
- (2)
- a hydrolytic polycondensation of alkoxy silane groups of QASs leading to the covalent bonding to the substrate surface [145].
4. Applications of Silicone Elastomers and Rubbers for Fabrication of Thin Coatings on Textile Materials
- flowable, fast curing,
- glossy, medium hardness, high elongation,
- excellent unprimed adhesion to polyamide fabric,
- soft, flexible, high-strength coating.
Textiles for Silicone Rubber Composites
5. Superhydrophobic Thin Coatings on Textile Materials Obtained by Silanes, Siloxanes, or Silicone Treatment
- -
- insoluble metal and fatty acid salts synthesized in situ,
- -
- waxes dissolved in organic solvents,
- -
- quaternary pyridine derivatives,
- -
- metal–organic complexes (e.g., chromium complex of fatty acid),
- -
- reactive (methylol)urea or (methylol)melamine derivatives containing hydrophobic fatty acid substituents and silicones.
- a different degree of the crosslinking of the polysiloxane,
- varied waterproof effect,
- varied product grip.
6. Summary, Conclusions, and Future Perspectives
- For sewing thread lubricant for polyester yarn, non-aqueous-based permethyl PDMS silicone oils and hydroxy-modified PDMSs, both in the form of oil or emulsion, are used. The non-aqueous-based permethyl PDMS silicone oils and hydroxy-modified PDMSs are also used as non-yellowing softeners. The 100% PDMS oils are used in kiss roll machines, and PDMS emulsions are used in exhaust apparatus.
- The primary additives used for the scouring and bleaching of the textile materials are wetting agents and detergents. As antifoaming agents in the formulation, either silicone emulsion or 100% ethoxylated and propoxylated PDMSs are used.
- For fiber finishing, especially for man-made fibers such as polypropylene and polyester, which are inherently hydrophobic, a polyether-based silicone surfactant is used as the wetting additive.
- Amine-substituted silicones and polyether-based aminosilicones are mainly used for softening applications to ensure hydrophilic properties. Over 95% of textiles are modified with silicones as softeners to make the substrate very smooth, soft, silky, elastomeric, and resilient.
- Silicone has the inherent property of increasing the color strength of a colored substrate, especially a dispersion dye to black, red, and navy blue.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- KEMI2013. Hazardous Chemicals in Textiles; Report of the Government Assignment; Swedish Chemicals Agency: Sundbyberg, Sweden, 2013; Available online: https://www.kemi.se/download/18.6df1d3df171c243fb23a98ff/1591454111687/rapport-3-13-textiles.pdf (accessed on 5 January 2022).
- Smulders, E.; Sung, E. Laundry Detergents, 2. Ingredients and Products. In Ullmann’s Encyclopedia of Industrial Chemistry; From Wikipedia, the Free Encyclopedia; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar] [CrossRef]
- Artikboeva, R.; Yang, M.; Wu, Y.; Jie, C.; Heng, Q. Preparation and Application of the Hydrophilic Amino-Silicone Softener by Emulsion Polymerization. Adv. Chem. Eng. Sci. 2020, 10, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Gajdzicki, B. Środki zmiękczające i ich wpływ na właściwości użytkowe wyrobów włókienniczych (Softeners and their influence on the use properties of textile products). In Proceedings of the XXXIII Seminarium Polskich Kolorystów, Bydgoszcz, Poland, 20–22 September 2017; pp. 195–207. (In Polish). [Google Scholar]
- Jang, K.O.; Yeh, K. Effects of Silicone Softeners and Silane Coupling Agents on The Performance Properties of Cotton Fabrics. Text. Res. 1993, 63, 557–565. [Google Scholar] [CrossRef]
- Lu, K.; Yang, Y.M.; Huang, F. Development and Application of Silicone Softener. Hebei Text. 2007, 3, 42–51. [Google Scholar]
- Dong, Y.C. Chemical and Application of Textile Auxiliaries; China Textile Press: Beijing, China, 2007. [Google Scholar]
- Wahle, B.; Falkowski, J. Softeners in textile processing. Part I: An overview. Rev. Progr. Coloration 2002, 32, 118–124. [Google Scholar] [CrossRef]
- Reddy, N.; Salam, A.; Yang, Y. Effect of Structures and Concentrations of Softeners on the Performance Properties and Durability to Laundering of Cotton Fabrics. Ind. Eng. Chem. Res. 2008, 47, 2502–2510. [Google Scholar] [CrossRef]
- Schindler, W.D.; Hauser, P.J. Chapter 3: Softening finishes. In Chemical Finishing of Textiles; CRC Press LLC: Boca Raton, FL, USA, 2004; pp. 39–52. [Google Scholar]
- Available online: https://www.google.com/search?channel=trow5&client=firefox-b-d&q=dow-high-performance-solutions-for-textile-auxiliaries (accessed on 2 December 2021).
- Tomasino, C. Chemistry & Technology of Fabric Preparation & Finishing; North Carolina State University: Raleigh, NC, USA, 1992. [Google Scholar]
- Jackiewicz-Kozanecka, L. Chemiczne Podstawy Apretur Szlachetnych (Chemical Bases of Noble Finishes); WNT: Warsaw, Poland, 1985. [Google Scholar]
- Michałowska, J. Chemiczne wykończenie tekstyliów nadające im miękki chwyt (Chemical finish of the textiles giving them a soft touch). Przegląd Włokienniczy 2004, 11, 35–37. (In Polish) [Google Scholar]
- Schwark, J.; Mueller, J. High Performance Silicone-Coated Textiles: Developments and Applications. J. Coat. Fabr. 1996, 26, 65–77. [Google Scholar] [CrossRef]
- Łatwińska, M.; Chruściel, J.; Sójka-Ledakowicz, J.; Piórkowski, M. PLA and PP composite nonwoven with antimicrobial activity for filtration applications. Int. J. Polym. Sci. 2016, 2016, 2510372. [Google Scholar] [CrossRef] [Green Version]
- Olczyk, J.; Sójka-Ledakowicz, J.; Walawska, A.; Antecka, A.; Siwińska, K.; Zdarta, J.; Jesionowski, T. Antimicrobial Activity and Barrier Properties against UV Radiation of Alkaline and Enzymatically Treated Linen Woven Fabrics Coated with Inorganic Hybrid Material. Molecules 2020, 25, 5701. [Google Scholar] [CrossRef]
- Eschalier, X. French Patent 374724, 1906.
