Effect of Activator and Outgoing Ligand Nature on the Catalytic Behavior of Bis(phenoxy-imine) Ti(IV) Complexes in the Polymerization of Ethylene and Its Copolymerization with Higher Olefins
Abstract
:1. Introduction
2. Experiments
2.1. Bis[N-(3,5-di-tert-butylsalicylidene)-anilinato]titanium(IV) Dichloride, (L1)2TiCl2
2.2. Bis[N-(3,5-di-tert-butylsalicylidene)-(2,3,5,6-tetrafluoroanilinato)]titanium(IV) Dichloride, (L2)2TiCl2
2.3. Bis[N-(3,5-di-tert-butylsalicylidene)-anilinato]zirconium(IV) Dichloride (L1)2ZrCl2
2.4. Bis[N-(3,5-di-tert-butylsalicylidene)-(2,3,5,6-tetrafluoroanilinato)] Zirconium (IV) Dichloride, (L2)2ZrCl2
2.5. Bis[N-(3,5-di-tert-butylsalicylidene)-anilinato]titanium(IV) Diisopropoxide, (L1)2Ti(OiPr)2
2.6. Bis[N-(3,5-di-tert-butylsalicylidene)-(2,3,5,6-tetrafluoroanilinato)]titanium(IV) Diisopropoxide, (L2)2Ti(OiPr)2
2.7. Bis[N-(3,5-di-tert-butylsalicylidene)-(2,3,5,6-tetrafluoroanilinato)]zirconium(IV) Diisopropoxide, (L1)2Zr(OiPr)2
2.8. Bis[N-(3,5-di-tert-butylsalicylidene)-(2,3,5,6-tetrafluoroanilinato)] Zirconium (IV) Diisopropoxide, (L2)2Zr(OiPr)2
2.9. X-ray Crystal Structure Determination
2.10. Polymerization Experiments
2.10.1. Polymerization with MAO or {EtnAlCl3-n + Bu2Mg}
2.10.2. Polymerization with (iBu)3Al/CPh3+B(C6F5)4−
2.10.3. Copolymerization of Ethylene and 1-Octene
2.11. Polymer Evaluation Methods
3. Results and Discussion
3.1. Morphology and Particle Size of UHMWPE Reactor Powders
3.2. Mechanical Properties of Synthesized UHMWPE
4. Conclusions
- Al/Mg co-catalysts (mixtures of alkylaluminum chlorides with dibutylmagnesium) are effective activators of Ti(IV) phenoxy-imine complexes regardless of the nature of the σ-ligand (Cl or OiPr);
- The productivity of such systems, as a rule, exceeds similar systems containing MAO;
- MAO and (iBu)3Al/CPh3+B(C6F5)4− practically does not activate dialkoxide complexes of titanium and zirconium, while Al/Mg co-catalysts form quite active Ti-containing systems;
- Unfortunately, Al/Mg co-catalysts are not able to activate zirconium-containing systems;
- The UHMWPE nascent reactor powders, obtained on titanium phenoxyimine complexes, can be processed by the solventless solid-phase method into high-strength, high-modulus oriented films. It should be noted that the mechanical characteristics of oriented materials obtained using Al/Mg activators are still inferior to analogs obtained using MAO;
- Polymers obtained on zirconium-containing systems turned out to be unsuitable for solid-phase processing;
- (FI)2TiX2/EtnAlCl3-n + Bu2Mg catalytic systems produce ultra-high molecular weight ethylene-1-octene copolymers and ethylene/propylene/5-vinyl-2-norbornene terpolymers. Polymers obtained on dialkoxide complexes (X = O-iPr) are characterized by a narrow MWD (2–2.5), while for polymers obtained on dichloride complexes, this value is much higher (5.2–10.2).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mitani, M.; Saito, J.; Ishii, S.; Nakayama, Y.; Makio, H.; Matsukawa, N.; Matsui, S.; Mohri, J.; Furuyama, R.; Terao, H.; et al. FI Catalysts: New Olefin Polymerization Catalysts for the Creation of Value-Added Polymers. Chem. Rec. 2004, 4, 137–158. [Google Scholar] [CrossRef] [PubMed]
- Makio, H.; Fujita, T. Development and Application of FI Catalysts for Olefin Polymerization: Unique Catalysis and Distinctive Polymer Formation. Acc. Chem. Res. 2009, 42, 532–1544. [Google Scholar] [CrossRef] [PubMed]
- Matsugia, T.; Fujita, T. High-performance olefin polymerization catalysts discovered on the basis of a new catalyst design concept. Chem. Soc. Rev. 2008, 37, 1264–1277. [Google Scholar] [CrossRef] [PubMed]
