Preparation, Characterization and Anti-Complementary Activity of Three Novel Polysaccharides from Cordyceps militaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungus Material and Reagents
2.2. Preparation of Polysaccharides
2.3. Determination of Water Solubility Index
2.4. Determination of Homogeneity and Molecular Weights
2.5. Determination of Monosaccharide Compositions
2.6. Determination of FT-IR
2.7. Congo Red Test
2.8. Anti-Complementary Activity
2.8.1. Anti-Complementary Activity through the Classical and Alternative Pathway
2.8.2. Identification of Complement Targets
2.9. Statistical Analysis
3. Results and Discussion
3.1. Preparation of Polysaccharides
3.2. Analysis of Molecular Weights
3.3. Analysis of Monosaccharide Compositions
3.4. Analysis of FT-IR Spectra
3.5. Congo Red Test
3.6. Anti-Complementary Activity of CMP-1, CMP-2 and CMP-3
3.7. Correlation analysis of structure and anti-complementary activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lutsep, H.L.; Clark, W.M. Current status of neuroprotective agents in the treatment of acute ischemic stroke. Curr. Neurol. Neurosci. Rep. 2001, 1, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, V.D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11, 785–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harboe, M.; Thorgersen, E.B.; Mollnes, T.E. Advances in assay of complement function and activation. Adv. Drug Deliv. Rev. 2011, 12, 976–987. [Google Scholar] [CrossRef] [PubMed]
- Quintana, L.F.; Kronbichler, A.; Blasco, M.; Zhao, M.H.; Jayne, D. ANCA associated vasculitis: The journey to complement-targeted therapies. Mol. Immunol. 2019, 112, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.Y.; Lu, Y.; Xia, L.; Chen, D.F. Structural characterization and anticomplement activities of three acidic homogeneous polysaccharides from Artemisia annua. J. Ethnopharmacol. 2020, 247, 112281. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Li, B.B.; Lu, Y.; Chen, D.F. Structural characterization and anticomplement activity of an acidic polysaccharide containing 3-O-methyl galactose from Juniperus tibetica. Int. J. Biol. Macromol. 2019, 132, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Du, D.S.; Lu, Y.; Cheng, Z.H.; Chen, D.F. Structure characterization of two novel polysaccharides isolated from the spikes of Prunella vulgaris and their anticomplement activities. J. Ethnopharmacol. 2016, 193, 345–353. [Google Scholar] [CrossRef]
- Huang, S.J.; Tsai, S.Y.; Lee, Y.L.; Mau, J.L. Nonvolatile taste components of fruit bodies and mycelia of Cordyceps militaris. LWT--Food Sci. Technol. 2006, 39, 577–583. [Google Scholar] [CrossRef]
- Hsu, C.H.; Sun, H.L.; Sheu, J.N.; Ku, M.S.; Hu, C.M.; Chan, Y.; Lue, K.H. Effects of the immunomodulatory agent Cordyceps militaris on airway inflammation in a mouse asthma model. Pediatr. Neonatol. 2008, 49, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.Z.; Jin, C.G.; Li, H.P.; Liu, Z.Q.; Lu, J.; Li, S.Z.; Yang, S.M. Ultrahigh pressure extraction of polysaccharides from Cordyceps militaris and evaluation of antioxidant activity. Sep. Purif. Technol. 2014, 134, 90–99. [Google Scholar] [CrossRef]
- Bai, K.C.; Sheu, F. A novel protein from edible fungi Cordyceps militaris that induces apoptosis. J. Food. Drug. Anal. 2018, 26, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, J.Y.; Sun, Y.J.; Zhang, H.; Lv, P.; Zhang, C.K. Measurement of cordycepin and adenosine in stroma of Cordyceps sp. by capillary zone electrophoresis. J. Biosci. Bioeng. 2002, 94, 371–374. [Google Scholar] [CrossRef]
- Chen, X.; Wu, G.; Huang, Z. Structural analysis and antioxidant activities of polysaccharides from cultured Cordyceps militaris. Int. J. Biol. Macromol. 2013, 58, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.S.; Cui, X.L.; Chen, Z.Y.; Huang, L.J.; Song, L.Y.; Liu, T.; Lv, W.J.; Yu, R.M. Elucidation and biological activities of a new polysaccharide from cultured Cordyceps militaris. Carbohydr. Polym. 2014, 102, 288–296. [Google Scholar] [CrossRef]