- Eschalier, X. British Patent. 25647, 1906. [Google Scholar]
- Foulds, R.P.; Marsh, J.T.; Wood, F.C. Improved Cellulosic Materials and the Production Thereof. British Patent 291473, 1928. [Google Scholar]
- Foulds, R.P.; Marsh, J.T.; Wood, F.C. Improved Cellulosic Materials and the Production Thereof. British Patent 291474, 1928. [Google Scholar]
- Foulds, R.P. An improved Cellulosic Materials and the Production Thereof. British Patent 304900, 1929. [Google Scholar]
- Foulds, R.P.; Marsh, J.T.; Wood, F.C. Textile Material and the Production Thereof. U.S. Patent 1734516, 1929. [Google Scholar]
- IG Farbenindustrie AG. Improvements in the Treatment of Fabrics for the Production of Non-crease Effects. British Patent 458877, 1935. [Google Scholar]
- Society of Chemical Industry in Basel. Manufacture of Aldehyde Condensation Products and Treatment of Textile Materials Therewith. British Patent 466015, 1935. [Google Scholar]
- Society of Chemical Industry in Basel. Manufacture of Aldehyde Condensation Products. British Patent 468677, 1937. [Google Scholar]
- Widmer, G.; Fish, W. Condensation Products of Amino-Triazine, Aldehyde, and Alcoholic Group-Containing Compounds and Processes of Making Same. U.S. Patent 2197357, 1940. [Google Scholar]
- Widmer, G.; Fisch, W. Aminotriazine-Aldehyde Binding Agent. U.S. Patent 2318121, 1943. [Google Scholar]
- Nickerson, R.F. Modified Methylated Melamineformaldehyde Compositions. U.S. Patent 2684347, 1951. [Google Scholar]
- Loo, W.J.V., Jr.; Melvin, S.J. Process for Treating Cellulose Containing Textile Material with an Alkylated Melamine-Formaldehyde Reaction Product. U.S. Patent 3087837, 1963. [Google Scholar]
- Steele, R.; Giddings, L.E. Reaction of Cellulose with Dimethylol- and Monomethylolureas. Ind. Eng. Chem. 1956, 48, 110–114. [Google Scholar] [CrossRef]
- Larson, A.T.; Loder, D.J. Dittmar, Preparation of N,N′-Ethyleneurea. H.R. U.S. Patent 2436311, 1948. [Google Scholar]
- Wayland, R.L., Jr. Manufacture of Ethylene Urea and the Dimethylol Derivative Thereo. U.S. Patent 2 825732, 1957. [Google Scholar]
- Goldstein, H.B. Adventure in research. The Development of ”Wash-Wear” Finish”. Am. Dyest. Rep. 1959, 48, 44–48. [Google Scholar]
- Frick, J.G., Jr.; Kottes, B.A.; Reid, J.D. Tetrahydropyrimidinone derivatives for Non-Chlorine retentive, Wrinkle-Resistant Cotton Fabric. Am. Dyest. Rep. 1959, 48, 23–25. [Google Scholar]
- Milliken Research Corp. Treating Cellulosic Textile Materials. British Patent 894195, 1958. [Google Scholar]
- Schoene, D.L.; Chambers, V.S. Chemically Modified Starches. U.S. Patent 2524400, 1950. [Google Scholar]
- Frick, J.G., Jr.; Reinhardt, R.M. Formaldehyde Release From Finishing Agents Based on Carbamates. Am. Dyest. Rep. 1967, 56, 291. [Google Scholar]
- Furukawa, M.; Frick, J.G., Jr.; Reinhardt, R.M.; Reid, J.D. Absorption phenomena in the treatment of cotton with formaldehyde and cyclic oxymethylenes. J. Appl. Polym. Sci. 1974, 18, 1423–1431. [Google Scholar] [CrossRef]
- Frick, J.G., Jr.; Harper, R.J., Jr. Crosslinking cotton cellulose with aldehydes. J. Appl. Polym. Sci 1982, 27, 983–988. [Google Scholar] [CrossRef]
- Frick, J.G., Jr.; Harper, R.J., Jr. Acetals as crosslinking reagents for cotton. J. Appl. Polym. Sci. 1984, 29, 1433–1447. [Google Scholar] [CrossRef]
- Available online: https://www.htfine-chem.com/a-brief-history-of-the-development-of-silicone-and-silicone-softening-agent.html (accessed on 20 May 2022).
- Noll, W. Chemistry and Technology of Silicones; Academic Press: New York, NY, USA, 1968. [Google Scholar]
- Habereder, P.; Bereck, A. Part 2: Silicone softeners. Rev. Prog. Coloration Relat. Top. 2002, 32, 125–137. [Google Scholar] [CrossRef]
- Koerner, G.; Schulze, M.; Weis, J. (Eds.) Silicones Chemistry and Technology; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Mohamed, A.; Hassabo, A. Review of silicon-based materials for cellulosic fabrics with functional applications. J. Text. Coloration Polym. Sci. 2019, 16, 139–157. [Google Scholar]
- Hashem, M.; Ibrahim, N.A.; El-Shafei, A.; Refaie, R.; Hauser, R. An eco-friendly–novel approach for attaining wrinkle–Free/Soft-Hand cotton fabric. Carbohydr. Polym. 2009, 78, 690–703. [Google Scholar] [CrossRef]
- Zuber, M.; Zia, K.M.; Tabassum, S.; Jamil, T.; Barkaat-ul-Hasin, S.; Khosa, M.K. Preparation of rich handles soft cellulosic fabric using amino silicone based softener, part II: Colorfastness properties. Int. J. Biolog. Macromol. 2011, 49, 1–6. [Google Scholar] [CrossRef]
- Rościszewski, P.; Zielecka, M. Silikony–Właściwości i Zastosowanie (Silicones–Properties and Application); WNT: Warsaw, Poland, 2002. (In Polish) [Google Scholar]
- Smart, M.; Kalt, F.; Takei, N. Chapter “Silicones”. In Chemical Economics Handbook; SRI International: Menlo Park, CA, USA, 1993. [Google Scholar]
- Chruściel, J.J. Silicon-Based Polymers and Materials; De Gruyter: Berlin, Germany, 2021. [Google Scholar]
- Chandra, G. A Review of the Environmental Fate and Effects of Silicone Materials in Textile Applications; Dow Corning Corp.: Midland, MI, USA, 1995. [Google Scholar]
- Buckingham, A.M.; Borkovich, J.; Avery, D.J. TAPPI Proceedings. In Proceedings of the 1993 Nonwovens Conference, Atlanta, GA, USA, 18–21 April 1993; p. 331. [Google Scholar]
- Joyner, M.M. Amino-functional polysiloxanes: A new class of softeners. Text. Chem. Colorist 1986, 18, 34–37. [Google Scholar]
- Chruściel, J.J.; Leśniak, E. Modification of epoxy resins with functional silanes, polysiloxanes, silsesquioxanes, silica and silicates. Progr. Polym. Sci. 2015, 41, 67–121. [Google Scholar] [CrossRef]
- Acton, A. (Ed.) Siloxanes–Advances in Research and Application; Scholarly Brief; Scholarly Edition: Atlanta, GA, USA, 2013; ISBN 148169402/9781481692403. [Google Scholar]
- Available online: https://textilevaluechain.in/in-depth-analysis/articles/textile-articles/fundamentals-of-silicone-and-their-uses-in-textile/ (accessed on 25 May 2022).
- Bereck, A.; Weber, B.; Riegel, D.; Bindl, J.; Habereder, P.; Huhn, K.G.; Lautenschlager, H.J.; Preiner, G. Einfluß von Siliconweichmachern auf Griff und mechanische Eigenschaften von textilen Flächengebilden. Teil 3: Aminoethylaminopropyl-Silicone. Untersuchungen an Maschenwaren unterschiedlicher Zusammensetzung (Deutsch). Textilveredlung 1997, 32, 135–137. [Google Scholar]
- Er-Rafik, M.; Mohamed, A.L.; Spyropoulos, K.; Wagner, R. Investigation of adsorption of aminofunctional silicone softener onto cotton fibers. Melliand Int. 2013, 3, 177–179. [Google Scholar]
- Celİk, N.; Değİrmencİ, Z.; Kaynak, H.K. Effect of nano-silicone softener on abrasion and pilling resistance and color fastness of knitted fabrics. Tekst Ve Konfeksiyon 2010, 1, 41–47. [Google Scholar]
- Habereder, P. Silicon-Weichmacher: Struktur-Wirkungsbeziehungen. Melliand Text. 2002, 83, 336–338. [Google Scholar]
- Chattopadhyay, D.P.; Vyas, D.D. Effect of silicone nano-emulsion softener on physical properties of cotton fabric. Indian J. Fibre Text. Res. 2010, 35, 68–72. [Google Scholar]
- Michałowski, W. Aplikacja środków zmiękczających i praktyczna ocena ich działania (Application of softeners and practical evaluation of their performance). Przegląd Włókienniczy 2005, 7, 19. (In Polish) [Google Scholar]
- Gokarneshan, N.; Suvitha, L.; Maanvizhi, M. Nano finishing of cotton fabrics. Inter. J. Appl. Eng. Tech. 2015, 5, 63–75. [Google Scholar]
- Oikonomou, E.K.; Grandisson, C.; Golemanov, K.; Ahuja, R.; Berret, J.-F. Silicone incorporation into an esterquat based fabric softener in presence of guar polymers. Colloids Surf. A Physicochem. Eng. Asp. 2021, 615, 126175. [Google Scholar] [CrossRef]
- Purohit, P.S.; Samasundaran, P. Modification of surface properties of cellulosic substrates by quaternized silicone emulsions. J. Colloid Interface Sci. 2014, 426, 235–240. [Google Scholar] [CrossRef]
- Mishra, S.; Tyagi, V.K. Esterquats: The novel class of cationic fabric softeners. J. Oleo Sci. 2007, 56, 269–276. [Google Scholar] [CrossRef] [Green Version]
- DeMatteo, R.; Warden, D.; Marshall, J.; Goodyear, N. Fabric softeners impact cleaning, but not disinfection, by a saturated steam vapor system. Am. J. Infect. Control 2014, 42, 462–463. [Google Scholar] [CrossRef]
- Available online: https://www.americanchemistry.com/industry-groups/silicones-environmental-health-and-safety-center-sehsc/resources/silicone-textile-applications (accessed on 27 May 2022).