- Makio, H.; Terao, H.; Iwashita, A.; Fujita, T. FI Catalysts for Olefin Polymerization—A Comprehensive Treatment. Chem. Rev. 2011, 111, 2363–2449. [Google Scholar] [CrossRef]
- Baier, M.C.; Zuideveld, M.A.; Mecking, S. Post-Metallocenes in the Industrial Production of Polyolefins. Angew. Chem. Int. Ed. 2014, 53, 9722–9744. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, S.; Yao, Y.; Ronca, S.; Bos, J.; van der Eem, J. Unprecedented High-Modulus High-Strength Tapes and Films of Ultrahigh Molecular Weight Polyethylene via Solvent-Free Route. Macromolecules 2011, 44, 5558–5568. [Google Scholar] [CrossRef] [Green Version]
- Ronca, S.; Forte, G.; Tjaden, H.; Rastogi, S. Solvent-Free Solid-State-Processed Tapes of Ultrahigh-Molecular-Weight Polyethylene: Influence of Molar Mass and Molar Mass Distribution on the Tensile Properties. Ind. Eng. Chem. Res. 2015, 54, 7373–7381. [Google Scholar] [CrossRef] [Green Version]
- Ozerin, A.N.; Ivanchev, S.S.; Chvalun, S.N.; Aulov, V.A.; Ivancheva, N.I.; Bakeev, N.F. Properties of oriented film tapes prepared via solid-state processing of a nascent ultrahigh-molecular-weight polyethylene reactor powder synthesized with a postmetallocene catalyst. Polym. Sci. Ser. A 2012, 54, 950–954. [Google Scholar] [CrossRef]
- Oleynik, I.V.; Shundrina, I.K.; Oleyinik, I.I. Highly active titanium(IV) dichloride FI catalysts bearing a diallylamino group for the synthesis of disentangled UHMWPE. Polym. Adv. Technol. 2020, 31, 1–14. [Google Scholar] [CrossRef]
- Antonov, A.A.; Bryliakov, K.P. Post-metallocene catalysts for the synthesis of ultrahigh molecular weight polyethylene: Recent advances. Eur. Polym. J. 2021, 142, 110162. [Google Scholar] [CrossRef]
- Romano, D.; Andablo-Reyesa, E.; Ronca, S.; Rastogi, S. Aluminoxane Co-catalysts for the Activation of a Bis Phenoxyimine Titanium (IV) Catalyst in the Synthesis of Disentangled Ultra-High Molecular Weight Polyethylene. Polymer 2015, 74, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Wang, S.; Wang, H.; Chen, W. Trialkylaluminums: Efficient cocatalysts for bis(phenoxy-imine)zirconium complexes in ethylene polymerization. J. Mol. Cat. A Chem. 2006, 246, 53–58. [Google Scholar] [CrossRef]
- Glen, A.; Bialek, M.; Czaja, K. Remarkable effect of organoaluminum activator on catalytic performance of bis(phenoxy-imine) titanium complexes in ethylene polymerization. Polimery 2009, 54, 632–638. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Kong, F.W.; Liu, R.; Li, Z.Y.; Zhu, F.M. Effect of Cocatalysts on Ethylene Polymerization with Fluorinated Bisphenoxyimine Titanium as a Catalyst. J. Appl. Polym. Sci. 2011, 119, 572–576. [Google Scholar] [CrossRef]
- Yang, H.; van Ingen, Y.; Blom, B.; Rastogi, S.; Romano, D. Structural modification of phenoxyimine titanium complexes and activation studies with alkylaluminum compounds. Chem. Cat. Chem. 2020, 12, 5209–5220. [Google Scholar] [CrossRef]
- Makio, H.; Kashiwa, N.; Fujita, T. FI Catalysts: A New Family of High Performance Catalysts for Olefin Polymerization. Adv. Synth. Catal. 2002, 344, 477–493. [Google Scholar] [CrossRef]
- Fujita, T.; Kawai, K. FI Catalysts for Olefin Oligomerization and Polymerization: Production of Useful Olefin-Based Materials by Unique Catalysis. Top. Catal. 2014, 57, 852–877. [Google Scholar] [CrossRef]
