Lactide and Ethylene Brassylate-Based Thermoplastic Elastomers and Their Nanocomposites with Carbon Nanotubes: Synthesis, Mechanical Properties and Interaction with Astrocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Incorporation of MWCNT in the Polymeric Matrix and Composite Preparation
2.4. Differential Scanning Calorimetry (DSC)
2.5. Gel Permeation Chromatography (GPC)
2.6. Nuclear Magnetic Resonance (NMR)
2.7. Electron Microscopy Analysis
2.8. Tensile Test
2.9. Contact Angle
2.10. Cell Viability Assay
2.11. Immunostaining
2.12. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Initial Characterization of the Copolymers
3.2. Incorporation of MWCNTs in the Polymeric Matrix and Preparation of Composites
3.3. Mechanical Properties
3.4. Contact Angle
3.5. Cell Viability Assay and Immunostaining
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef] [Green Version]
- Van De Velde, K.; Kiekens, P. Ein Jahrhundert Bahnelektroindustrie. Eb-Elektr. Bahnen 2001, 99, 483. [Google Scholar]
- Voznyak, Y.; Morawiec, J.; Galeski, A. Ductility of Polylactide Composites Reinforced with Poly(Butylene Succinate) Nanofibers. Compos. Part A Appl. Sci. Manuf. 2016, 90, 218–224. [Google Scholar] [CrossRef]
- Fernández, J.; Montero, M.; Etxeberria, A.; Sarasua, J.R. Ethylene Brassylate: Searching for New Comonomers That Enhance the Ductility and Biodegradability of Polylactides. Polym. Degrad. Stab. 2017, 137, 23–34. [Google Scholar] [CrossRef]
- Larrañaga, A.; Lizundia, E. A Review on the Thermomechanical Properties and Biodegradation Behaviour of Polyesters. Eur. Polym. J. 2019, 121, 109296. [Google Scholar] [CrossRef]
- Sangroniz, A.; Sangroniz, L.; Hamzehlou, S.; del Río, J.; Santamaria, A.; Sarasua, J.R.; Iriarte, M.; Leiza, J.R.; Etxeberria, A. Lactide-Caprolactone Copolymers with Tuneable Barrier Properties for Packaging Applications. Polymer 2020, 202, 122681. [Google Scholar] [CrossRef]
- Pascual, A.; Sardon, H.; Veloso, A.; Ruipérez, F.; Mecerreyes, D. Organocatalyzed Synthesis of Aliphatic Polyesters from Ethylene Brassylate: A Cheap and Renewable Macrolactone. ACS Macro Lett. 2014, 3, 849–853. [Google Scholar] [CrossRef]
- Borschel, G.H.; Kia, K.F.; Kuzon, W.M.; Dennis, R.G. Mechanical Properties of Acellular Peripheral Nerve. J. Surg. Res. 2003, 114, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Ryan, A.J.; Lackington, W.A.; Hibbitts, A.J.; Matheson, A.; Alekseeva, T.; Stejskalova, A.; Roche, P.; O’Brien, F.J. A Physicochemically Optimized and Neuroconductive Biphasic Nerve Guidance Conduit for Peripheral Nerve Repair. Adv. Healthc. Mater. 2017, 6, 1700954. [Google Scholar] [CrossRef]
- Dumont, C.E.; Born, W. Stimulation of Neurite Outgrowth in a Human Nerve Scaffold Designed for Peripheral Nerve Reconstruction. J. Biomed. Mater. Res. B Appl. Biomater. 2005, 73, 194–202. [Google Scholar] [CrossRef]
