A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Acid Treatment of PPy Membrane
3. Characterizations
3.1. Electrical and Electrochemical Characterizations
3.1.1. Resistivity Measurement
3.1.2. Cyclic Voltammetry
3.1.3. Galvanostatic Charge–Discharge
3.1.4. Electrochemical Impedance Spectroscopy (EIS)
3.2. Morphological Characterization
3.3. Chemical Characterization
3.3.1. Attenuated Total Internal Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
3.3.2. X-ray Photoelectron Spectroscopy (XPS)
3.4. Thermal Stability Study
4. Results
4.1. Electrical Conductivity
4.2. Cyclic Voltammogram
4.3. GCD Test
4.4. Electrochemical Impedance
4.5. SEM Observations
4.6. FTIR Observations
4.7. XPS Observations
4.8. TGA Observations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Awuzie, C.I. Conducting Polymers. Mater. Today Proc. 2022, 4, 5721–5726. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burroughes, J.H. Light-emitting diodes based on conjugated polymers. Nature 1990, 67, 173–176. [Google Scholar] [CrossRef]
- Zhang, X. In-situ growth of polypyrrole onto bamboo cellulose-derived compressible carbon aerogels for high performance supercapacitors. Electrochim. Acta 2019, 301, 55–62. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Mini, P.A.; Balakrishnan, A.; Nair, S.V.; Subramanian, K.R.V. Highly super capacitive electrodes made of graphene/poly(pyrrole). Chem. Commun. 2011, 47, 5753–5755. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, P.B.; Oh, H.L.; Chan-Park, M.B. High capacitive performance of flexible and binder-free graphene-polypyrrole composite membrane based on in situ reduction of graphene oxide and self-assembly. Nanoscale 2013, 5, 9860–9866. [Google Scholar] [CrossRef]
- Wang, F. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small 2015, 11, 749–755. [Google Scholar] [CrossRef]
- Gulam Sumdani, M.; Safie, S.I.; Yahaya, A. Recent advancements in synthesis, properties, and applications of conductive polymers for electrochemical energy storage devices: A review. Polym. Eng. Sci. 2021, 62, 269–303. [Google Scholar] [CrossRef]
- Dhruba, P.; Chatterjee, D.P.; Nandi, A.K. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880. [Google Scholar]
- Naskar, B.P.; Maiti, A.; Chakraborty, P.; Kundu, D.; Banerjee, A. Chemical supercapacitors: A review focusing on metallic compounds and conducting polymers. J. Mater. Chem. A 2020, 9, 1970–2017. [Google Scholar] [CrossRef]
- Han, X.; Xiao, G.; Wang, Y.; Chen, X.; Duan, G.; Wu, Y.; Gong, X.; Wang, H. Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. J. Mater. Chem. A 2020, 8, 23059. [Google Scholar] [CrossRef]
- Mao, J.; Li, C.; Park, H.J.; Rouabhia, M.; Zhang, Z. Conductive Polymer Waving in Liquid Nitrogen. ACS Nano 2017, 11, 10409–10416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q. Ultra-low temperature flexible supercapacitor based on hierarchically structured pristine polypyrrole membranes. Chem. Eng. J. 2021, 420, 129712. [Google Scholar] [CrossRef]
- Escarpa, A.; González, M.C.; López, M.Á.; González-Cortés, A. Electrochemical Impedance Spectroscopy. In Agricultural and Food Electroanalysis; Escarpa, A., González, M.C., López, M.Á., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Chen, L. Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors. Carbon N. Y. 2018, 138, 264–270. [Google Scholar] [CrossRef]
- Bai, N. Tailorable polypyrrole nanofilms with exceptional electrochemical performance for all-solid-state flexible supercapacitors. Electrochim. Acta 2017, 249, 360–368. [Google Scholar] [CrossRef]
- Fall, M. Electrochemical properties and electrochemical impedance spectroscopy of polypyrrole-coated platinum electrodes. Bull. Chem. Soc. Ethiop. 2006, 20, 279–293. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, Z.; Dai, T.; Lu, Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Commun. 2005, 26, 1736–1740. [Google Scholar] [CrossRef]
- Stejskal, J. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016, 72, 1563–1595. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Ortega, M.M.; Inoue, M.B.; Inoue, M. Chemical synthesis of highly conducting polypyrrole by the use of copper(II) perchlorate as an oxidant. Synth. Met. 1989, 28, 65–70. [Google Scholar] [CrossRef]
- Aldrich, S. IR Spectrum Table & Chart. Available online: https://www.sigmaaldrich.com/technical-documents/articles/biology/ir-spectrum-table.html (accessed on 25 October 2022).
