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Abstract: Although polymers are very important and vastly used materials, their physical properties
are limited. Therefore, they are reinforced with fillers to relieve diverse restrictions and expand
their application areas. The exceptional properties of graphene make it an interesting material with
huge potential for application in various industries and devices. The interfacial interaction between
graphene and the polymer matrix improved the uniform graphene dispersion in the polymer ma-
trix, enhancing the general nanocomposite performance. Therefore, graphene functionalization is
essential to enhance the interfacial interaction, maintain excellent properties, and obstruct graphene
agglomeration. Many studies have reported that graphene/polymer nanocomposites have excep-
tional properties that enable diverse applications. The use of graphene/polymer nanocomposites
is expected to increase sustainably and to transform from a basic to an advanced material to offer
optimum solutions to industry and consumers.
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1. Introduction

Polymers are important materials in modern society as they are relatively inexpensive
and easy to process compared to other materials (e.g., metals). However, their inadequate
physical properties restrict their application in diverse areas. Therefore, polymers are
usually enhanced with fillers of diverse sizes to relieve various restrictions and expand
their application areas [1–3]. Nanoscale fillers, which refer to the size of the dispersed
phase being less than 100 nm, have at least one characteristic length scale in the order of
nanometers and vary essentially from isotropic to highly anisotropic sheet- or needle-like
morphologies [3–5]. These were divided into three major types according to the nanoscale
filler dimensions. First, two dimensions (2D) are on the nanometer scale, while the second is
larger, forming an elongated one-dimensional (1D) structure that includes nanofibers or nan-
otubes (e.g., carbon nanofibers and nanotubes [6] or halloysite nanotubes [7]). Nanoscale
fillers are iso-dimensional low-aspect-ratio nanoparticles (e.g., spherical silica [8], semicon-
ductor nanoclusters [9], and quantum dots [10]). Third, two-dimensional (2D) nanoscale
fillers (e.g., layered silicate [11], graphene [5,12], or MXene [13,14]) have the form of sheets
that are one to a few nanometers and hundreds to thousands of nanometers thick.

Graphene has proven to be the most powerful material in the world, and has increas-
ingly attracted attention as a promising candidate to substitute the position of carbon-based
materials in the enhancement of the mechanical, electrical and thermal properties of poly-
mers. Graphene is a one-atom-thick carbon layer arranged in a honeycomb structure. Ad-
ditionally, several reports have introduced graphene into polymers for graphene/polymer
nanocomposites [15–17], as graphene enhances the performance of polymers, including
the mechanical strength, electrical conductivities, thermal stabilities, electro-chemical activ-
ity, and impart gas barrier properties [18–23]. However, the use of graphene has proven
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challenging due to the complicated preparation process, low solubility, and agglomeration
by van der Waals interactions [24]. To resolve this, graphene-like materials with similar
structures have been prepared from graphite or other carbon sources to maintain the several
advantages of graphene while possessing oxygen-containing functional groups. Therefore,
a method of developing new polymer/graphene nanocomposites and improving their
physical properties is attracting attention.

2. Graphene
2.1. Preparation

Several studies have reported a variety of graphene synthesis techniques for pragmatic
applications (Table 1) [25]. Each contributes to the diverse properties of the final material
and has many possibilities for mass production. Thus, diverse graphene preparation
processes were evaluated and compared with graphene quality (or purity) and the process
(scalability, cost, and yield). Each method has its own characteristics; therefore, the choice of
production method should be executed each time, according to the graphene applications.

Table 1. Advantages and disadvantages of the graphene preparation method.

Methods Advantage Disadvantage Ref.

Mechanical Exfoliation High-quality
Simplest process Small production scale [26]

Chemical Vapor Deposition High-quality
Large-area graphene

Complicated process
High energy demand [27]

Chemical Oxidation
(Hummers method)

Fast reaction
Fewer defect

High contamination and
degradation [25]

Liquid-Phase Exfoliation Mass production
Upscaling production

Poor solubility
Eco-friendly

[25]
[28]
[29]

Electrochemical Exfoliation Single step
Eco-friendly Expensive [25]

[30]

Mechanochemical Reaction
Mass production

High-quality
Edge-selectively

High energy
consumption

[31]
[32]

2.1.1. Mechanical Exfoliation

Mechanical exfoliation is the simplest process for preparing standalone graphene [26].
In this technique, graphite is repeatedly exfoliated utilizing tape and then transferred to a
substrate. As a result, this can yield the highest quality, but is only used for lab scale and
prototyping, as it is impossible to scale-up the process.