- Iwashita, A.; Makio, H.; Fujita, T. Phenoxy–Imine Group 4 Metal Complexes for Olefin (CO)Polymerization Including Polar Monomer Copolymerization. In Olefin Upgrading Catalysis by Nitrogen-Based Metal Complexes II; Catalysis by Metal, Complexes; Campora, J., Giambastiani, G., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 36. [Google Scholar] [CrossRef]
- Matsui, S.; Mitani, M.; Saito, J.; Tohi, Y.; Makio, H.; Matsukawa, N.; Takagi, Y.; Tsuru, K.; Nitabaru, M.; Nakano, T.; et al. A Family of Zirconium Complexes Having Two Phenoxy−Imine Chelate Ligands for Olefin Polymerization. J. Am. Chem. Soc. 2001, 123, 6847–6856. [Google Scholar] [CrossRef]
- Nakayama, Y.; Saito, J.; Bando, H.; Fujita, T. MgCl2/R′nAl(OR)3-n: An Excellent Activator/Support for Transition-Metal Complexes for Olefin Polymerization. Chem. Eur. J. 2006, 12, 7546–7556. [Google Scholar] [CrossRef]
- Rishina, L.A.; Kissin, Y.V.; Gagieva, S.C.; Lalayan, S.S. New Cocatalyst for Alkene Polymerization Reactions with Transition Metal Catalysts. Russ. J. Phys. Chem. B 2019, 13, 789–802. [Google Scholar] [CrossRef]
- Gagieva, S.C.; Tuskaev, V.A.; Magomedov, K.F.; Moskalenko, M.A.; Pavlov, A.A.; Meshchankina, M.Y.; Shcherbina, M.A.; Bulychev, B.M. Immobilized on MgCl2 bis(phenoxy-imine) complexes of Ti and Zr as catalysts for preparing UHMWPE and ethylene/higher α-olefin copolymers. Polym. Bull. 2022, 79, 8333–8351. [Google Scholar] [CrossRef]
- Kissin, Y.V.; Nowlin, T.E.; Mink, R.I.; Brandolini, A.J. A New Cocatalyst for Metallocene Complexes in Olefin Polymerization. Macromolecules 2000, 33, 4599–4601. [Google Scholar] [CrossRef]
- Kissin, Y.V.; Mink, R.I.; Brandolini, A.J.; Nowlin, T.E. AlR2Cl/MgR2 combinations as universal cocatalysts for Ziegler–Natta, metallocene, and post-metallocene catalysts. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 3271–3285. [Google Scholar] [CrossRef]
- Gao, Y.; Christianson, M.D.; Wang, Y.; Chen, J.; Marshall, S.; Klosin, J.; Lohr, T.L.; Marks, T.J. Unexpected Precatalyst σ-Ligand Effects in Phenoxyimine Zr-Catalyzed Ethylene/1-Octene Copolymerizations. J. Am. Chem. Soc. 2019, 141, 7822–7830. [Google Scholar] [CrossRef]
- Jia, A.-Q.; Jin, G.-X. Syntheses, Reactions, and Ethylene Polymerization of Titanium Complexes with [N, O, S] Ligands. Organometallics 2009, 28, 1872–1877. [Google Scholar] [CrossRef]
- Saha, T.K.; Mandal, M.; Chakraborty, D.; Ramkumar, V. Imino phenoxide complexes of group 4 metals: Synthesis, structural characterization and polymerization studies. New J. Chem. 2013, 37, 949–960. [Google Scholar] [CrossRef]
- Roymuhury, S.K.; Chakraborty, D.; Ramkumar, V. Synthesis and characterization of group 4 metal alkoxide complexes containing imine based bis-bidentate ligands: Effective catalysts for the ring opening polymerization of lactides, epoxides and polymerization of ethylene. Dalton Trans. 2015, 44, 10352–10367. [Google Scholar] [CrossRef]
- Kasumov, V.T.; Medjidov, A.A.; Yayli, N.; Zeren, Y. Spectroscopic and electrochemical characterization of di-tert-butylated sterically hindered Schiff bases and their phenoxyl radicals. Spectrochim. Acta A 2004, 60, 3037–3047. [Google Scholar] [CrossRef]
- Gagieva, S.C.; Sukhova, T.A.; Savinov, D.V.; Optov, V.A.; Bravaya, N.M.; Belokon’, Y.M.; Bulychev, B.M. New fluorine-containing bissalicylidenimine-titanium complexes for olefin polymerization. J. Appl. Polym. Sci. 2005, 95, 1040–1049. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagieva, S.C.; Kurmaev, D.A.; Tuskaev, V.A.; Khrustalev, V.N.; Churakov, A.V.; Golubev, E.K.; Sizov, A.I.; Zvukova, T.M.; Buzin, M.I.; Nikiforova, G.G.; et al. First example of cationic titanium (III) complexes with crown ether as catalysts for ethylene polymerization. Eur. Polym. J. 2022, 170, 111166. [Google Scholar] [CrossRef]