- Rao, Y.K.; Fang, S.H.; Wu, W.S.; Tzeng, Y.M. Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. J. Ethnopharmacol. 2010, 131, 363–367. [Google Scholar] [CrossRef]
- Cheung, J.K.; Li, J.; Cheung, A.W.; Zhu, Y.; Zheng, K.Y.; Bi, C.W.; Duan, R.; Choi, R.C.; Lau, D.T.; Dong, T.T.; et al. Cordysinocan, a polysaccharide isolated from cultured Cordyceps, activates immune responses in cultured T-lymphocytes and macrophages: Signaling cascade and induction of cytokines. J. Ethnopharmacol. 2009, 124, 61–68. [Google Scholar] [CrossRef]
- Wang, L.; Xu, N.; Zhang, J.; Zhao, H.; Lin, L.; Jia, S.; Jia, L. Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydr. Polym. 2015, 131, 355–362. [Google Scholar] [CrossRef]
- Liu, J.Y.; Feng, C.P.; Li, X.; Chang, M.C.; Meng, J.L.; Xu, L.J. Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice. Int. J. Biol. Macromol. 2016, 86, 594–598. [Google Scholar] [CrossRef]
- Kirschfink, M. Controlling the complement system in inflammation. Immunopharmacology 1997, 38, 51–62. [Google Scholar] [CrossRef]
- Sun, J.F.; Jin, M.; Zhou, W.; Diao, S.B.; Li, G. A new ribonucleotide from Cordyceps militaris. Nat. Prod. Res. 2017, 31, 1–7. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Ye, G.B.; Chen, Y.H.; Wang, C.L.; Yang, R.R.; Bin, X.Y. Purification and characterization of exopolysaccharide produced by Weissella cibaria YB-1 from pickle Chinese cabbage. Int. J. Biol. Macromol. 2018, 120, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.H. Identification of structure and antioxidant activity of a fraction of polysaccharide purified from Dioscorea nipponica Makino. Carbohydr. Polym. 2008, 71, 544–549. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Yang, J.; Li, Y.; Zhang, W.; Liu, S.; Yang, G.; Yan, Z.; Liu, Y. Microwave-assisted enzymatic extraction, partial characterization, and antioxidant potential of polysaccharides from Sagittaria trifolia Tuber. Chem. Biodiversity 2022, 19, e202200219. [Google Scholar] [CrossRef]
- Manohar, N.; Jayramudu, J.; Suchismita, S.; Rajkumar, K.; Babulreddy, A.; Sadiku, E.R.; Priti, R.; Maurya, D.J. A unique application of second order derivative ftir-atr spectra for compositional analyses of natural rubber and polychloroprene rubber and their blends. Polym. Test. 2017, 62, 447–453. [Google Scholar] [CrossRef]
- Jia, R.B.; Li, Z.R.; Ou, Z.R.; Wu, J.; Sun, B.; Lin, L.; Zhao, M. Physicochemical Characterization of Hizikia fusiforme polysaccharide and its hypoglycemic activity via mediating insulin-stimulated blood glucose utilization of skeletal muscle in type 2 diabetic rats. Chem. Biodiversity 2020, 17, e2000367. [Google Scholar] [CrossRef]
- Wang, J.M.; Sun, J.F.; Jin, L.; Wang, M.J.; Huang, Y.Y.; Jin, M.; Zhou, W.; Li, G. A new monoterpenoid glycoside and a new phenolic glycoside isolated from Dracocephalum moldavica and their anti-complementary activity. Nat. Prod. Res. 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Jin, L.; Zhou, W.; Hu, Z.Y.; Huang, Y.Y.; Diao, S.B.; Sun, J.S.; Li, G. A new megastigmane glycoside, a new organic acid glycoside and other constituents with anticomplementary activity from Artemisia halodendron. Nat. Prod. Res. 2022, 25, 1–6. [Google Scholar] [CrossRef]
- Fan, H.; Liu, F.; Bligh, S.W.; Shi, S.; Wang, S. Structure of a homofructosan from Saussurea costus and anti-complementary activity of its sulfated derivatives. Carbohydr. Polym. 2014, 105, 152–160. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, C.T.; Duan, Y.Q.; Zhang, H.H.; Ma, H.L. Advance in Cordyceps militaris (Linn) Link polysaccharides: Isolation, structure, and bioactivities: A review. Int. J. Biol. Macromol. 2019, 132, 906–914. [Google Scholar] [CrossRef]