- Thoss, H.; Hesse, A.; Höcker, H.; Wagner, R.; Lange, H. Aufziehverhalten von ammoniummodifizierten Silikonweichmachern auf CO-Gewebe. Melliand Text. 2003, 84, 314–318. [Google Scholar]
- Mooney, W. Chemical softening. In Textile Finishing; Heywood, D., Ed.; Society of Dyers and Colourists: Bradford, UK, 2003; pp. 251–307. [Google Scholar]
- Bereck, A.; Weber, B.; Riegel, D.; Bindl, J.; Habereder, P.; Huhn, K.G.; Lautenschlager, H.-J.; Preiner, G. Einfluss von Siliconweichmachern auf Griff und mechanische Eigenschaften von textilen Flächengebilden, Teil 4. Textilveredlung 1997, 32, 138–141. [Google Scholar]
- Sand, C.; Brückmann, R.; Zyschka, R. Modische Akzente in der textilen Ausrüstung. Melliand Text. 2000, 81, 992–997. [Google Scholar]
- Thumm, S. Prozessoptimierte Siliconweichgriffmittel. Int. Text. Bull. 2001, 47, 88. [Google Scholar]
- Xie, K.-L.; Hu, K.; Chen, Y. Synthesis of Amphiphilic Polysiloxanes Modified with Multi-cationic Groups to Improve Wettability of Polyester Materials. Iran. Polym. J. 2010, 19, 447–455. [Google Scholar]
- Gashti, M.P.; Navid, M.Y.; Rahimi, M.H. Effects of coating of nano- and microemulsion silicones on thermal properties and flammability of polyethylene terephthalate textile. Pigm. Resin Technol. 2013, 42, 34–44. [Google Scholar] [CrossRef]
- Islam, M.M.; Huiyu, J. Synthesis of Silicone oil and Application on Knit and Woven Cotton Dyed Fabrics. Int. J. Sci. Eng. Res. 2015, 6, 375–381. [Google Scholar]
- Islam, M.S.; Lahiri, S.K.; Nahar, J.; Alomgir, M. Synthesis and Application of Amino-Modified Silicone Oil on Cotton Fabric. Int. J. Sci. Eng. Res. 2015, 6, 1195–1203. [Google Scholar]
- Duru, C.; Şahin, S.; Kıvanç, U. Effects of yarn type, process history, softener type and concentration on wicking and drying properties of cotton plain knitted fabrics. J. Text. Inst. 2020, 111, 1166–1175. [Google Scholar] [CrossRef]
- Balci, O.; Kinoglu, G.Ö.; Besen, B.S. Silicone oil based softeners including different additives–part I: Characterization of the softeners and investigation of their effects on mechanical properties of the fabrics. Int. J. Cloth. Sci. Technol. 2018, 31, 130–144. [Google Scholar] [CrossRef]
- Balci, O.; Kinoglu, G.Ö.; Besen, B.S. Silicone oil based softeners including different additives: Part II: Investigation of effects of silicone softeners on the comfort properties of the fabrics. Int. J. Cloth. Sci. Technol. 2018, 31, 16–31. [Google Scholar] [CrossRef]
- Abdelmouleh, M.; Boufi, S.; Belgacemb, M.N.; Duarte, A.P.; Salah, A.B.; Gandini, A. Modification of cellulosic fibres with functionalised silanes: Development of surface properties. Int. J. Adh. Adh. 2004, 24, 43–54. [Google Scholar] [CrossRef]
- Brzeziński, S.; Kowalczyk, D. Nanopowłokowe wykończenie tekstyliów metodą zol-żel (Nanocoating finish of textiles using the sol-gel method). In Proceedings of the XXXIII Seminarium Polskich Kolorystów, Bydgoszcz, Poland, 20–22 September 2017; pp. 37–52. (In Polish). [Google Scholar]
- Brzeziński, S.; Kowalczyk, D. Nanopowłokowe wykończenie tekstyliów metodą „zol-żel” (Nanocoating finish of textiles using the ”sol-gel” method). Inf. Chem. Kolorysty 2017, 30, 15–30. (In Polish) [Google Scholar]
- Camlibel, N.O.; Arik, B. Chapter 13: Sol-Gel Applications in Textile Finishing Processes, 253-281, and referencies cited therein. In Recent Applications in Sol-Gel Synthesis; Chandra, U., Ed.; InTech Open: London, UK, 2017; ISBN 978-953-51-3246-2. [Google Scholar] [CrossRef] [Green Version]
- Periyasamy, A.P.; Venkataraman, M.; Kremenakova, D.; Militky, J.; Zhou, Y. Progress in Sol-Gel Technology for the Coatings of Fabrics. Materials 2020, 13, 1838. [Google Scholar] [CrossRef] [Green Version]
- Mahltig, B.; Haufe, H.; Böttcher, H. Functionalisation of textiles by inorganic sol–gel coatings. J. Mater. Chem. 2005, 15, 4385–4398. [Google Scholar] [CrossRef]
- Mahltig, B.; Knittel, D.; Schollmeyer, E.; Böttcher, H. Incorporation of Triarylmethane Dyes into Sol–Gel Matrices Deposited on Textiles. J. Sol-Gel Sci. Technol. 2004, 31, 293–297. [Google Scholar] [CrossRef]
- Mahltig, B.; Textor, T. Nanosols and Textiles; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2008. [Google Scholar] [CrossRef]
- Jasiorski, M.; Bakardijeva, S.; Doroszkiewicz, W.; Brzeziński, S.; Malinowska, G.; Marcinkowska, D.; Ornat, M.; Stręk, W.; Maruszewski, K. Properties and applications of silica submicron powders with surface Ag nanoclusters. Mater. Sci.-Poland 2004, 22, 137–144. [Google Scholar]
- Jasiorski, M.; Leszkiewicz, A.; Brzeziński, S.; Bugla-Płoskońska, G.; Malinowska, G.; Borak, B.; Karbownik, I.; Baszczuk, A.; Stręk, W.; Doroszkiewicz, W. Textiles with silver silica spheres: Its antimicrobial activity against Escherichia coli and Staphylococcus aureus. J. Sol-Gel Sci. Technol. 2009, 51, 330–334. [Google Scholar] [CrossRef]
- Mahltig, B.; Gutmann, E.; Reibold, M.; Meyer, D.C.; Böttcher, H. Synthesis of Ag and Ag/SiO2 sols by solvothermal method and their bactericidal activity. J. Sol-Gel Sci. Technol. 2009, 51, 204–214. [Google Scholar] [CrossRef]
- Textor, T.; Fouda, M.M.G.; Mahltig, B. Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction. Appl. Surface Sci. 2010, 256, 2337–2342. [Google Scholar] [CrossRef]
- Mahltig, B.; Fiedler, D.; Fischer, A.; Simon, P. Antimicrobial coatings on textiles – modification of sol–gel layers with organic and inorganic biocides. J. Sol-Gel Sci. Technol. 2010, 55, 269–277. [Google Scholar] [CrossRef]
- Ibănescu, M.; Muşat, V.; Textor, T.; Badilita, V.; Mahltig, B. Photocatalytic and antimicrobial Ag/ZnO nanocomposites for functionalization of textile fabrics. J. Alloys Compd. 2014, 610, 244–249. [Google Scholar] [CrossRef]
- Busila, M.; Musat, V.; Textor, T.; Mahltig, B. Synthesis and characterization of antimicrobial textile finishing based on Ag:ZnO nanoparticles/chitosan biocomposites. RSC Adv. 2015, 5, 21562–21571. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Dhawale, P.V.; Sorate, C.S. Surface Modification of Cellulose with Silanes for Adhesive Application: Review. Open J. Polym. Chem. 2021, 11, 11–30. [Google Scholar] [CrossRef]