- Wang, L. Constructing Hierarchical Tectorum-like α-Fe2O3/PPy Nanoarrays on Carbon Cloth for Solid-State Asymmetric Supercapacitors. Angew. Chemie—Int. Ed. 2017, 56, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Han, G.; Xiao, Y.; Chang, Y.; Zhai, H.J. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. J. Power Sources 2014, 196, 10601–10605. [Google Scholar] [CrossRef]
- Chengzhuo Weia, J.X.; Xua, Q.; Chena, Z.; Raoa, W.; Fanb, L.; Yuana, Y.; Baia, Z. An all-solid-state yarn supercapacitor using cotton yarn electrodescoated with polypyrrole nanotubes. Carbohydr. Polym. 2017, 169, 50–57. [Google Scholar] [CrossRef]
- Farag, A.A.M.; Mansour, A.M.; Ammar, A.H.; Rafea, M.A. Characterization of electrical and optical absorption of organic based methyl orange for photovoltaic application. Synth. Met. 2011, 161, 2135–2143. [Google Scholar] [CrossRef]
- Yahia, I.S.; Abd El-Sadek, M.S.; Yakuphanoglu, F. Methyl orange (C.I. acid orange 52) as a new organic semiconductor: Conduction mechanism and dielectrical relaxation. Dye. Pigm. 2012, 93, 1434–1440. [Google Scholar] [CrossRef]
- Kiseleva, M.G.; Radchenko, L.V.; Nesterenko, P.N. Ion-exchange properties of hypercrosslinked polystyrene impregnated with methyl orange. J. Chromatogr. A 2001, 920, 79–85. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, F.; Yang, W. Redox behavior and stability of polypyrrole film in sulfuric acid. Synth. Met. 2006, 156, 1052–1056. [Google Scholar] [CrossRef]
- Horn, A.B.; Sully, K.J. ATR-IR spectroscopic studies of the formation of sulfuric acid and sulfuric acid monohydrate films. Phys. Chem. 1999, 1, 3801–3806. [Google Scholar] [CrossRef]
- Nandini, R.; Vishalakshi, B. A study of interaction of methyl orange with some polycations. E-J. Chem. 2012, 9, 343928. [Google Scholar] [CrossRef]
Areal Specific Capacitance (mF/cm2) | |||
---|---|---|---|
Membrane Type | Current Density (mA/cm2) | ||
1 | 2 | 4 | |
PPY | 2225.7 | 1381.2 | 574.0 |
PPY–MO | 4207.4 | 3840.6 | 1242.3 |
PPY–AT | 4630.2 | 3156.0 | 1394.1 |
PPY–MO–AT | 6417.3 | 4903.6 | 2389.0 |
PPy Membranes | Impedance Elements | |||
---|---|---|---|---|
Rs (Ω) | Rct (Ω) | W (σ) | C (nF) | |
PPy | 5.9 | 15.7 | 9 | 3.9 × 105 |
PPy–MO | 5.6 | 2.6 | 2 | 3.3 × 105 |
PPy–AT | 5.5 | 2.8 | 3 | 1.9 × 105 |
PPy–MO–AT | 5.6 | 2.6 | 2 | 1.9 × 105 |
PPy Membranes | C | N | O | S | Cl | Fe | Si | N+/N | Doping Ratio |
---|---|---|---|---|---|---|---|---|---|
PPY–MO | 38.8 | 5.0 | 43.5 | 9.8 | 0.4 | 1.1 | 1.4 | 0.43 | 1:3 |
PPY–MO–AT | 36.3 | 6.0 | 44.8 | 10.6 | 0.1 | 1.2 | 1.1 | 0.95 | 1:2 |
PPY | 48.6 | 7.8 | 34.4 | 8.6 | 0.1 | <0.1 | 0.5 | 0.25 | 1:4 |
PPY–AT | 43.8 | 6.6 | 38.2 | 10.2 | 0 | 0 | 1.1 | 0.70 | 1:2.5 |
PPy Membranes | Remaining Weight Percentage | ||||
---|---|---|---|---|---|
75% | 50% | 30% | 20% | 10% | |
PPy–MO | 315 | 600 | - | - | - |
PPy–MO–AT | 187 | 243 | 266 | 292 | 512 |
PPy–AT | 173 | 240 | 267 | 282 | 332 |
PPy | 306 | 401 | 465 | 496 | 523 |
MO | 432 | 600 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roohi, Z.; Mighri, F.; Zhang, Z. A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment. Polymers 2022, 14, 4693. https://doi.org/10.3390/polym14214693
Roohi Z, Mighri F, Zhang Z. A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment. Polymers. 2022; 14(21):4693. https://doi.org/10.3390/polym14214693
Chicago/Turabian StyleRoohi, Zahra, Frej Mighri, and Ze Zhang. 2022. "A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment" Polymers 14, no. 21: 4693. https://doi.org/10.3390/polym14214693
APA StyleRoohi, Z., Mighri, F., & Zhang, Z. (2022). A Simple Trick to Increase the Areal Specific Capacity of Polypyrrole Membrane: The Superposition Effect of Methyl Orange and Acid Treatment. Polymers, 14(21), 4693. https://doi.org/10.3390/polym14214693