- Kurtz, M.S. Ultra-High Molecular Weight Polyethylene in Total Joint Replacement. In The Uhmwpe Handbook; Elsevier Inc.: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Sharma, N.; Sharma, V.; Bohra, R.; Raju, V.S.; Lorenz, I.-P.; Krinninger, C.H.; Mayer, P. Glycol modified cis-diisopropoxy-bis(N-phenylsalicylideneiminato) titanium(IV). Syntheses, characterization, X-ray structures of Ti{O(C6H4)CH = NPh}2(OPri)2, [{Ti(O(C6H4)CH = NPh)2}O]3 and their low temperature transformation to pure grains of nanosized titania. Inorg. Chim. Acta 2007, 360, 3002–3012. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, A. Synthesis and spectroscopic studies of homo- and heteroleptic N-arylsalicylaldiminates of titanium(IV), zirconium(IV) and chromium(III). Transit. Met. Chem. 2004, 29, 164–169. [Google Scholar] [CrossRef]
- Khaubunsongserm, S.; Hormnirun, P.; Nanok, T.; Jongsomjit, B.; Praserthdam, P. Fluorinated bis(phenoxy-imine)titanium complexes with methylaluminoxane for the synthesis of ultra high molecular weight polyethylene. Polymer 2013, 54, 3217–3222. [Google Scholar] [CrossRef]
- Dessy, R.E.; King, R.B.; Waldrop, M. Organometallic Electrochemistry. V. The Transition Series. J. Am. Chem. Soc. 1966, 88, 5112–5117. [Google Scholar] [CrossRef]
- Wailes, P.C.; Coutts, R.S.P.; Weigold, H. Organometallic Chemistry of Titanium, Zirconium and Hafnium; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Samuel, E. Reduction of zirconocene dihalides with magnesium studied by ESR. Evidence of zirconium(III) hydride formation by hydrogen transfer from the cyclopentadienyl ring. Inorg. Chem. 1983, 22, 2967–2970. [Google Scholar] [CrossRef]
- Basso, N.R.D.S.; Greco, P.P.; Carone, C.L.; Livotto, P.R.; Simplício, L.M.; Da Rocha, Z.N.; Galland, G.B.; Dos Santos, J.H. Reactivity of zirconium and titanium alkoxides bidentade complexes on ethylene polymerization. J. Mol. Catal. A Chem. 2007, 267, 129–136. [Google Scholar] [CrossRef]
- Available online: http://www.acechemical.co.kr/pdf/GUR2122.pdf (accessed on 11 March 2013).
- Rocha, M.; Mansur, A.; Mansur, H. Characterization and Accelerated Ageing of UHMWPE Used in Orthopedic Prosthesis by Peroxide. Materials 2009, 2, 562–576. [Google Scholar] [CrossRef] [Green Version]
- Khalil, Y.; Hopkinson, N.; Kowalski, A.; Fairclough, J.P.A. Characterisation of UHMWPE Polymer Powder for Laser Sintering. Materials 2019, 12, 3496. [Google Scholar] [CrossRef] [Green Version]
- Rishina, L.A.; Lalayan, S.S.; Gagieva, S.C.; Tuskaev, V.A.; Perepelitsyna, E.O.; Kissin, Y.V. Polymers of propylene and higher 1-alkenes produced with post-metallocene complexes containing a saligenin-type ligand. Polymer 2013, 54, 6526–6535. [Google Scholar] [CrossRef]
- Rishina, L.; Galashina, N.; Gagieva, S.; Tuskaev, V.; Kissin, Y. Cocatalyst effect in propylene polymerization reactions with post-metallocene catalysts. Eur. Polym. J. 2013, 49, 147–155. [Google Scholar] [CrossRef]
- Tuskaev, V.A.; Gagieva, S.C.; Kurmaev, D.A.; Vasil’ev, V.G.; Kolosov, N.A.; Zubkevich, S.V.; Mikhaylik, E.S.; Golubev, E.K.; Nikiforova, G.G.; Zhizhko, P.A.; et al. Binuclear and hexanuclear Ti(IV) complexes supported by [OOOO]4–-type ligand for preparing disentangled UHMWPE. Chin. J. Polym. Sci. 2019, 37, 471–477. [Google Scholar] [CrossRef]
- Available online: https://www.teijinaramid.com/wp-content/uploads/2018/12/18033TEI-Prodbroch-Endumax_LR.pdf (accessed on 7 March 2011).