- Mondal, M.I.H.; Islam, M.K.; Ahmed, F. Textile Performance of Functionalized Cotton Fiber with 3-Glycidoxypropyltriethoxysilane. J. Textile Sci. Eng. 2018, 8, 337. [Google Scholar] [CrossRef]
- Devi, R.P.; Rathinamoorthy, R.; Senthilkumar, P. Effect of combined enzyme and amino silicone finishing treatment on moisture characteristics of jute/cotton knitted fabric. Indian J. Fibre Text. Res. 2021, 46, 174–181. [Google Scholar]
- Brzeziński, S.; Kowalczyk, D.; Borak, B.; Jasiorski, M.; Tracz, A. Nanocoat Finishing of Polyester/Cotton Fabrics by the Sol-Gel Method to Improve their Wear Resistance. Fibres Text. East. Eur. 2011, 19, 83–88. [Google Scholar]
- Brzeziński, S.; Kowalczyk, D.; Borak, B.; Jasiorski, M.; Tracz, A. Applying the Sol–Gel Method to the Deposition of Nanocoats on Textiles to Improve Their Abrasion Resistance. J. Appl. Polym. Sci. 2012, 125, 3058–3067. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Brzeziński, S.; Kamińska, I. Multifunctional bioactive and improving the per PET/CO woven fabrics by the sol-gel method. J. Alloys Compd. 2015, 649, 387–393. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Brzeziński, S.; Malinowska, G.; Kowalczyk, D.; Kaleta, A.; Borak, B.; Jasiorski, M.; Dąbek, K.; Baszczuk, A.; Tracz, A. Antibacterial and Fungicidal Coating of Textile-polymeric Materials Filled with Bioactive Nano- and Submicro-particles. Fibres Text. East. Eur. 2012, 20, 70–77. [Google Scholar]
- Kowalczyk, D.; Brzeziński, S.; Kamińska, I. Multifunctional nanocoating finishing of polyester/cotton woven fabric by the sol-gel method. Text. Res. J. 2017, 88, 946–956. [Google Scholar] [CrossRef]
- Farouk, A.; Sharaf, S. Sol-gel Hybrid Nanomaterials Based on TiO2/SiO2 as Multifunctional Finishing for Cotton Fabric. Egypt. J. Chem. 2016, 59, 407–427. [Google Scholar]
- Foksowicz-Flaczyk, J.; Walentowska, J.; Przybylak, M.; Maciejewski, H. Multifunctional durable properties of textile materials modified by biocidal agents in the sol-gel process. Surf. Coat. Technol. 2016, 304, 160–166. [Google Scholar] [CrossRef]
- Gorchakova, V.M.; Izmalova, B.A.; Savinkin, A.V.; Osokina, O.A. Development of technology for nonwovens with antimicrobial and aromatic properties. Fiber Chem. 2006, 38, 115–117. [Google Scholar] [CrossRef]
- Liang, J.; Wu, R.; Wang, J.-W.; Barnes, K.; Worley, S.D.; Cho, U.; Lee, J.; Broughton, R.M.; Huang, T.-S. N-halamine biocidal coatings. J. Ind. Microbiol. Biotechnol. 2007, 34, 157–163. [Google Scholar] [CrossRef]
- Zięba, M.; Małysa, A.; Wasilewski, T.; Ogorzałek, M. Effects of chemical structure of silicone polyethers used as fabric softener additives on selected utility properties of cotton fabric. AUTEX Res. J. 2019, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Zheng, C.; Chen, P.; Yu, Q.; Mao, T.; Lin, J.; Liu, L. Synthesis of multiblock linear polyether functional amino silicone softener and its modification of surface properties on cotton fabrics. Polym. Bull. 2019, 76, 447–467. [Google Scholar] [CrossRef]
- Ai, L.; Cao, H.; Zhu, Y. Preparation of silicone-modified acrylate latex and its application for low-emission printing of pet fibre. AUTEX Res. J. 2019, 19, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Harya, I.; Izinilah, F.; Hakiki, I.R.; Slamet, S. Study of self cleaning fabric modified by Cu doped TiO2 with the addition of tetraethyl orthosilicate (TEOS). In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 2024, p. 020071. [Google Scholar]
- Ibadurrohman, M.; Slamet, D.K. Modified anti-mosquito and self-cleaning fabrics utilizing clove oil–CuO/TiO2 composites. Text. Res. J. 2022, 92, 2112–2120. [Google Scholar] [CrossRef]
- Gao, J.; Li, W.; Zhao, X.; Wang, L.; Pan, N. Durable visible light self-cleaning surfaces imparted by TiO2/SiO2/GO photocatalyst. Text. Res. J. 2019, 89, 517–527. [Google Scholar] [CrossRef]
- Hu, J.; Gao, Q.; Xu, L.; Wang, M.; Zhang, M.; Zhang, K.; Liu, W.; Wu, G. Functionalization of cotton fabrics with highly durable polysiloxane-TiO2 hybrid layers: Potential applications for photo-induced water-oil separation, UV shielding, and self-cleaning. J. Mater. Chem. A 2018, 6, 6085–6095. [Google Scholar] [CrossRef]
- Riaz, S.; Ashraf, M.; Hussain, T.; Hussain, M.T.; Younus, A. Fabrication of robust multifaceted textiles by application of functionalized TiO2 nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2019, 581, 123799. [Google Scholar] [CrossRef]
- Rashid, M.M.; Simoncic, B.; Tomsic, B. Recent advances in TiO2-functionalized textile surfaces. Surf. Interfaces 2021, 22, 100890. [Google Scholar] [CrossRef]
- Nejman, A.; Baranowska-Korczyc, A.; Ranoszek-Soliwoda, K.; Jasińska, I.; Celichowski, G.; Cieślak, M. Silver Nanowires and Silanes in Hybrid Functionalization of Aramid Fabrics. Molecules 2022, 27, 1952. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Gu, J.; Chen, G.Q.; Xing, T.L. Durable flame retardant finish for silk fabric using boron hybrid silica sol. Appl. Surf. Sci. 2016, 387, 446–453. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, Y.; Zhao, J.; Wang, X.; Zeng, Q.; Gu, Y. Phosphorus-doped organic–inorganic hybrid silicon coating for improving fire retardancy of polyacrylonitrile fabric. J. Sol-Gel Sci. Technol. 2017, 82, 280–288. [Google Scholar] [CrossRef]
- Dong, C.; Lu, Z.; Zhu, P.; Zhang, F.; Zhang, X. Combustion behaviors of cotton fabrics treated by a novel guanidyl- and phosphorus-containing polysiloxane flame retardant. J. Therm. Anal. Calorim. 2015, 119, 349–357. [Google Scholar] [CrossRef]
- Dong, C.; Lu, Z.; Zhang, F. Preparation and properties of cotton fabrics treated with a novel guanidyl- and phosphorus-containing polysiloxane antimicrobial and flame retardant. Mater. Lett. 2015, 142, 35–37. [Google Scholar] [CrossRef]
- Aksit, A.; Onar, N.; Kutlu, B.; Sergin, E.; Yakin, I. Synergistic effect of phosphorus, nitrogen and silicon on flame retardancy properties of cotton fabric treated by sol–gel proces. Int. J. Cloth. Sci. Technol. 2016, 28, 319–327. [Google Scholar] [CrossRef]
- Song, X.; Zhou, S.; Wang, Y.; Kang, W.; Cheng, B. Mechanical and electret properties of polypropylene unwoven fabrics reinforced with POSS for electret filter materials. J. Polym. Res. 2012, 19, 9812. [Google Scholar] [CrossRef]