2.1.2. Chemical Vapor Deposition (CVD)

CVD is the most beneficial process for fabricating high-quality single-layer graphene
for use in various devices [27]. Graphene with a large area can be fabricated by exposing
diverse hydrocarbon precursors to a metal at high temperatures. The unique mechanism
for graphene formation based on the metal substrate begins with the growth of carbon
atoms nucleated on the metal after hydrocarbon decomposition, and then the carbon nuclei
develop gradually into large domains. Graphene transfer from a metal to other substrates
is very difficult due to its chemical inertness, which causes defects and wrinkles in the final
graphene. Additionally, thermal fluctuations affect graphene stability. Therefore, despite
its complicated process and high energy demands, CVD is the most beneficial process for
large-area graphene.
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2.1.3. Chemical Oxidation

Graphite oxide (graphene oxide or GO) was created via the Staudenmaier and Hum-
mers methods. For example, graphite was oxidized with strong oxidative reagents (e.g.,
KClO3, KMnO4, and NaNO3) and concentrated H2SO4, HNO3, or their mixture [33].
Among these, the Hummers method is the most popular, wherein KMnO4 and NaNO3 are
used as oxidizing agents for the oxidized graphite in the presence of concentrated H2SO4
(Figure 1). Generally, the safer and more scalable Hummers method is used to generate
GO. GO contains several oxygen-containing functional groups (e.g., −OH, −COOH, −O−,
and −C=O). Graphite is transformed into GO, which accompanies the exfoliation of the
graphite layer. GO is readily dispersive in water and organic solvents and has poor elec-
trical insulation and thermal instability properties. Therefore, to recover electrical and
thermal properties, the reduction reaction for GO, termed as reduced graphene oxide (rGO),
is required. Unfortunately, the complete reduction of GO to graphene has not occurred yet.
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Figure 1. Conversion of graphene into GO and rGO. Reprinted from Ref. [34].

2.1.4. Liquid-Phase Exfoliation

To obtain graphene, liquid-phase exfoliation necessitates three methods: (1) disper-
sion in a solvent or surfactant, (2) graphite exfoliation, and (3) purification through the
separation of graphene and solvent removal [28,29]. The sonication time is a crucial factor
as longer sonication time results in a lower graphene layer. Post sonication, the graphite
and thicker graphene were removed by ultracentrifugation. Thus, the characteristics of
graphene (e.g., yield and number of layers) can be controlled by varying the amount of
graphite, sonication time, and centrifugation speed. Owing to poor contact between the
graphene sheets, the electrical properties of the produced graphene were similar to those of
GO. Additionally, due to very low graphene solubility, the use of a large amount of solvent
increases the cost and is ecologically unfriendly.

2.1.5. Electrochemical Exfoliation

Electrochemical exfoliation is generated by the anodic oxidation of the graphite-based
electrode. Graphene with a few layers to the anode electrode is created, but its yield is
very low and its properties are similar to those of GO, which comprises several oxygen-
containing functional groups [30]. This technique offers a single step with an easy operation
process that requires a production time over a period of minutes per hour compared with
other methods that take a very long time (a few days) for preparation and purification.
Additionally, the use of liquid electrolytes or aqueous surfactants makes the process eco-
friendly, and that of LiClO4 as an electrolyte can prepare GO-like materials, preventing
dangerous and toxic chemical materials from producing GO.
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2.1.6. Mechanochemical Reaction

To prepare large-quantity, high-quality, edge-selectively functionalized graphitic
nanoplatelets (EFGnPs), a mechanochemical reaction was activated by ball milling
(Figure 2) [31]. High-speed spinning metal balls (kinetic energy) are utilized to break the
graphitic C−C bond that generates the chemical reaction of broken edges (C−X bond
formation, X = heteroatom functional groups) and the physical delamination of graphitic
layers into GnPs (graphene nanoplatelets, graphitic nanoplatelets, or GNP(s)). The X
groups acted as physical wedges, preventing the GnP restacking. The graphitic C−C bond
break induced by the kinetic energy of high-speed metal balls generates active carbon
species, which have sufficient reactivity to combine with the appropriate reactants, which
can be in diverse phases including vapors (CO2 [31], N2 [35], F2 [36], Cl2 [35], NF3 [37], and
propylene [38]), liquids (SO3 [39], Br2 [35], heptane [40], and styrene [41]), solids (I2 [35],
red P [42], S8 [43], Te [44], and Sb [45]), or their mixtures (CO2/SO3 [39] and SO3/I2 [46]).
EFGnPs are oxygen-containing and comprise the desired functional groups or atoms at the
edges. The oxygen-containing functional groups at the edges led to good EFGnP solubility
in diverse solvents, allowing improved processability.
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2.2. Analysis Techniques