- Chan, M.C.W. Weak Attractive Ligand–Polymer and Related Interactions in Catalysis and Reactivity: Impact, Applications, and Modeling. Chem. Asian J. 2008, 3, 18–27. [Google Scholar] [CrossRef]
- Falivenea, L.; Cavallo, L.; Talarico, G. The role of noncovalent interactions in olefin polymerization catalysis: A further look to the fluorinated ligand effect. Mol. Catal. 2020, 494, 111118. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, K.; Fan, H.; Wang, W.-J.; Li, B.-G.; Zhu, S. Living Copolymerization of Ethylene/1-Octene with Fluorinated FI-Ti Catalyst. J. Polym. Sci. Part A Polym. Chem. 2013, 51, 405–414. [Google Scholar] [CrossRef]
- Zou, B.; Zhan, Y.; Xie, X.; Zhang, T.T.; Qiua, R.; Zhu, F. Synthesis of ultrahigh-molecular-weight ethylene/1-octene copolymers with salalen titanium(IV) complexes activated by methyaluminoxane. RSC Adv. 2022, 12, 11715. [Google Scholar] [CrossRef]
- Feng, C.; Gou, Q.; Liu, S.; Gao, R.; Li, Z. Synthesis of Ethylene/1-Octene Copolymers with Ultrahigh Molecular Weights by Zr and Hf Complexes Bearing Bidentate NN Ligands with the Camphyl Linker. Catalysts 2021, 11, 276. [Google Scholar] [CrossRef]
- Tuskaev, V.A.; Gagieva, S.C.; Bogdanov, V.S.; Kurmaev, D.A.; Melnikova, E.K.; Saracheno, D.; Buzin, M.I.; Golubev, E.K.; Kechek’Yan, A.S.; Myagkova, K.Z.; et al. Binuclear Ti(IV) complex with new compartmental ligand 2,6-(bis-CF3-carbinol)-4-tert-butylphenol as precatalysts for ethylene polymerization and its copolymerization with propylene and 5-ethylidene-norbornene. Appl. Organomet. Chem. 2021, 35, e6396. [Google Scholar] [CrossRef]
Run | Complex | Cocatalyst, M/Al/Mg | A b | Bulk Density, g/cm3 | Tm c °C | Deg. of Crystal d % | Mv, 106 D |
---|---|---|---|---|---|---|---|
1 | (L1)2TiCl2 | Et2AlCl/ Bu2Mg, 1/300/100 | 1850 | 0.053 | 140/136 | 85.5/57.0 | 2.26 |
2 e | -//- | Et2AlCl/ Bu2Mg, 1/300/100 | 2910 | 0.066 | 135/134 | 71.0/62.5 | 0.75 |
3 f | -//- | Et2AlCl/ Bu2Mg, 1/300/100 | 410 | 0.088 | 134/133 | 72.0/83.0 | 0.48 |
4 | -//- | Et3Al2Cl3/ Bu2Mg, 1/300/100 | 1850 | 0.068 | 140/133 | 78.0/57.0 | 3.53 |
5 | -//- | MMAO12, 1/1000 | 1030 | 0.093 | 144/136 | 91.0/37.5 | 4.51 |
6 | -//- | (iBu)3Al/ CPh3+B(C6F5)4−1/80/2 | 60 | n.d. | n.d. | n.d. | n.d. |
7 | (L1)2Ti(OiPr)2 | Et2AlCl/Bu2Mg, 300/100 | 1690 | 0.050 | 137/134 | 76.0/61.0 | 1.06 |
8 | -//- | Et3Al2Cl3/Bu2Mg, 1/300/100 | 1990 | 0.076 | 134/133 | 84.0/92.0 | 4.84 |