- Sójka-Ledakowicz, J.; Chruściel, J.; Kudzin, M.; Kiwała, M. A Method for Biofunctionalization of Textile Material. Patent EP 3067445, 7 September 2017. [Google Scholar]
- Sójka-Ledakowicz, J.; Chruściel, J.; Kudzin, M.; Kiwała, M. Sposób Biofunkcjonalizacji Materiałów Włókienniczych. Patent PL 231 089, 31 January 2019. [Google Scholar]
- Skoc, M.S.; Macan, J.; Pezelj, E. Modification of Polyurethane-Coated Fabrics by Sol–Gel Thin Films. J. Appl. Polym. Sci. 2014, 131, 39914. [Google Scholar] [CrossRef]
- Chen, R.-S.; Chang, C.-J.; Chang, Y.-H. Study on Siloxane-Modified Polyurethane Dispersions from Various PDMS. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 3482–3490. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Okda, H.M.Y.; Hassabo, A.G.; El-Rafie, M.H.; Youssef, M.A. Synthesis of New Silicone-based Adducts to Functionalize Cotton Fabric. Silicon 2022, 14, 7613–7621. [Google Scholar] [CrossRef]
- Cho, H.S.; Yoon, H.J.; Lee, B.H.; Woo, J.C.; Choi, H.Y.; Shim, E.; Youk, J.H. Evaluation of Touch and Durability of Cotton Knit Fabrics Treated with Reactive Urethane-Silicone Softener. Polymers 2022, 14, 1873. [Google Scholar] [CrossRef]
- Isquith, A.J.; Abbott, E.A.; Walters, P.A. Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl. Environ. Microbiol. 1972, 24, 859–863. [Google Scholar] [CrossRef]
- Speier, J.L.; Malek, J.R. Destruction of microorganisms by contact with solid surfaces. J. Colloid Interface Sci. 1982, 89, 68–76. [Google Scholar] [CrossRef]
- el Ola, S.M.A.; Kotek, R.; White, W.C.; Reeve, J.A.; Hauser, P.; Kim, J.H. Unusual polymerization of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride on PET substrates. Polymer 2004, 45, 3215–3225. [Google Scholar] [CrossRef]
- Battice, D.R.; Hales, M.G. A new technology for producing stabilized foams having antimicrobial activity. J. Cell. Plast. 1985, 21, 332–337. [Google Scholar] [CrossRef]
- Virk, R.K.; Ramaswamy, G.N.; Bourham, M.; Bures, B.L. Plasma and Antimicrobial Treatment of Nonwoven Fabrics for Surgical Gowns. Text. Res. J. 2004, 74, 1073–1079. [Google Scholar] [CrossRef]
- Walters, P.A.; Abbott, E.A.; Isquith, A.J. Algicidal activity of a surface-bonded organosilicon quaternary ammonium chloride. Appl. Environ. Microbiol. 1973, 25, 253–256. [Google Scholar] [CrossRef]
- Isquith, A.J.; McCollum, C.J. Surface kinetic test method for determining rate of kill by an antimicrobial solid. Appl. Environ. Microbiol. 1978, 36, 700–704. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, Y.; Hayashi, H.; Tawaratani, T.; Kourai, H.; Horie, T.; Shibasaki, I. Disinfection of Water with Quaternary Ammonium Salts Insolubilized on a Porous Glass Surface. Appl. Environ. Microbiol. 1984, 47, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Gettings, R.L.; Triplett, B.L. A new durable antimicrobial finish for textiles. In Book of Papers; American Association of Textile Chemists and Colorists: Research Triangle Park, NC, USA, 1978; pp. 259–261. [Google Scholar]
- Kanazawa, A.; Ikeda, T.; Endo, T. Polymeric Phosphonium Salts as a Novel Class of Cationic Biocides. VI. Antibacterial Activity of Fibers Surface-Treated with Phosphonium Salts Containing Trimethoxysilane Groups. J. Appl. Polym. Sci. 1994, 52, 641–647. [Google Scholar] [CrossRef]
- Kanazawa, A.; Ikeda, T.; Endo, T. Polymeric phosphonium salts as a novel class of cationic biocides. X. Antibacterial activity of filters incorporating phosphonium biocides. J. Appl. Polym. Sci. 1994, 54, 1305–1310. [Google Scholar] [CrossRef]
- Nigmatullin, R.; Gao, F. Onium-functionalised Polymers in the Design of Non-leaching Antimicrobial Surfaces. Macromol. Mater. Eng. 2012, 297, 1038–1074. [Google Scholar] [CrossRef]
- Williams, J.F.; HaloSource, V.; Cho, U. Antimicrobial Functions for Synthetic Fibers: Recent Developments. AATCC Rev. 2005, 5, 17–21. [Google Scholar]
- Malek, R.; Speier, J.L. Development of organosilicone antimicrobial agent for the treatment of surfaces. J. Coat. Fabr. 1982, 12, 38–46. [Google Scholar]
- Teisala, H.; Baumli, P.; Weber, S.A.L.; Vollmer, D.; Hans-Jürgen Butt, H.-J. Grafting Silicone at Room Temperature—A Transparent, Scratchresistant Nonstick Molecular Coating. Langmuir 2020, 36, 4416–4431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, W.C.; Olderman, G.M. Antimicrobial Techniques for Medical Non-Wovens: A case Study. In Proceedings of the 12th Annual Technology Symposium, 22–23 May 1984. Available online: https://www.google.com/search?client=firefox-b-d&q=Antimicrobial+techniques+for+medical+non-wovens%3A+A+case+study.+ (accessed on 7 June 2022).
- Varan, N.Y.; Eryuruk, S.H. The Effects of Quat-Silane Antimicrobials on the Physical and Mechanical Properties of Cotton and Cotton/Elastane Fabrics Used for Clothing. IOP Conf. Ser. Mater. Sci. Eng. 2018, 460, 012004. [Google Scholar]
- Saif, M.J.; Zia, K.M.; Rehman, F.; Ahmad, M.N.; Kiran, S.; Gulzar, T. An eco-friendly, permanent, and non-leaching antimicrobial coating on cotton fabrics. J. Text. Inst. 2015, 106, 907–911. [Google Scholar] [CrossRef]
- Everaert, E.P.J.M.; Mahieu, H.F.; van de Belt-Gritter, B.; Peeters, A.J.G.E.; Verkerke, G.J.; van der Mei, H.C.; Busscher, H.J. Biofilm formation in vivo on perfluoro-alkylsiloxane-modified voice prostheses. Arch. Otolaryngol. Head Neck Surg. 1999, 125, 1329–1332. [Google Scholar] [CrossRef] [Green Version]
- Gottenbos, B.; van der Mei, H.C.; Klatter, F.; Nieuwenhuis, P.; Busscher, H.J. In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 2002, 23, 1417–1423. [Google Scholar] [CrossRef]
- Silver, J.H.; Lin, J.; Lim, F.; Tegoulia, V.A.; Chaudhury, M.K.; Cooper, S.L. Surface properties and hemocompatibility of alkyl-siloxanemonolayers supported on silicone rubber: E!fect of alkyl chain length and ionic functionality. Biomaterials 1999, 20, 1533–1541. [Google Scholar] [CrossRef]
- MOMENTIVE_Silicone_in_Coating_Textile_Brochure. Available online: https://tribotec.se/wp-content/uploads/2019/09/MOMENTIVE_Silicone_in_Coating_Textile_Brochure.pdf (accessed on 20 June 2022).