The unique properties of graphene have been verified by diverse analytical techniques.
The atomic structure of graphene was verified by transmission electron microscopy (TEM)
(Figure 3a), which is helpful for analyzing diverse structures [28]. Scanning tunneling
microscopy (STM) offers information regarding graphene morphology and electronic
properties in three dimensions (Figure 3b) [47]. Atomic force microscopy (AFM) was
utilized to verify the number of layers as the graphene layer is 0.4 nm thick [48]. The
specific surface area of graphene was estimated using the Brunauer–Emmett–Teller (BET)
method with N2 adsorption–desorption isotherms [49]. X-ray diffraction (XRD) verified the
exfoliation and intercalation into graphene layers and graphene formation (Figure 3c) [50].
X-ray photoelectron spectroscopy (XPS) was used to verify the chemical structure (e.g.,
chemical modification or functionalization) (Figure 3d) [50]. Raman spectroscopy was
utilized to verify the number of layers and functionalization of graphene or graphene-like
materials [25] which can recognize monolayer graphene, wherein the intensity of the 2D
band is at least twice that of the G band (Figure 3e). Additionally, the 2D band of the
two-layer graphene moved to a higher wavenumber, and the intensity of the 2D band
was lower than that of the G band. Increasing graphene layers broadened the 2D band
and developed a shoulder. UV–vis spectroscopy verified graphene dispersion in diverse
solvents using Beer’s law and the linear relationship between absorbance and solution
concentration (Figure 3f) [50].
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Figure 3. (a) Flakes of few-layer graphene on a holey carbon TEM grid. Adapted with permission
from Ref. [51]. (b) STM images of graphene. Reprinted with permission from Ref. [47]. Copyright 2012
Hong et al. (c) XRD patterns of graphite, graphene oxide and graphene. Adapted with permission
from Ref. [50]. Copyright 2014 Johra and Lee. (d) XPS spectra of GO and graphene [50]. (e) Raman
spectra of monolayer, bilayer, and suspended bilayer graphene. Adapted with permission from
Ref. [52]. Copyright 2011 AIP Publishing. (f) UV–vis spectra of GO and graphene. Adapted with
permission from Ref. [50]. Copyright 2014 Elsevier.

2.3. Properties

The tremendous attention on graphene has resulted from its exceptional proper-
ties, which makes it an attractive material with enormous potential for applications in
diverse industries and devices [32]. Its unique physical, mechanical, and electrical prop-
erties (e.g., specific surface area (2630 m2/g), intrinsic mobility (200,000 cm2/V·s), tensile
strength (130 GPa), Young’s modulus (~1.0 TPa), thermal conductivity (~5000 W/m·K),
optical transmittance (~97.7%), and electrical conductivity (~106 S/cm)) have drawn lots
of attention [48,53–55]. However, these characteristics depend on the graphene purity
and thickness, which are major factors that determine the properties of graphene-based
materials.

2.4. Graphene Functionalization

The intrinsic graphene properties are reduced dramatically as GO includes oxygen-
containing functional groups and diverse defects on the basal plane and at the edges,
and aggregation, which is derived from the high specific surface area and the strong van
der Waals force between graphene sheets [56–58]. Proper GO functionalization inhibits
aggregation, maintains excellent properties, and assigns new characteristics. Generally, GO
functionalization can be divided into covalent and noncovalent methods (Figure 4) [59].
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2.4.1. Covalent Functionalization

Covalent functionalization introduces new functional groups to enhance the perfor-
mance of graphene and graphene-like nanomaterials. GO comprises a variety of oxygen-
containing functional groups (e.g., −COOH, −OH, −C=O, and −O−) that can be applied
to general chemical reactions (e.g., isocyanation, carboxylic acylation, epoxy ring open-
ing, diazotization, and addition) [60,61]. Additionally, other functionalizations, including
carbon skeleton, diazotization, Diels–Alder reaction, and click chemistry reaction, can
be conducted using the C=C bond [62–64]. Therefore, a double-bond addition reaction
with C=C is performed to form a new C−C single bond, which is linked to the benzene
derivative with a reactive functional group by a sigma bond. However, covalent graphene
functionalization changes the hybridization from sp2 to sp3, resulting in π-conjugation
bond damage.

2.4.2. Non-Covalent Functionalization

Non-covalent functionalization can be generated through supramolecular chemistry
including π–π interactions, hydrophobic forces, hydrogen bonding, van der Waals forces,
ionic bonding, and electrostatic effects [65,66]. The greatest advantage of non-covalent func-
tionalization is the maintenance of the bulk structure and specific properties of graphene
(or GO) and to increase GO dispersibility and stability. However, its weakness is that other
substances (e.g., solvents and surfactants) are included.

3. Preparation of Graphene/Polymer Nanocomposites
3.1. Solution Method

The solution method is the most vastly used technique to prepare polymer nanocom-
posites on the laboratory scale due to its high utility through the use of diverse solvents
and graphene along with a fast and simple process [67–69]. The polymer was dissolved
in an appropriate solvent. The two substances were then blended using simple mixing,
shear mixing, or ultrasonication for graphene dispersal in the polymer matrix. It is crucial
to ensure solvent removal for nanocomposite manufacturing and homogeneous dispersion
during the process. This is because the premier properties are significantly affected by the
remaining solvent as they can plasticize the nanocomposites and exist at the surface. In the
solvent evaporation process, it is important to increase the solubility in the solvent due to
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the re-aggregation of graphene [32]. Additionally, very low solubility of some polymers
in common solvents and the use of large solvent quantities of solvents are some of the
limitations of this method.