9 | -//- | MMAO12, 1/1000 | 3 | n.d. | n.d. | n.d. | 2.85 |
10 | -//- | (iBu)3Al/ CPh3+B(C6F5)4−1/40/1,2 | 0 | n.d. | n.d. | n.d. | n.d. |
11 | (L2)2TiCl2 | Et2AlCl/ Bu2Mg, 300/100 | 2670 | 0.098 | 142/135 | 81.0/76.0 | 3.65 |
12 | -//- | Et3Al2Cl3/ Bu2Mg, 1/300/100 | 2810 | 0.098 | 144/135 | 86.0/60.5 | 1.48 |
13 | -//- | MMAO12, 1/500 | 2130 | 0.043 | 142/134 | 81.0/77.0 | 4.09 |
14 | -//- | MMAO12, 1/1000 | 1940 | 0.083 | 143/134 | 77.0/67.0 | 4.55 |
15 | -//- | (iBu)3Al/ CPh3+B(C6F5)4−1/40/1,2 | 0 | n.d. | n.d. | n.d. | n.d. |
16 | -//- | Me3Al/ CPh3+B(C6F5)4−1/500/1,2 | 120 | 0.091 | n.d. | n.d. | n.d. |
17 | (L2)2Ti(OiPr)2 | Et2AlCl/Bu2Mg, 1/300/100 | 1830 | 0.063 | 136/134 | 59.0/54.0 | 0.68 |
18 | -//- | Et3Al2Cl3/Bu2Mg, 1/300/100 | 1030 | 0.092 | 128/127 | 87.0/76.0 | 0.56 |
19 | -//- | MMAO12, 1/1000 | 50 | n.d. | n.d. | n.d. | n.d. |
20 | (L1)2ZrCl2 | (iBu)3Al/ CPh3+B(C6F5)4−1/80/2 | 910 | 0.087 | 147/139 | 87.0/54.0 | 4.98 |
21 | -//- | MMAO12, 1/500 | 3200 | 0.056 | 129/128 | 74.7/82.0 | 4.09 |
22 | (L1)2Zr(OiPr)2 | (iBu)3Al/ CPh3+B(C6F5)4−1/80/2 | 0 | n.d. | n.d. | n.d. | n.d. |
23 | -//- | MMAO12, 1/500 | 0 | n.d. | n.d. | n.d. | n.d. |
24 | (L2)2ZrCl2 | (iBu)3Al/ CPh3+B(C6F5)4−1/80/2 | 120 | 0.078 | n.d. | n.d. | n.d. |
25 | -//- | MMAO12, 1/500 | 2820 | 0.073 | 143/138 | 70.4/65.9 | 6.01 |
26 | (L2)2Zr(OiPr)2 | (iBu)3Al/ CPh3+B(C6F5)4−1/80/2 | 0 | n.d. | n.d. | n.d. | n.d. |
27 | -//- | MMAO12, 1/500 | 0 | n.d. | n.d. | n.d. | n.d. |
Entry | Catalytic System | Tensile Strength, σ, GPa | Average Tensile Modulus, E, GPa |
---|---|---|---|
1 | (L1)2TiCl2/Et2AlCl + Bu2Mg | 1.62 | 109.02 |
4 | (L1)2TiCl2/Et3Al2Cl3 + Bu2Mg | 2.14 | 119.69 |
7 | (L1)2Ti(OiPr)2/Et2AlCl + Bu2Mg | 1.75 | 93.95 |
8 | (L1)2Ti(OiPr)2/Et3Al2Cl3 + Bu2Mg | 2.23 | 126.99 |
11 | (L2)2TiCl2/Et2AlCl + Bu2Mg, | 1.96 | 118.35 |
12 | (L2)2TiCl2/Et3Al2Cl3 + Bu2Mg | 2.40 | 145.83 |
13 | (L2)2TiCl2/MMAO12; 500 eq. | 3.00 | 127.29 |
14 | (L2)2TiCl2/MMAO12; 1000 eq | 3.06 | 136.00 |
Entry | Complex | A b | Composition (mol%) c | Tm (°C) | χ, d (%) | Mw | Mw/Mn | |
---|---|---|---|---|---|---|---|---|
E | O | |||||||
1 | (L1)2TiCl2 Et3Al2Cl3/Bu2Mg 600/200 | 2290 | 96.8 | 3.2 | 130.2 104.4 | 45.3 43.8 | 1.52 × 106 | 6.63 |
2 | (L1)2Ti(OiPr)2 Et3Al2Cl3/Bu2Mg 600/200 | 2710 | 96.2 | 3.8 | 124.2 101.3 | 12.9 12.3 | 1.02 × 106 | 2.26 |
3 | (L2)2TiCl2 Et3Al2Cl3/Bu2Mg 600/200 | 1670 | 98.7 | 2.3 | 131.9 125.7 | 31.8 25.1 | 2.94 × 106 | 10.24 |