- Polo, Y.; Luzuriaga, J.; Iturri, J.; Irastorza, I.; Toca-Herrera, J.L.; Ibarretxe, G.; Unda, F.; Sarasua, J.-R.; Pineda, J.R.; Larrañaga, A. Nanostructured Scaffolds Based on Bioresorbable Polymers and Graphene Oxide Induce the Aligned Migration and Accelerate the Neuronal Differentiation of Neural Stem Cells. Nanomedicine 2021, 31, 102314. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Sun, B.; Liu, S.; Chen, W.; Zhang, Y.; Wang, C.; Mo, X.; Che, J.; Ouyang, Y.; Yuan, W.; et al. Polymerizing Pyrrole Coated Poly (l-Lactic Acid-Co-ε-Caprolactone) (PLCL) Conductive Nanofibrous Conduit Combined with Electric Stimulation for Long-Range Peripheral Nerve Regeneration. Front. Mol. Neurosci. 2016, 9, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, H.; Liu, X.; Wang, R.; Jia, F.; Dong, L.; Wang, Q. Emerging Nanostructured Materials for Musculoskeletal Tissue Engineering. J. Mater. Chem. B 2014, 20, 6435–6461. [Google Scholar] [CrossRef]
- Fraczek-Szczypta, A. Carbon Nanomaterials for Nerve Tissue Stimulation and Regeneration. Mater. Sci. Eng. C 2014, 34, 35–49. [Google Scholar] [CrossRef]
- Vallejo-Giraldo, C.; Pugliese, E.; Larrañaga, A.; Fernandez-Yague, M.A.; Britton, J.J.; Trotier, A.; Tadayyon, G.; Kelly, A.; Rago, I.; Sarasua, J.-R.; et al. Polyhydroxyalkanoate/Carbon Nanotube Nanocomposites: Flexible Electrically Conducting Elastomers for Neural Applications. Nanomedicine 2016, 11, 2547–2563. [Google Scholar] [CrossRef]
- Harrison, B.S.; Atala, A. Carbon Nanotube Applications for Tissue Engineering. Biomaterials 2007, 28, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Jin, G.; Kim, M.; Shin, U.S.; Kim, H. Effect of Carbon Nanotube Coating of Aligned Nanofibrous Polymer Scaffolds on the Neurite Outgrowth of PC-12 Cells. Cell Biol. Int. 2011, 35, 741–745. [Google Scholar] [CrossRef]
- Seidlits, S.K.; Lee, J.Y.; Schmidt, C.E. Nanostructured Scaffolds for Neural Applications. Nanomedicine 2008, 3, 183–199. [Google Scholar] [CrossRef]
- Vallejo-Giraldo, C.; Krukiewicz, K.; Calaresu, I.; Zhu, J.; Palma, M.; Fernandez-Yague, M.; McDowell, B.W.; Peixoto, N.; Farid, N.; O’Connor, G.; et al. Attenuated Glial Reactivity on Topographically Functionalized Poly(3,4-Ethylenedioxythiophene):P-Toluene Sulfonate (PEDOT:PTS) Neuroelectrodes Fabricated by Microimprint Lithography. Small 2018, 14, 1800863. [Google Scholar] [CrossRef]
- Gottipati, M.K.; Kalinina, I.; Bekyarova, E.; Haddon, R.C.; Parpura, V. Chemically Functionalized Water-Soluble Single-Walled Carbon Nanotubes Modulate Morpho-Functional Characteristics of Astrocytes. Nano Lett. 2012, 12, 4742–4747. [Google Scholar] [CrossRef]
- Pineda, J.R.; Polo, Y.; Pardo-Rodríguez, B.; Luzuriaga, J.; Uribe-Etxebarria, V.; García-Gallastegui, P.; Sarasua, J.R.; Larrañaga, A.; Ibarretxe, G. In Vitro Preparation of Human Dental Pulp Stem Cell Grafts with Biodegradable Polymer Scaffolds for Nerve Tissue Engineering. Methods Cell Biol. 2022, 170, 147–167. [Google Scholar] [CrossRef]
- Pretsch, E.; Seibl, J.; Simon, W. Tables of Spectral Data for Structure Determination Organic Compounds; Springer: Berlin, Germany, 2015; Volume 3, ISBN 9783540124061. [Google Scholar]