3.2. Melting Method

The melting method is an industrial-friendly process to predominantly produce
thermoplastic-based nanocomposites owing to its rapid and economic process [2,70]. This
significantly affects polymer disentanglement in the molten state. Therefore, the polymer
chains move freely and mix thoroughly during the molten state. The polymer nanocompos-
ites prepared by melt mixing exhibited satisfactory dispersion of the fillers. However, the
manufacturing process for the mixing temperature should be careful because the polymer
may degrade at a high temperature [25]. Additionally, high shear forces are required
for efficient mixing that leads to the formation of folds/wrinkles or even breaking of the
nanoplatelets, decreasing the effective modulus. After melt mixing, additional steps includ-
ing hot pressing and injection molding were necessary, which are affected by the dispersion,
structure, and orientation of the fillers.

3.3. In-Situ Polymerization

In situ polymerization enables the filler to be grafted onto the polymer, which im-
proves the compatibility and interface between the constituents [71–74]. The monomer and
graphene were dispersed in an appropriate solvent and ultrasonicated for homogeneous
dispersion. An initiator was then incorporated to the mixture for polymerization. However,
the polymerization process itself generally increases the viscosity of the mixture, making
further processing difficult, which eventually limits the loading fraction. In some cases, this
method requires the use of a solvent and requires additional refinement steps to remove
the solvent [32]. Its advantages include ease of manipulation, simplicity, scalability, low
cost, and low environmental anxiety.

3.4. Electrochemical Reaction

Electrospinning is used for preparing fine nanofibers with average diameters ranging
from nanometers to micrometers [2,75]. Electrospun fibers have attractive characteristics,
including a high surface/volume ratio, which induces a low density, high pore volume,
and exceptional mechanical strength. Additionally, process factors including the type,
molecular weight, viscosity, solvent, applied voltage, needle-to-collector distance, and flow
rate play a critical role in obtaining the desired properties [76,77].

Electrodeposition is a simple and fast method for producing nanocomposites via
electrochemical reactions [2]. It involves the electro-polymerization of a graphene/polymer
nanocomposite from the monomer, doping matter (if needed), and GO. Electrodeposition
occurs at a specific potential and stops when a pertinent amount of charge has passed.
Therefore, the nanocomposite encompassed the electrode surface.

4. Mechanical Properties

Carbon-based polymer nanocomposites have been used to improve the mechanical
performance of pure polymers by increasing the interaction between polymers and car-
bon materials. Among them, graphene/polymer nanocomposites exhibit significantly
improved mechanical properties compared to those of pure polymers [32,78,79]. The
merits of graphene compared to other fillers enable smooth changes in the properties of
nanocomposites at very low percolation thresholds due to the very high aspect ratio of
graphene. GO, which comprises oxygen-containing functional groups, is hydrophilic and
can interact well with polymers. Therefore, it can improve the mechanical parameters
(e.g., Young’s modulus, fracture toughness, fracture time, thermal stability, electrical con-
ductivity, and gas barrier properties) [2,80,81]. The incorporation of graphene within the
matrix increases the crosslinking of the polymer chains, which leads to an increase in the
mechanical properties owing to the exceptional mechanical properties of graphene (tensile
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strength of ~130 GPa and Young’s modulus of ~1 TPa) [82,83]. However, due to the filler,
the movement of the polymer chain is inhibited, so the tension toughness and strain of
nanocomposites may tend to decrease. Therefore, many papers have reported that the
mechanical properties of graphene/polymer nanocomposites are considerably enhanced
compared to those of pure polymers (Table 2). The table was assembled according to the
type of graphene and polymer.

Table 2. Mechanical properties of diverse graphene/polymer nanocomposites.

Graphene Matrix Process Filler
Loading

Tensile
Strength

(MPa)

Young’s
Modulus

(MPa)

Strain
(%) Ref.

TrGO UHMWPE Solution process 1 wt.% 3100 106,000 [84]

GNP LLDPE Solution process 5 wt.% 25.3 189.4 [40]

MGO LLDPE Solution process 3 wt.% 19.9 [85]

GNP HDPE Melt mixing 23 wt.% 34.84 7 [86]

TRG HDPE Polymerization 5.2 wt.% 12.9 624.4 9.7 [87]

GNP PP Melt mixing 10 wt.% 1963.2 18.20 [88]

GNP PP Melt mixing 5.5 wt.% 1900 7.00 [89]

GNP PP Melt mixing 5 wt.% 38 6.99 [90]

GNs PP Melt mixing 3 wt.% 61.57 2314.61 19.09 [91]

fGO PP Melt mixing 1 wt.% 38.7 562 [92]

Graphene PP Melt mixing 0.1 wt.% 33 1250 1150 [93]

Graphene PP Melt mixing 1 wt.% 37 1760 130 [93]

GNP PP Solution process 5 wt.% 55.85 7239 9.07 [38]

GNP Epoxy Solution process 10 vol% 1 26 [94]

Graphene Epoxy Melt mixing 0.5 wt.% 23.01 8000 [95]

GNP Epoxy Solution process 6 wt.% 53 3400 2 [96]