- Available online: https://www.simtec-silicone.com/capabilities/properties-of-lsr/ (accessed on 21 June 2022).
- Available online: https://www.tss.trelleborg.com/pl-pl/products-and-solutions/liquid-silicone-rubber (accessed on 22 June 2022).
- Focus on Glass Fiber Composite Materials; Shenzen Core-Tex Composite Materials Co., Ltd.: Guangdong, China; Newark, CA, USA. Available online: https://www.heaterk.com/collections/silicone-coated-fiberglass-fabric?gclid=EAIaIQobChMIiMynya_a-gIV4AWiAx0V7QFlEAAYASAAEgJzGPD_BwE (accessed on 4 January 2022).
- Available online: https://www.dow.com/en-us/pdp.silastic-lcf-5120-liquid-silicone-rubber-part-b.04133109z.html (accessed on 24 June 2022).
- Han, X.; Wang, L.; Li, J.; Zhan, X.; Chen, J.; Yang, J. Separation of Ethanol from Ethanol/Water Mixtures by Pervaporation with Silicone Rubber Membranes: Effect of Silicone Rubbers. J. Appl. Polym. Sci. 2011, 119, 3413–3421. [Google Scholar] [CrossRef]
- Yu, A.; Sukigara, S.; Shirakihara, M. Effect of Silicone Inlaid Materials on Reinforcing Compressive Strength of Weft-Knitted Spacer Fabric for Cushioning Applications. Polymers 2021, 13, 3645. [Google Scholar] [CrossRef]
- Zielecka, M.; Cyruchin, K.; Rościszewski, P.; Bęza, H.; Romańczuk, T.; Jakubas, T. Emulsja Elastomerów Silikonowych, Zwłaszcza do Impregnacji Wyrobów Włókienniczych (Emulsion of Silicone Elastomers, in Particular for the Impregnation of Textiles). Patent PL 165436, 1994. (In Polish). [Google Scholar]
- Kim, Y.B.; Cho, D.; Park, W.H. Fabrication and Characterization of TiO2/Poly(dimethylsiloxane) Composite Fibers with Thermal and Mechanical Stability. J. Appl. Polym. Sci. 2010, 116, 449–454. [Google Scholar] [CrossRef]
- Available online: https://compotex.com/textile-rubber/textiles-for-silicone-rubber/ (accessed on 1 July 2022).
- Ismail, W.N.W. Sol–gel technology for innovative fabric finishing—A review. J. Sol-Gel Sci. Technol. 2016, 78, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Gao, S.-W.; Cai, J.-S.; He, C.-L.; Mao, J.-J.; Zhu, T.-X.; Chen, Z.; Huang, J.-Y.; Meng, K.; Zhang, K.-Q.; et al. Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates. Materials 2016, 9, 124. [Google Scholar] [CrossRef] [Green Version]
- Holme, I. Chapter 5: Water-repelency and waterproofing. In Textile Finishing; Heywood, D., Ed.; Society of Dyers Colorists: Bradford, UK, 2003; pp. 135–213. [Google Scholar]
- Gajdzicki, B. Wykończenie hydrofobowe materiałów włókienniczych (Textiles with water repellency and waterproofing finishes). In Proceedings of the XXXI Seminarium Polskich Kolorystów, Ustroń–Jaszowiec, Łódź, Poland, 23–25 September 2015; pp. 155–175. (In Polish). [Google Scholar]
- Loghin, C.; Ciobanu, L.; Ionesi, D.; Loghin, E.; Cristian, I. Chapter 1: Introduction to waterproof and water repellent textiles. In The Textile Institute Book Series, Waterproof and Water Repellent Textiles and Clothing; Williams, J., Ed.; Woodhead Publ.: Cambridge, UK, 2018; pp. 3–24. ISBN 9780081012123. [Google Scholar] [CrossRef]
- Özek, H.Z. Chapter 7: Silicone-based water repellents. In Waterproof and Water Repellent Textiles and Clothing, Part 2; Williams, J., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 153–189. [Google Scholar]
- Mahltig, B.; Böttcher, H. Modified Silica Sol Coatings for Waterproof and Water Repellent Textiles and Clothing, Water-Repellent Textiles. J. Sol-Gel Sci. Technol. 2003, 27, 43–52. [Google Scholar] [CrossRef]
- Mahltig, B.; Fischer, A. Inorganic/Organic Polymer Coatings for Textiles to Realize Water Repellent and Antimicrobial Properties—A Study with Respect to Textile Comfort. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1562–1568. [Google Scholar] [CrossRef]
- Shin, S.; Seo, J.; Han, H.; Kang, S.; Kim, H.; Lee, T. Bioinspired extreme wetting surfaces for biomedical applications. Materials 2016, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Falde, E.J.; Yohe, S.T.; Colson, Y.L.; Grinstaff, M.W. Superhydrophobic materials for biomedical applications. Biomaterials 2016, 104, 87–103. [Google Scholar] [CrossRef]
- Jaggessar, A.; Shahali, H.; Mathew, A.; Yarlagadda, P.K.D.V. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 2017, 15, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Guo, W. Anti-biofouling and healable materials: Preparation, mechanisms, and biomedical applications. Adv. Funct. Mater. 2018, 28, 1800596. [Google Scholar] [CrossRef]
- Tomšič, B.; Simončič, B.; Orel, B.; Černe, L.; Tavčer, P.F.; Zorko, M.; Jerman, I.; Vilčnik, A.; Kovač, J. Sol-gel coating of cellulose fibres with antimicrobial and repellent properties. J. Sol-Gel Sci. Technol. 2008, 47, 44–57. [Google Scholar] [CrossRef]
- Xu, L.; Shen, Y.; Ding, Y.; Wang, L. Superhydrophobic and ultraviolet-blocking cotton fabrics based on TiO2/SiO2 composite nanoparticles. J. Nanosci. Nanotechnol. 2018, 18, 6879–6886. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, M.; Jiang, W.; He, C.; Xie, S.; Wang, Y. Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. Carbohydr. Polym. 2018, 197, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Mai, Z.; Liu, X.; Ye, D.; Zhang, H.; Yin, X.; Zhou, Y.; Liu, M.; Xu, W. UV-blocking, superhydrophobic and robust cotton fabrics fabricated using polyvinylsilsesquioxane and nano-TiO2. Cellulose 2018, 25, 3635–3647. [Google Scholar] [CrossRef]
- Khan, M.Z.; Baheti, V.; Ashraf, M.; Hussain, T.; Ali, A.; Javid, A.; Rehman, A. Development of UV protective, superhydrophobic and antibacterial textiles using ZnO and TiO2 nanoparticles. Fibers Polym. 2018, 19, 1647–1654. [Google Scholar] [CrossRef]
- Shaheen, T.I.; Salem, S.S.; Zaghloul, S. A new facile strategy for multifunctional textiles development through in situ deposition of SiO2/TiO2 nanosols hybrid. Ind. Eng. Chem. Res. 2019, 58, 20203–20212. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Liu, K.; Liu, X.; Chen, F.; Xu, W. Facile fabrication of ultraviolet-protective silk fabrics via atomic layer deposition of TiO2 with subsequent polyvinylsilsesquioxane modification. Text. Res. J. 2019, 89, 3529–3538. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Dolez, P.I.; Dube, M.; David, E. Preparation of a hydrophobic recycled jute-based nonwoven using a titanium dioxide/stearic acid coating. J. Text. Inst. 2019, 110, 16–25. [Google Scholar] [CrossRef]