4 | (L2)2TiCl2 Et2AlCl/Bu2Mg 300/100 | 2420 | 98.1 | 2.9 | 130.8 125.5 | 34.2 17.1 | 1.79 × 106 | 5.16 |
Entry | Complex | A b | Composition (mol%) c | Tm (°C) | χ, d (%) | Mw | Mw/Mn | ||
---|---|---|---|---|---|---|---|---|---|
E | P | 5-VNB | |||||||
1 | (L1)2TiCl2 | 278 | 47 | 49 | 4 | 116.4 81.6 | 4.2 4.1 | 5.81 × 105 | 9.3 |
2 | (L1)2Ti(OiPr)2 | 357 | 60 | 39 | 1 | 114.3 80.8 | 4.2 4.1 | 4.11 × 105 | 2.6 |
3 | (L2)2TiCl2 | 122 | 37 | 58 | 5 | 112.1 76.5 | 3.1 2.7 | 4.82 × 105 | 5.4 |
4 | (L2)2Ti(OiPr)2 | 261 | 51 | 48 | 1 | 108.5 87.8 | 6.2 4.9 | 3.91 × 105 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gagieva, S.C.; Magomedov, K.F.; Tuskaev, V.A.; Bogdanov, V.S.; Kurmaev, D.A.; Golubev, E.K.; Denisov, G.L.; Nikiforova, G.G.; Evseeva, M.D.; Saracheno, D.; et al. Effect of Activator and Outgoing Ligand Nature on the Catalytic Behavior of Bis(phenoxy-imine) Ti(IV) Complexes in the Polymerization of Ethylene and Its Copolymerization with Higher Olefins. Polymers 2022, 14, 4397. https://doi.org/10.3390/polym14204397
Gagieva SC, Magomedov KF, Tuskaev VA, Bogdanov VS, Kurmaev DA, Golubev EK, Denisov GL, Nikiforova GG, Evseeva MD, Saracheno D, et al. Effect of Activator and Outgoing Ligand Nature on the Catalytic Behavior of Bis(phenoxy-imine) Ti(IV) Complexes in the Polymerization of Ethylene and Its Copolymerization with Higher Olefins. Polymers. 2022; 14(20):4397. https://doi.org/10.3390/polym14204397
Chicago/Turabian StyleGagieva, Svetlana Ch., Kasim F. Magomedov, Vladislav A. Tuskaev, Vyacheslav S. Bogdanov, Dmitrii A. Kurmaev, Evgenii K. Golubev, Gleb L. Denisov, Galina G. Nikiforova, Maria D. Evseeva, Daniele Saracheno, and et al. 2022. "Effect of Activator and Outgoing Ligand Nature on the Catalytic Behavior of Bis(phenoxy-imine) Ti(IV) Complexes in the Polymerization of Ethylene and Its Copolymerization with Higher Olefins" Polymers 14, no. 20: 4397. https://doi.org/10.3390/polym14204397
APA StyleGagieva, S. C., Magomedov, K. F., Tuskaev, V. A., Bogdanov, V. S., Kurmaev, D. A., Golubev, E. K., Denisov, G. L., Nikiforova, G. G., Evseeva, M. D., Saracheno, D., Buzin, M. I., Dzhevakov, P. B., Privalov, V. I., & Bulychev, B. M. (2022). Effect of Activator and Outgoing Ligand Nature on the Catalytic Behavior of Bis(phenoxy-imine) Ti(IV) Complexes in the Polymerization of Ethylene and Its Copolymerization with Higher Olefins. Polymers, 14(20), 4397. https://doi.org/10.3390/polym14204397