GNP Epoxy Melt mixing 6 wt.% 35.5 1.49 [97]

GNP Epoxy Melt mixing 4 wt.% 75.8 4.55 [98]

GNP Epoxy Solution process 0.3 wt.% 72.4 1990 8.2 [99]

fGr Epoxy Solution process 0.1 wt.% 83.43 [100]

rGO PVA Wet spinning 2 wt.% 867 15,900 [101]

GO PVA Solution process 0.3 wt.% 63 [102]

GO PVA Solution process 3 wt.% 110 36 [103]

rGO PVA Solution process 0.02 wt.% 45.6 162 [104]

rGO PVA Solution process 3.5 wt.% 29 520 22 [105]

GS PVA Solution process 1 wt.% 67.7 139 [106]

rGO PVA Solution process 0.7 wt.% 154 4900 5.1 [107]

GNs PVA Solution process 1.8 vol% 42 1040 [108]

GO PVA Solution process 0.7 wt.% 87.6 3450 [109]

GO PVA Solution process 2 wt.% 37.8 67.3 294 [110]
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Table 2. Cont.

Graphene Matrix Process Filler
Loading

Tensile
Strength

(MPa)

Young’s
Modulus

(MPa)

Strain
(%) Ref.

Graphene PVA Electrospinning 6 wt.% 19.2 638 113 [111]

GO PVA Polymerization 0.04 wt.% 50.8 2123 208 [112]

GNP PVA Electrospinning 1 wt.% 11 130 [113]

rGO PVA Electrospinning 2 wt.% 5.51 85.67 [114]

GNs PU Polymerization 2 wt.% 36.3 535 [72]

fGNP PU Polymerization 1.5 wt.% 23.4 6.7 [115]

fGO PU Solution process 0.4 wt.% 19.6 1035.3 [116]

fGO PU Electrospinning 1 wt.% 8.9 41.4 515.6 [117]

Graphene PU Solution process 3 wt.% 22.9 2.7 474 [118]

fGS PU Solution process 1 wt.% 11.9 448 [119]

fGNs PU Solution process 2 wt.% 20.2 138 [120]

TrGO PU Polymerization 2 wt.% 10.6 35.1 715 [121]

GSs PU Solution process 15 wt.% 25 1200 220 [122]

MrGO PU Solution process 0.608 wt.% 34.30 186.24 [123]

fGS PU Solution process 1 wt.% 40 590 [124]

GNP PS Solution process 5 wt.% 11.54 809.4 [41]

GSs PS Polymerization 0.9 wt.% 41.42 2280 [125]

GO PS Solution process 2 wt.% 43.5 3580 1.3 [126]

FLG PS Solution process 0.9 wt.% 13.98 11.3 [127]

FLG PS Solution process 0.7 wt.% 16.03 17 [128]

fGNs PS Solution process 1 wt.% 78.2 2.38 [129]

GO PS Solution process 1.02 wt.% 13.60 1.185 [130]

MLG PVC Polymerization 0.3 wt.% 50.5 [131]

GNP PVC Solution process 2.5 wt.% 24 11.42 33.5 [132]

mGO PVC Solution process 5 wt.% 37.87 1694.23 2.61 [133]

rGO PVC Melt mixing 1 wt.% 16.16 46.9 362 [134]

rGO PVC Solution process 0.2 wt.% 35 1700 5 [135]

GO PA6 Polymerization 0.1 wt.% 123 722 269 [71]

fGO PA6 Solution process 1 wt.% 1900 [136]

fGr PA6 Polymerization 0.2 wt.% 68.4 100 [137]

GO PA6 Polymerization 0.65 wt.% 64.9 [138]

fGr PA6 Polymerization 0.1 wt.% 500 20.7 [139]

4.1. Graphene/Polyethylene Nanocomposites

In the case of ultrahigh-molecular-weight polyethylene (UHMWPE)/thermally re-
duced graphene oxide (TrGO), the tensile strength and Young’s modulus improved with
an increase in the TrGO content due to the exceptional inherent TrGO strength and stiff-
ness [84]. In the case of 1 wt.% TrGO, the tensile strength of the pure UHMWPE increased
from 1.1 to 3.1 GPa (182% increase) and the Young’s modulus improved by over three times.
The drawing ratio is also a factor that improves the mechanical properties of the composite.
When the composite film is not drawn, the filler is randomly distributed within the PE
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matrix. As the drawing ratio increases, the filler cluster expands so that the TrGO flakes are
aligned along the drawing direction, and the size of the cluster decreases, which means
that the flakes are exfoliated. The exfoliated flakes increase the specific area in contact with
the PE matrix molecule and the TrGO fillers and improve load transfer from PE to TrGO.
Additionally, the significant increase in the mechanical properties at low TrGO content was
ascribed predominantly to the uniform TrGO dispersion and very high specific surface
areas that help transfer the load from the polymer matrix to the strong fillers.