- Katiyar, P.; Mishra, S.; Srivastava, A.; Prasad, N.E. Preparation of TiO2–SiO2 hybrid nanosols coated flame-retardant polyester fabric possessing dual contradictory characteristics of superhydrophobicity and self cleaning ability. J. Nanosci. Nanotechnol. 2019, 20, 1780–1789. [Google Scholar] [CrossRef]
- Khan, M.Z.; Baheti, V.; Militky, J.; Wiener, J.; Ali, A. Self-cleaning properties of polyester fabrics coated with flower-like TiO2 particles and trimethoxy (octadecyl)silane. J. Ind. Text. 2020, 50, 543–565. [Google Scholar] [CrossRef]
- Min, K.S.; Manivannan, R.; Son, Y.A. Porphyrin Dye/TiO2 imbedded PET to improve visible-light photocatalytic activity and organosilicon attachment to enrich hydrophobicity to attain an efficient self-cleaning material. Dye. Pigment. 2019, 162, 8–17. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, S.; Shi, X.; Lan, Y.; Zeng, G.; Zhang, K.; Li, X. A fluorine-free method for fabricating multifunctional durable superhydrophobic fabrics. Appl. Surf. Sci. 2020, 505, 144621. [Google Scholar] [CrossRef]
- Hardman, B.; Torkelson, A. Chapter: Silicones. In Encyclopedia of Polymer Science and Engineering, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1989; Volume 15, pp. 271–289. [Google Scholar]
- Chruściel, J. Postęp w dziedzinie chemii polimetylowodorosiloksanów (Progress in the chemistry of polymethylhydro-siloxanes). Polimery 1999, 44, 462–474. (In Polish) [Google Scholar]
- Chruściel, J. Chapter 14: Hydrosilyl-Functional Polysiloxanes: Synthesis, Reactions and Applications. In Reactive and Functional Polymers, Vol. One; Gutiérrez, T.J., Ed.; Springer Int. Publ.: Berlin/Heidelberg, Germany, 2020; pp. 329–413. [Google Scholar]
- Han, J.T.; Lee, D.H.; Ryu, C.Y.; Cho, K. Fabrication of Superhydrophobic Surface from a Supramolecular Organosilane with Quadruple Hydrogen Bonding. J. Am. Chem. Soc. 2004, 126, 4796–4797. [Google Scholar] [CrossRef]
- Artus, G.R.J.; Jung, S.; Zimmermann, J.; Gautschi, H.-P.; Marquardt, K.; Seeger, S. Silicone Nanofilaments and Their Application as Superhydrophobic Coatings. Adv. Mater. 2006, 18, 2758–2762. [Google Scholar] [CrossRef]
- Zimmermann, J.; Reifler, F.A.; Fortunato, G.; Gerhardt, L.-C.; Seeger, S. A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles. Adv. Funct. Mater. 2008, 18, 3662–3669. [Google Scholar] [CrossRef] [Green Version]
- Qu, M.; He, J.; Zhang, J. Superhydrophobicity, Chapter 16: Learn from the Lotus Leaf. In Biomimetics Learning from Nature; Mukherjee, A., Ed.; InTech Open: Rijeka, Croatia, 2010; pp. 325–342. [Google Scholar]
- Basu, B.J.; Hariprakash, V.; Aruna, S.T.; Lakshmi, R.V.; Manasa, J.; Shruthi, B.S. Effect of microstructure and surface roughness on the wettability of superhydrophobic sol–gel nanocomposite coatings. J. Sol-Gel Sci. Technol. 2010, 56, 278–286. [Google Scholar] [CrossRef]
- Lee, H.; Owens, J. Chapter 9: Superhydrophobic Superoleophobic Woven Fabrics. In Advances in Modern Woven Fabrics Technology; Vassiliadis, S., Ed.; InTech Open: Rijeka, Croatia, 2011; pp. 179–196. [Google Scholar]
- Chen, P.-H.; Hsu, C.-C.; Lee, P.-S.; Lin, C.-S. Fabrication of semi-transparent super-hydrophobic Surface based on silica hierarchical structures. J. Mech. Sci. Technol. 2011, 25, 43–47. [Google Scholar] [CrossRef]
- Berendjchi, A.; Khajavi, R.; Yazdanshenas, M.E. Fabrication of superhydrophobic and antibacterial surface on cotton fabric by doped silica-based sols with nanoparticles of copper. Nanoscale Res. Lett. 2011, 6, 594. [Google Scholar] [CrossRef]
- Gashti, M.P.; Alimohammadi, F.; Song, G.; Kiumarsi, A. Chapter: Applications in Physical/Chemical Sciences, Characterization of nanocomposite coatings on textiles: A brief review on microscopic technology. In Current Microscopy Contributions to Advances in Science and Technology; Méndez-Vilas, A., Ed.; Formatex Research Centre: Badajoz, Spain, 2012; pp. 1424–1437. [Google Scholar]
- Latthe, S.S.; Gurav, A.B.; Maruti, C.S.; Vhatkar, R.S. Recent Progress in Preparation of Superhydrophobic Surfaces: A Review. J. Surf. Eng. Mater. Adv. Technol. 2012, 2, 76–94. [Google Scholar] [CrossRef]
- Joshi, M.; Bhattacharyya, A.; Agarwal, N.; Parmar, S. Nanostructured coatings for super hydrophobic textiles. Bull. Mater. Sci. 2012, 35, 933–938. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Wu, L.; Wang, A. Facile preparation of durable and robust superhydrophobic textiles by dip coating in nanocomposite solution of organosilanes. Chem. Commun. 2013, 49, 11509–11511. [Google Scholar] [CrossRef]
- Ivanova, N.A.; Rutberg, G.I.; Philipchenko, A.B. Enhancing the Superhydrophobic State Stability of Chitosan-Based Coatings for Textiles. Macromol. Chem. Phys. 2013, 214, 1515–1521. [Google Scholar] [CrossRef]
- Teisala, H.; Tuominen, M.; Kuusipalo, J. Superhydrophobic Coatings on Cellulose-Based Materials: Fabrication, Properties, and Applications. Adv. Mater. Interfaces 2014, 1, 1300026. [Google Scholar] [CrossRef]
- Xing, S.; Jiang, J.; Pan, T. Interfacial microfluidic transport on micropatterned superhydrophobic textile. Lab Chip 2013, 13, 1937–1947. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Liu, Q.; Ju, G.; Zhang, Y.; Jiang, L.; Shi, F. Bell-Shaped Superhydrophilic–Superhydrophobic–Superhydrophilic Double Transformation on a pH Responsive Smart Surface. Adv. Mater. 2014, 26, 306–310. [Google Scholar] [CrossRef]
- Daoud, W.A.; Xin, J.H.; Tao, X. Superhydrophobic Silica Nanocomposite Coating by a Low-Temperature Process. J. Am. Ceram. Soc. 2004, 87, 1782–1784. [Google Scholar] [CrossRef]
- Xue, C.-H.; Jia, S.-T.; Zhang, J.; Ma, J.-Z. Large-area fabrication of superhydrophobic surfaces for practical applications: An overview. Sci. Technol. Adv. Mater. 2010, 11, 033002. [Google Scholar] [CrossRef]
- Hogue, C. US EPA sets health advisory limits for 6 PFAS. Chem. Eng. News 2022, 100, 13. Available online: https://cen.acs.org/environment/persistent-pollutants/US-EPA-sets-health-advisory-6-PFAS/100/i22 (accessed on 30 June 2022).