- He, B.L.; Zheng, Q.W.; Guo, L.Q.; Huang, J.Y.; Yun, F.; Huang, S.S.; Lin, J.F. Structural characterization and immune-enhancing activity of a novel high-molecular-weight polysaccharide from Cordyceps militaris. Int. J. Biol. Macromol. 2020, 145, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Guo, Q.W.; Xin, Y.; Liu, Y. Comprehensive review in moisture retention mechanism of polysaccharides from algae, plants, bacteria and fungus. Arabian J. Chem. 2022, 15, 104163. [Google Scholar] [CrossRef]
- Borovkova, V.S.; Malyar, Y.N.; Sudakova, I.G.; Chudina, A.I.; Skripnikov, A.M.; Fetisova, O.Y.; Kazachenko, A.S.; Miroshnikova, A.V.; Zimonin, D.V.; Ionin, V.A.; et al. Molecular characteristics and antioxidant activity of Spruce (Picea abies) Hemicelluloses isolated by catalytic oxidative delignification. Molecules. 2022, 27, 266. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Gao, X. Categories and biomanufacturing methods of glucosamine. Appl. Microbiol. Biotechnol. 2019, 103, 1–7. [Google Scholar] [CrossRef]
- Di, Z.; Zhu, S. Purification, characterization, antioxidant and anticancer activities of novel polysaccharides extracted from Bachu mushroom. Int. J. Biol. Macromol. 2018, 107, 1086–1092. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, M.Q.; Zhang, W.Q.; Xu, Z.Z.; Xia, W.J. Correlation analysis between HPLC fingerprint of polysaccharides from poria cocos and immunological activity. J. East China Univ. Sci. Technol. 2020, 46, 672–679. [Google Scholar] [CrossRef]
- Zhao, X.T.; Zhang, Y.J.; Fu, M.; Li, J.W.; Zhu, S.; Fan, L.P. Fingerprint chromatography analysis of lentinan by PMP-HPLC and its relationship with immunoactivity. Sci. Technol. Cereals Oils Foods 2021, 29, 61–69. [Google Scholar] [CrossRef]
- Li, X.; Li, K.; Wang, J.Q.; Sui, S.S.; Wang, J.B.; Guo, C.Z.; Li, P.W. Advances in microbial synthesis of glucosamine. J. Qilu Univ. Technol. 2021, 35, 19–22. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, Y.J.; Ai, C.Q.; Tian, W.G.; Wen, C.G.; Song, S.; Zhu, B.B. An acidic polysaccharide from Patinopecten yessoensis skirt prevents obesity and improves gut microbiota and metabolism of mice induced by high-fat diet. Food Res. Int. 2022, 154, 110980. [Google Scholar] [CrossRef]
- He, Y.L.; Chen, H.; Ye, Z.Y.; Zhang, X.M.; Ye, H.L.; Ye, M. Structural characterization and bioactivities of a novel polysaccharide obtained from Lachnum YM38 together with its zinc and selenium derivatives. Process Biochem. 2022, 122, 282–298. [Google Scholar] [CrossRef]
- Liu, X.X.; Gu, L.B.; Zhang, G.J.; Liu, H.M.; Zhang, Y.T.; Zhang, K.P. Structural characterization and antioxidant activity of polysaccharides extracted from Chinese yam by a cellulase-assisted method. Process Biochem. 2022, 121, 178–187. [Google Scholar] [CrossRef]
- Liao, N.; Chen, S.; Ye, X.; Zhong, J.; Wu, N.; Dong, S.; Yang, B.; Liu, D. Antioxidant and anti-tumor activity of a polysaccharide from freshwater clam, Corbicula fluminea. Food Funct. 2013, 4, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.Z.P.; Zhu, P.L.; Ma, S.P.; Wang, M.C.; Hu, Y.D. Purification, characterization and immunomodulatory activity of polysaccharides from Stem lettuce. Carbohydr. Polym. 2018, 188, 236–242. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, Q.; Li, Y.; Li, L.; Lan, W.; He, J.; Li, H.; Xiong, Y.; Qin, W. Extraction, characterization and antioxidant activities of polysaccharides of Chuanminshen violaceum. Int. J. Biol. Macromol. 2016, 86, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Zhao, S.W.; Zhu, P.L.; Nie, C.Z.P.; Ma, S.P.; Wang, N.F.; Du, X.F.; Zhou, Y.B. Purification, characterization and immunomodulatory activity of water extractable polysaccharides from the swollen culms of Zizania latifolia. Int. J. Biol. Macromol. 2018, 107, 882–890. [Google Scholar] [CrossRef]