High-density polyethylene (HDPE)/graphene nanocomposites were prepared directly
from HDPE and graphene using a twin-screw extruder. HDPE stiffness increased sig-
nificantly with increasing graphene content, with a maximum Young’s modulus (187%
increase) [86]. Therefore, the tensile strength increased to 34%, whereas the elongation
at break reduced to 91%. The improvement in tensile strength without decreasing the
elongation is due to the exceptional mechanical strength of graphene, which is a uniform
dispersion in the matrix and strong interfacial interactions [140].

Heptene-functionalized graphitic nanoplatelets (HGN) produced by ball milling were
incorporated as reinforcing fillers for LLDPE (linear low-density polyethylene) [40]. The ten-
sile strength and Young’s modulus of the HGN/LLDPE nanocomposites were higher than
those of pure LLDPE (Figure 5a,b). The HGN/LLDPE_5 (5 wt.% HGN content) displayed
the best mechanical properties among the pure LLDPE and HGN/LLDPE nanocomposites.
Therefore, the tensile strength, yield strength, Young’s modulus, and tensile toughness
of the HGN/LLDPE_5 nanocomposites were enhanced to 43.8, 39.4, 39.5, and 125.8%,
respectively, compared with those of pure LLDPE. Comparing the fracture surfaces, pure
LLDPE appeared smooth and plain with wave-shaped morphology, but HGN/LLDPE _5
displayed rough and canyon-like structures (Figure 5c,d), indicating that the specimen was
ripped steadily by an accumulated stress that transferred efficiently from HGNs to LLDPE
due to good dispersion of the HGNs into LLDPE.

4.2. Graphene/Polypropylene Nanocomposites

Polypropylene (PP)/reduced graphene oxide (PP/rGO_X) nanocomposites with low
rGO concentrations (X = rGO content, 0.05–1.0 wt.%) were created via twin-screw extru-
sion [141]. The tensile strength and Young’s modulus of PP/rGO_1 increased by 11.15 and
41.45%, respectively, compared with those of pure PP. The enhanced mechanical properties
were induced by the exceptional rGO dispersion due to the combination of shear and
extensional flows during extrusion and good compatibility between rGO and PP.

PP/graphene (polypropylene coated graphene) nanocomposites with exfoliated PP-
coated graphene, which can prevent the restacking of graphene sheets during melt blending,
demonstrated exceptional interaction and effective load transfer between the polymer and
graphene [93]. In the case of 0.1 wt.% graphene, the yield strength, tensile strength and
Young’s modulus were enhanced to 30 MPa (by 36%), 33 MPa (by 38%), and 1.25 GPa (by
23%), respectively, compared with pure PP. Moreover, the elongation at break remained
almost unchanged, indicating that the nanocomposite toughness was not reduced. In the
case of 1.0 wt.% graphene content, the yield strength (38 MPa), tensile strength (37 MPa),
and Young’s modulus (1.76 GPa) increased by 75%, 54%, and 74%, respectively, compared
with pure PP. This is ascribed to the uniform graphene dispersion and effective load transfer
from the polymer to graphene through interfacial interactions.
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Figure 5. (a) stress–strain (S–S) curves of the pure LLDPE and HGN/LLDPE nanocomposites.
(b) Tensile strengths and Young’s modules of the pure LLDPE and HGN/LLDPE nanocompos-
ites according to HGN content. SEM images of the fractured surface: (c) pure LLDPE, and
(d) HGN/LLDPE_5. Scale bars are 10 µm. Reprinted with permission from Ref. [40]. Copyright 2020
Elsevier.

Edge-propylene graphitic nanoplatelets (EPGnP/PP)/PP_X nanocomposites were pre-
pared utilizing a solution method [38]. EPGnP/PP_5 (EPGnP content of 5 wt.%) displayed
that tensile strength, yield strength, and Young’s modulus increased to 90.5, 90.8, and
249.5%, respectively, compared to pure PP (Figure 6a,b). This is due to the molecular-level
dispersion of the EPGnPs into the PP matrix, and the strong interfacial interaction between
EPGnP and PP through the EPGnP propylene functional groups. It verified the uniform dis-
persion of EPGnPs into the PP matrix using HR-TEM (Figure 6c,d). However, as the content
of EPGnP increased, the tensile toughness of the EPGnP/PP_X nanocomposite decreased
because the strain of the EPGnP/PP_X nanocomposite decreased gradually because the
addition of multi-dimensional fillers limits the movement of the matrix. Although the filler
is uniformly dispersed within the matrix, there is little elongation, and EPGnP behaves like
a physical cross-linking point within the PP matrix.
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Figure 6. (a) S–S curves and (b) tensile strength and Young’s modules of EPGnP/PP_X nanocompos-
ites. HR-TEM images of EPGnP/PP_5 nanocomposites: (c) low-magnification; (d) high-magnification.
Reprinted with permission from Ref. [38]. Copyright 2021 Elsevier.