- Zhou, H.; Wang, F.; Wang, Y.; Li, C.; Shi, C.; Liu, Y.; Ling, Z. Study on Contact Angles and Surface Energy of MXene Films. RSC Adv. 2021, 11, 5512–5520. [Google Scholar] [CrossRef]
- Barrau, S.; Vanmansart, C.; Moreau, M.; Addad, A.; Stoclet, G.; Lefebvre, J.-M.; Seguela, R. Crystallization Behavior of Carbon Nanotube−Polylactide Nanocomposites. Macromolecules 2011, 44, 6496–6502. [Google Scholar] [CrossRef]
- Cregg, J.M.; DePaul, M.A.; Filous, A.R.; Lang, B.T.; Tran, A.; Silver, J. Functional Regeneration beyond the Glial Scar. Exp. Neurol. 2014, 253, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.-Y.; Tang, Y.; Yang, Q.-W. Metabolic Changes Favor the Activity and Heterogeneity of Reactive Astrocytes. Trends Endocrinol. Metab. 2022, 33, 390–400. [Google Scholar] [CrossRef]
- Lee, K.H.; Cha, M.; Lee, B.H. Crosstalk between Neuron and Glial Cells in Oxidative Injury and Neuroprotection. Int. J. Mol. Sci. 2021, 22, 13315. [Google Scholar] [CrossRef]
- Dai, D.; He, L.; Chen, Y.; Zhang, C. Astrocyte Responses to Nanomaterials: Functional Changes, Pathological Changes and Potential Applications. Acta Biomater. 2021, 122, 66–81. [Google Scholar] [CrossRef]
DL:EB | L:EB | |
---|---|---|
Mw (g/mol) | 242,850 | 325,790 |
Tg (°C) (2nd scan) | 33.5 ± 2.0 | 41.0 ± 4.5 |
Tm (°C) (1st scan) | - | 158.0 ± 1.5 |
ΔHm − ΔHcc (J/g) (1st scan) | - | 26.4 |
χ (%) | - | 29.1 |
lLA | 16.00 | 11.36 |
lEB | 1.30 | 1.45 |
R | 0.83 | 0.78 |
% (weight) LA | 86.8 | 80.6 |
% (weight) EB | 13.2 | 19.4 |
% (molar) LA | 92.5 | 88.7 |
% (molar) EB | 7.5 | 11.3 |
Mw (g/mol) | DL:EB | L:EB | ||||||
---|---|---|---|---|---|---|---|---|
%CNT | 0% | 0.1% | 0.5% | 1% | 0% | 0.1% | 0.5% | 1% |
Synthesized | 242,850 | 325,790 | ||||||
Final film | 207,540 | 190,150 | 194,120 | 215,390 | 250,050 | 210,170 | 256,410 | 216,270 |
ΔMw (%) | 14.5 | 21.7 | 20.1 | 11.3 | 23.2 | 35.5 | 21.3 | 33.6 |
Film | DL:EB | |||
%CNTs | 0% | 0.1% | 0.5% | 1% |
Tg (°C) (1st scan) | 28.0 ± 2.0 | 25.0 ± 1.5 | 27.0 ± 0.5 | 27.0 ± 2.0 |
Tg (°C) (2nd scan) | 28.0 ± 3.0 | 27.0 ± 3.0 | 29.0 ± 1.0 | 27.0 ± 2.0 |
L:EB | ||||
%CNTs | 0% | 0.1% | 0.5% | 1% |
Tg (°C) (1st scan) | 30.0 ± 1.0 | 34.0 ± 1.0 | 33.5 ± 1.0 | 37.4 ± 4.2 |
Tm (°C) (1nd scan) | 156.0 ± 0.0 | 159.0 ± 0.0 | 158.0 ± 1.0 | 159.3 ± 0.7 |
ΔHm-ΔHcc (J/g) (1nd scan) | 12.0 ± 1.0 | 11.0 ± 0.5 | 8.6 ± 2.7 | 10.1 ± 1.6 |
Tg (°C) (2nd scan) | 30.0 ± 0.0 | 36.0 ± 2.0 | 33.5 ± 2.0 | 34.7 ± 2.4 |
DL:EB | Young’s Modulus (MPa) | Secant Modulus at 2% (MPa) | Ultimate Tensile Strength (MPa) | Elongation at Break (%) | Yield Strength or Offset Yield Strength at 10% (MPa) | Strain Recovery (%) | |
---|---|---|---|---|---|---|---|
Ta | 0% | 390.3 ± 28.8 | 19.4 ± 1.7 | 3.8 ± 0.4 | 397.2 ± 21.1 | 0.7 ± 0.1 * | 91.5 ± 2.0 |
T37 | 6.6 ± 0.6 | 0.7 ± 0.1 | >167 | 0.3 ± 0.1 * | 72.7 ± 2.2 | ||
Ta | 0.1% | 763.9 ± 61.8 | 26.7 ± 5.6 | 5.9 ± 0.2 | 382.0 ± 25.5 | 1.6 ± 0.2 * | 95.6 ± 1.0 |
T37 | 4.5 ± 0.2 | 0.7 ± 0.1 | >167 | 0.3 ± 0.1 * | 83.2 ± 3.1 | ||