- Chen, M.M.; Wu, J.J.; Shi, S.S.; Chen, Y.L.; Wang, H.J.; Fan, H.W.; Wang, S.C. Structure analysis of a heteropolysaccharide from Taraxacum mongolicum Hand.-Mazz. and anticomplementary activity of its sulfated derivatives. Carbohydr. Polym. 2016, 152, 241–252. [Google Scholar] [CrossRef]
- Xiong, G.Y.; Ma, L.S.; Zhang, H.; Li, Y.P.; Zou, W.S.; Wang, X.F.; Xu, Q.S.; Xiong, J.T.; Hu, Y.P.; Wang, X.Y. Physicochemical properties, antioxidant activities and α-glucosidase inhibitory effects of polysaccharides from Evodiae fructus extracted by different solvents. Int. J. Biol. Macromol. 2022, 194, 484–498. [Google Scholar] [CrossRef]
- Wang, J.J.; Shi, S.; Li, F.F.; Du, X.; Kong, B.H.; Wang, H.; Xia, X.F. Physicochemical properties and antioxidant activity of polysaccharides obtained from sea cucumber gonads via ultrasound-assisted enzymatic techniques. LWT--Food Sci. Technol. 2022, 160, 113307. [Google Scholar] [CrossRef]
- Liang, X.Y.; Ye, Y.; Zhu, Y.H.; Xiao, J.R.; Qiao, Y.B. Multivariate comparative analysis of chemical constituent changes and antioxidant properties of polysaccharides in ribes stenocarpum maxim. at different maturity stages on the Qinghai-Tibet Plateau. Sci. Hortic. 2022, 308, 111556. [Google Scholar] [CrossRef]
Samples | Man | GlcN | Rib | Rha | GlcA | GalA | Glc | Gal | Xyl | Ara | Fuc |
---|---|---|---|---|---|---|---|---|---|---|---|
CMP-1 | 39.35 | 4.03 | 3.98 | 2.56 | 1.62 | 1.52 | 70.52 | 26.90 | 1.00 | 3.23 | 4.23 |
CMP-2 | 13.62 | 86.70 | 7.80 | 6.22 | 1.47 | 2.99 | 17.80 | 9.26 | 1.00 | ND | 3.02 |
CMP-3 | 33.61 | 44.67 | 27.34 | 31.84 | 7.32 | 8.39 | 102.23 | 38.27 | 1.00 | ND | 5.79 |
Samples | CH50 (mg/mL) | AP50 (mg/mL) |
---|---|---|
CMP-1 | 0.43 ± 0.07 | 0.42 ± 0.08 |
CMP-2 | 0.41 ± 0.08 | 0.38 ± 0.09 |
CMP-3 | 0.27 ± 0.04 | 0.33 ± 0.07 |
Heparin | 0.25 ± 0.02 | 0.30 ± 0.03 |
Value | Pearson | The Ability of Complement Inhibition on Classical Pathway-CH50 | The Ability of Complement Inhibition on Alternative Pathway-AP50 |
---|---|---|---|
Man | r | 0.492 | 0.757 |
p | 0.336 | 0.226 | |
GlcN | r | 0.193 | −0.149 |
p | 0.438 | 0.452 | |
Rib | r | −0.954 | −0.999 * |
p | 0.097 | 0.013 | |
Rha | r | −0.987 | −0.983 |
p | 0.052 | 0.058 | |
GlcA | r | −0.990 * | −0.886 |
p | 0.044 | 0.154 | |
GalA | r | −0.885 | −0.990 * |
p | 0.154 | 0.044 | |
Glc | r | −0.092 | 0.250 |
p | 0.471 | 0.420 | |
Gal | r | −0.012 | 0.327 |
p | 0.492 | 0.394 | |
Xyl | r | 0.976 | 0.845 |
p | 0.070 | 0.175 | |
Ara | r | 0.596 | 0.832 |
p | 0.297 | 0.187 | |
Fuc | r | 0.680 | 0.888 |
p | 0.262 | 0.152 | |
molecular weight | r | 0.748 | 0.480 |
p | 0.231 | 0.341 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Wang, J.; Jin, L.; Zong, T.; Duan, Y.; Sun, J.; Zhou, W.; Li, G. Preparation, Characterization and Anti-Complementary Activity of Three Novel Polysaccharides from Cordyceps militaris. Polymers 2022, 14, 4636. https://doi.org/10.3390/polym14214636
Hu Z, Wang J, Jin L, Zong T, Duan Y, Sun J, Zhou W, Li G. Preparation, Characterization and Anti-Complementary Activity of Three Novel Polysaccharides from Cordyceps militaris. Polymers. 2022; 14(21):4636. https://doi.org/10.3390/polym14214636
Chicago/Turabian StyleHu, Zhengyu, Jiaming Wang, Long Jin, Tieqiang Zong, Yuanqi Duan, Jinfeng Sun, Wei Zhou, and Gao Li. 2022. "Preparation, Characterization and Anti-Complementary Activity of Three Novel Polysaccharides from Cordyceps militaris" Polymers 14, no. 21: 4636. https://doi.org/10.3390/polym14214636
APA StyleHu, Z., Wang, J., Jin, L., Zong, T., Duan, Y., Sun, J., Zhou, W., & Li, G. (2022). Preparation, Characterization and Anti-Complementary Activity of Three Novel Polysaccharides from Cordyceps militaris. Polymers, 14(21), 4636. https://doi.org/10.3390/polym14214636