4.3. Graphene/Epoxy Nanocomposites

The epoxy/GNP_X nanocomposites manufactured by melt mixing demonstrated
an increase in the GNP content, tensile strength, and Young’s modulus of the nanocom-
posite [94]. In epoxy/GNP_10 (GNP content:10 vol.%), the tensile strength and Young’s
modulus increased to 1.0 ± 0.08 MPa (66.7) and 26 ± 1.7 MPa (1344%), respectively, com-
pared with pure epoxy. The tensile strength was fixed at 5 vol.% GNP. The tensile strength
increased to 1.4 ± 0.07 MPa at 5 vol.% GNP and then was decreased to 1.0 ± 0.08 MPa at
10 vol.%, indicating an increase of 133.3% at 5 vol.% and a decrease of 28.6% at 10 vol.%. The
increased tensile strength at low graphene content is attributed to the exceptional graphene
dispersion and powerful mechanical interaction between graphene and the polymer.

Diverse epoxy nanocomposites with pristine- and Triton-graphene (graphene func-
tionalized non-covalently with Triton-X100) have been prepared [100]. The corresponding
stress of the nanocomposite was higher than that of pure epoxy for the same strain, indi-
cating that the nanocomposite modulus was improved by the incorporation of pristine-
and Triton-graphene. At the breaking point on the S–S curves, the strength and elongation
at break of the nanocomposite with Triton-graphene were obviously higher than those
of pure epoxy and pristine graphene-filled epoxy nanocomposite. The tensile strength of
pristine graphene was almost unchanged compared to that of pure epoxy, whereas that of
the Triton-graphene (0.1 wt.% loading) was greatly enhanced by 57% (from 52.98 ± 5.82 to
83.43 ± 5.90 MPa), although the elastic modulus still demonstrated a similar increase to
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that of the pristine graphene nanocomposites. As depicted in the SEM images of the Triton-
graphene/epoxy nanocomposite fracture surface, well-dispersed graphene and a relatively
good graphene/polymer interface effectively improved the load transfer efficiency with
the polymer and thus increased the tensile strength.

4.4. Graphene/Poly(Vinyl Alcohol) Nanocomposites

PVA/GO-X (X = GO content) nanocomposites were prepared utilizing the solution
method [110]. Compared with pure PVA, a maximum increase of approximately 50% in
the tensile strength was observed for the nanocomposite (X = 0.3 and 2.0). Additionally, its
elongation at break or failure strain increased to 13–22%, indicating that the exceptional GO
dispersion at a lower content led to a significant increase in the mechanical properties. How-
ever, the elastic modulus of the PVA/GO-2 was larger than PVA/GO-0.3 nanocomposite
due to the higher GO content, which possesses a high elastic modulus.

PVA/GO-X (X = GO content) nanocomposites were prepared via in situ polymeriza-
tion [112]. The tensile strength and Young’s modulus of the PVA/GO-X nanocomposites
improved with increasing GO content at low content. Therefore, the tensile strength and
Young’s modulus of PVA/GO-0.04 were enhanced from 50.8 MPa and 2123 MPa compared
with pure PVA (42.3 MPa and 1477 MPa). However, elongation behavior decreased slightly
from 215% to 211.5% due to the strong H-bonding interaction between the GO surface
and the PVA matrix, that prevents and reduces the movement of polymer chains. The
enhanced mechanical properties at low GO contents are related to the combination of GO
with excellent tensile strength and Young’s modulus, homogeneous GO dispersion, and
strong hydrogen bonding between the oxygen-containing functional groups of GO and
PVA chains.

4.5. Graphene/Polyurethane Nanocomposites

PU-GX (X = graphene content) nanocomposites were prepared with waterborne
biodegradable PU and graphene at diverse graphene contents (0, 1, 3, and 5 wt.%) [118].
Graphene enhanced the mechanical properties of PU-GX nanocomposites. The tensile
strengths of PU, PU-G1, PU-G3, and PU-G5 nanocomposites were approximately 35.3, 23.3,
22.9, and 11.4 MPa, respectively. Additionally, the elongation of PU-G5 (317%) decreased
compared to that of pure PU (640%) as the incorporation of graphene to pure PU induces
the nanocomposites to be less elastic.

PU/graphene nanofibers were obtained by electrospinning a PU/graphene solution
comprising GO, f-GO (PCL-functionalized GO), and r-GO at diverse concentrations (0, 0.1,
0.5, and 1.0 wt.%) [117]. The modulus and breaking stress of the PU/graphene nanocompos-
ite nanofibers were higher than those of pure PU. The breaking stress of the nanocomposite
nanofiber at 0.1 wt.% f-GO was 9.3 MPa, which is 1.2 times higher than pure PU nanofibers
(7.8 MPa). The nanofiber modulus increased with increasing graphene content. The Young’s
moduli of the nanofibers with 1 wt.% f-GO displayed 41.4 MPa, whereas that of pure PU
nanofiber webs was 31.5 MPa. Thus, f-GO was very well dispersed in the polymer matrix
compared with GO and r-GO and functioned for excellent load transfer.