Ta | 0.5% | 1337.5 ± 102.6 | 146.4 ± 9.9 | 9.4 ± 0.5 | 322.0 ± 17.8 | 2.5 ± 0.3 * | 93.4 ± 0.8 |
T37 | 5.7 ± 0.6 | 0.9 ± 0.1 | >167 | 0.4 ± 0.1 * | 74.1 ± 3.8 | ||
Ta | 1% | 1181.4 ± 41.9 | 77.5 ± 13.1 | 5.4 ± 0.4 | 307.4 ± 19.1 | 1.2 ± 0.2 * | 96.6 ± 0.3 |
T37 | 6.3 ± 0.5 | 0.8 ± 0.1 | >167 | 0.4 ± 0.0 * | 71.5 ± 4.8 | ||
L:EB | |||||||
Ta | 0% | 2076.6 ± 171.0 | 638.8 ± 81.2 | 21.6 ± 0.4 | 177.2 ± 7.6 | 14.1 ± 2.5 | 27.1 ± 1.1 |
T37 | 23.5 ± 1.1 | 6.9 ± 0.6 | >167 | 0.9 ± 0.1 * | 66.3 ± 3.4 | ||
Ta | 0.1% | 2318.0 ± 187.1 | 729.8 ± 119.1 | 19.1 ± 2.4 | 171.6 ± 13.6 | 16.3 ± 2.3 | 28.5 ± 0.6 |
T37 | 30.6 ± 0.8 | 6.4 ± 0.5 | >167 | 0.8 ± 0.3 * | 65.0 ± 2.5 | ||
Ta | 0.5% | 2395.6 ± 158.6 | 689.3 ± 105.8 | 19.1 ± 3.2 | 165.4 ± 15.8 | 17.2 ± 3.4 | 19.2 ± 1.8 |
T37 | 24.1 ± 2.3 | 6.0 ± 0.6 | >167 | 0.8 ± 0.2 * | 61.5 ± 2.9 | ||
Ta | 1% | 2449.5 ± 299.2 | 679.7 ± 78.5 | 18.3 ± 1.2 | 123.2 ± 10.3 | 18.3 ± 1.2 | 21.2 ± 0.6 |
T37 | 16.5 ± 1.5 | 5.8 ± 0.6 | >167 | 0.8 ± 0.2 * | 62.4 ± 3.6 |
%CNTs | θwater (°) | θdiiodomethane (°) | (mJ/m2) | (mJ/m2) | (mJ/m2) |
---|---|---|---|---|---|
DL:EB | |||||
0% | 69.5 ± 5.4 | 25.8 ± 0.4 | 45.9 | 32.8 | 78.7 |
0.1% | 71.0 ± 1.2 | 23.5 ± 1.0 | 46.7 | 31.3 | 78.0 |
0.5% | 70.9 ± 0.7 | 19.9 ± 1.5 | 47.8 | 31.3 | 79.1 |
1% | 71.0 ± 1.7 | 20.5 ± 0.6 | 47.6 | 31.3 | 78.9 |
L:EB | |||||
0% | 73.8 ± 2.1 | 29.9 ± 0.8 | 44.3 | 29.0 | 73.3 |
0.1% | 75.3 ± 1.4 | 28.6 ± 0.7 | 44.8 | 27.5 | 72.3 |
0.5% | 76.1 ± 2.6 | 29.0 ± 2.5 | 44.6 | 26.8 | 71.5 |
1% | 73.1 ± 0.5 | 28.9 ± 0.7 | 44.7 | 29.5 | 74.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bello-Álvarez, C.; Etxeberria, A.; Polo, Y.; Sarasua, J.-R.; Zuza, E.; Larrañaga, A. Lactide and Ethylene Brassylate-Based Thermoplastic Elastomers and Their Nanocomposites with Carbon Nanotubes: Synthesis, Mechanical Properties and Interaction with Astrocytes. Polymers 2022, 14, 4656. https://doi.org/10.3390/polym14214656
Bello-Álvarez C, Etxeberria A, Polo Y, Sarasua J-R, Zuza E, Larrañaga A. Lactide and Ethylene Brassylate-Based Thermoplastic Elastomers and Their Nanocomposites with Carbon Nanotubes: Synthesis, Mechanical Properties and Interaction with Astrocytes. Polymers. 2022; 14(21):4656. https://doi.org/10.3390/polym14214656
Chicago/Turabian StyleBello-Álvarez, Carlos, Agustin Etxeberria, Yurena Polo, Jose-Ramon Sarasua, Ester Zuza, and Aitor Larrañaga. 2022. "Lactide and Ethylene Brassylate-Based Thermoplastic Elastomers and Their Nanocomposites with Carbon Nanotubes: Synthesis, Mechanical Properties and Interaction with Astrocytes" Polymers 14, no. 21: 4656. https://doi.org/10.3390/polym14214656
APA StyleBello-Álvarez, C., Etxeberria, A., Polo, Y., Sarasua, J. -R., Zuza, E., & Larrañaga, A. (2022). Lactide and Ethylene Brassylate-Based Thermoplastic Elastomers and Their Nanocomposites with Carbon Nanotubes: Synthesis, Mechanical Properties and Interaction with Astrocytes. Polymers, 14(21), 4656. https://doi.org/10.3390/polym14214656