- Wu, L.; Zhang, J.; Li, B.; Wang, A. Mimic nature, beyond nature: Facile synthesis of durable super-hydrophobic textiles using organosilanes. J. Mater. Chem. B 2013, 1, 4756–4763. [Google Scholar] [CrossRef]
- Pan, G.; Xiao, X.; Yu, N.; Ye, Z. Fabrication of superhydrophobic coatings on cotton fabric using ultrasound-assisted in-situ growth method. Progr. Org. Coat. 2018, 125, 463–471. [Google Scholar] [CrossRef]
- Wei, D.W.; Wei, H.; Gauthier, A.C.; Song, J.; Jin, Y.; Xiao, H. Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications. J. Bioresour. Bioprod. 2020, 5, 1–15. [Google Scholar] [CrossRef]
- Yu, M.; Gu, G.; Meng, W.D.; Qing, F.L. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Appl. Surf. Sci. 2007, 253, 3669–3673. [Google Scholar] [CrossRef]
- Xue, C.-H.; Jia, S.-T.; Zhang, J.; Tian, L.-Q.; Chen, H.-Z.; Wang, M. Preparation of super-hydrophobic surfaces on cotton textiles. Sci. Technol. Adv. Mater. 2008, 9, 035008. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, X.; Lei, Q.; Wu, Y.; Li, W. Fabrication of superhydrophobic composite coating based on fluorosilicone resin and silica nanoparticles. R. Soc. Open Sci. 2018, 5, 180598. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Liu, W.; Yang, M.; He, S.; Xie, Y.; Wang, Z. Synthesis of superhydrophobic fluoro-containing silica sol coatings for cotton textile by one-step sol–gel process. J. Sol-Gel Sci. Technol. 2018, 87, 455–463. [Google Scholar] [CrossRef]
- Xue, C.H.; Li, Y.R.; Zhang, P.; Ma, J.Z.; Jia, S.T. Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Appl. Mater. Interfaces 2014, 6, 10153–10161. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, W. Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Crosslinking, Carbon Nanotube Composite, and Nanosilica Modification. ACS Appl. Mater. Interfaces 2017, 9, 29167–29176. [Google Scholar] [CrossRef]
- Yang, J.; Pu, Y.; He, H.; Cao, R.; Miao, D.; Ning, X. Superhydrophobic cotton nonwoven fabrics through atmospheric plasma treatment for applications in selfcleaning and oil–water separation. Cellulose 2019, 26, 7507–7522. [Google Scholar] [CrossRef]
- Zhang, Y.; Qu, S.; Cheng, X.; Gao, X.; Guo, X. Fabrication and Characterization of Gecko-inspired Dry Adhesion, Superhydrophobicity and Wet Self-cleaning Surfaces. J. Bionic Eng. 2016, 13, 132–142. [Google Scholar] [CrossRef]
- Przybylak, M.; Maciejewski, H.; Dutkiewicz, A.; Wesołek, D.; Władyka-Przybylak, M. Multifunctional, strongly hydrophobic and flame-retarded cotton fabrics modified with flame retardant agents and silicon compounds. Polym. Degrad. Stab. 2016, 128, 55–64. [Google Scholar] [CrossRef]
- Yeerken, T.; Wang, G.; Li, H.; Liu, H.; Yu, W. Chemical stable, superhydrophobic and self-cleaning fabrics prepared by two-step coating of a polytetrafluoroethylene membrane and silica nanoparticles. Text. Res. J. 2019, 89, 4827–4841. [Google Scholar] [CrossRef]
- Han, M.-C.; Cai, S.-Z.; Wang, J.; He, H.-W. Single-Side Superhydrophobicity in Si3N4-doped and SiO2-Treated Polypropylene Nonwoven Webs with Antibacterial Activity. Polymers 2022, 14, 2952. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Zhu, Z.; Lin, J.; Cheung, C.F.; Lu, V.L.; Yan, F.; Chan, C.-Y.; Li, G. Reusable and recyclable graphene masks with outstanding superhydrophobic and photothermal performances. ACS Nano 2020, 14, 6213–6221. [Google Scholar] [CrossRef] [PubMed]
- Suryaprabha, T.; Sethuraman, M.G. Fabrication of copperbased superhydrophobic self-cleaning antibacterial coating over cotton fabric. Cellulose 2017, 24, 395–407. [Google Scholar] [CrossRef]
- Elzaabalawy, A.; Meguid, S.A. Advances in the development of superhydrophobic and icephobic surfaces. Int. J. Mech. Mater. Des. 2022, 18, 509–547. [Google Scholar] [CrossRef]
- Oktay, B.; Toker, R.D.; Kayaman-Apohan, N. Superhydrophobic behavior of polyimide–siloxane mats produced by electrospinning. Polym. Bull. 2015, 72, 2831–2842. [Google Scholar] [CrossRef]
- Lacruz, A.; Salvador, M.; Blanco, M.; Vidal, K.; Goitandia, A.M.; Martinková, L.; Kyselka, M.; de Ilarduya, A.M. Biobased Waterborne Polyurethane-Ureas Modified with POSS-OH for Fluorine-Free Hydrophobic Textile Coatings. Polymers 2021, 13, 3526. [Google Scholar] [CrossRef]
- Gulrajania, M.L.; Gupta, D. Emerging techniques for functional finishing of textiles. Ind. J. Fibre Text. Res. 2011, 36, 388–397. [Google Scholar]
- Available online: https://www.marketwatch.com/press-release/silicone-textile-softeners-market-size-in-2022-no-of-pages-133-swot-analysis-top-countries-data-share-top-manufactures-growth-insights-and-forecasts-to-2028-2022-07-26 (accessed on 15 September 2022).
- Available online: https://www.futuremarketinsights.com/reports/silicone-textile-softeners-market (accessed on 4 July 2022).
- Mittal, K.L.; Bahners, T. (Eds.) Textile Finishing: Recent Developments and Future Trends; Scrivener Publishing LLC: Beverly, MA, USA, 2017; p. 588. ISBN 978-1-119-42676-9. [Google Scholar]
- Available online: http://www.madehow.com/Volume-7/Fabric-Softener.html (accessed on 5 July 2022).
- Available online: https://www.linkedin.com/pulse/new-world-trends-development-textile-auxiliaries-polly-li (accessed on 6 July 2022).
- Available online: http://www.futuremarketinsights.com/press-release/textile-auxiliaries-market (accessed on 7 July 2022).
- Available online: https://www.alphaaromatics.com/blog/fragrance-creation-fabric-softeners/ (accessed on 8 July 2022).
- Available online: https://www.maximizemarketresearch.com/market-report/global-textile-auxiliaries-market/63608/ (accessed on 11 July 2022).
- Available online: https://issuu.com/transparencymarketresearch105/docs/textile_auxiliaries_market_historical__current__an (accessed on 15 July 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chruściel, J.J. Modifications of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers—A Review. Polymers 2022, 14, 4382. https://doi.org/10.3390/polym14204382
Chruściel JJ. Modifications of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers—A Review. Polymers. 2022; 14(20):4382. https://doi.org/10.3390/polym14204382
Chicago/Turabian StyleChruściel, Jerzy J. 2022. "Modifications of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers—A Review" Polymers 14, no. 20: 4382. https://doi.org/10.3390/polym14204382
APA StyleChruściel, J. J. (2022). Modifications of Textile Materials with Functional Silanes, Liquid Silicone Softeners, and Silicone Rubbers—A Review. Polymers, 14(20), 4382. https://doi.org/10.3390/polym14204382