Hyperbranched aromatic polyamide-functionalized graphene sheets (GS-HBA) were
prepared with 3,5-diaminobenzoic acid (DABA) as a monomer [122]. GS-HBA demon-
strated good dispersion in thermoplastic polyurethane (TPU) and strong adhesion with
TPU via hydrogen bonding, which efficiently enhanced the load transfer from TPU to the
graphene sheets.

As the GS-HBA content increased, the stress gradually increased, and the strain
steadily decreased. The S–S curve of the 15 wt.% GS-HBA nanocomposite was similar to
pure TPU. The highest Young’s modulus of the nanocomposite with 15 wt.% GS-HBA was
1.2 GPa, that is one order of magnitude higher than pure TPU (0.09 GPa). The yield tensile
strengths of nanocomposites with 15 wt.% GS-HBA (25 MPa) increased about seven-fold
compared with pure TPU (3.4 MPa), that is comparable to UHMWPE (about 22 MPa).
Initially, the ultimate tensile strength increased from 18 to 37 MPa, and then decreased
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slightly to approximately 30 MPa when the GS-HBA content increased to over 2.5 wt.%.
GS-HBA may advance strain hardening and strain-induced crystallization of soft segments
(SS) owing to hydrogen bonding. As the GS-HBA content increased, the strain at the break
of the nanocomposites decreased.

4.6. Graphene/Polystyrene Nanocomposites

PS/FLG-X (X = FLG content) nanocomposites were prepared by combining graphene
produced via liquid-phase exfoliation with polystyrene [127]. The Young’s moduli of the
nanocomposites with FLG from 0.1 to 0.9 wt.% increased from 55.4 to 59.8% compared
to pure PS (0.202 GPa) and achieved this at the peak value of the PS/FLG-0.9 composite.
This is because FLG impedes the chain mobility of the host polymer. An increase in the
ultimate tensile strength was observed based on the graphene value. The smallest value
is at PS/FLG-0.1 and the highest is at 13.98 MPa of the PS/FLG-0.9 nanocomposite; the
overall improvement in UTS was 74.75%. The polymer chain interacted with graphene and
formed a bond, increasing the tensile strength of the nanocomposite.

Edge-styrene graphitic nanoplatelets (StGnPs) were prepared directly using a mechanochem-
ical reaction with graphite and styrene, and StGnP/PS-X (X = StGnP content) nanocom-
posites were prepared utilizing solution methods [41]. The mechanical properties of the
StGnP/PS nanocomposite depended on the StGnP content. The StGnP/PS-5 nanocom-
posite exhibited the best tensile strength (11.54 MPa), Young’s modulus (809.4 MPa), yield
strength (3.67 MPa), and tensile toughness (0.89 MPa) (Figure 7). The considerably en-
hanced mechanical properties of the StGnP/PS nanocomposites compared with those of
pure PS can be ascribed to the stress being transferred comfortably from PS to StGnPs
through the molecular-level StGnP dispersion into PS and strong interfacial interaction
between the StGnPs and PS.

4.7. Graphene/Poly(Vinyl Chloride) Nanocomposites

Multi-layer graphene (MLG) PVC nanocomposites (MLG/PVC-X, X = MLG content)
were prepared by in situ polymerization and melt mixing [131]. The yield strength and
Young’s modulus of the MLG/PVC nanocomposites strongly depended on the MLG
content. The yield strength and Young’s modulus first increased and then decreased
with MLG incorporation. The yield strength and Young’s modulus of the MLG/PVC-0.3
nanocomposites increased by 11 and 8%, respectively, compared to those of pure PVC. The
exceptional dispersion of MLG and strong interactions led to the efficient transfer of the
load and interruption of the motion of PVC chains, resulting in the excellent mechanical
properties of the nanocomposites.

PVC nanocomposites embedded with graphene nanoplatelets (GNP/PVC) were pre-
pared utilizing a solution method [132]. The GNP/PVC nanocomposites exhibited a far
higher elastic modulus and strength than pure PVC. For the GNP/PVC nanocomposites
(2.5 wt.% GNP), elastic modulus and ultimate tensile strength were 1.42 GPa (108.77%)
and 24.0 MPa (100%), respectively, compared to pure PVC (5.47 GPa and 12.0 MPa). The
exceptional mechanical properties of the GNP/PVC nanocomposites were attributed to the
strong interaction between GNP and PVC and high GNP modulus.

4.8. Graphene/Polyamide Nanocomposites

GO/nylon 6 was prepared via a solution-mixing method [136]. The incorporated
graphene induced a noteworthy enhancement in the mechanical strength and Young’s
modulus. At 1.0 wt.% graphene, the best yield strength (91 MPa) and Young’s modulus
(1.90 GPa) increased to 18 and 28%, respectively, compared to pure Nylon 6.
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Nylon 6/sulfonated graphene nanocomposites (NSG-X, X = SG content) were prepared
via in situ ring-opening polymerization of ε-caprolactam and sulfonated graphene (SG)
with polar sulfonic acid [137]. Compared with pure nylon 6, NSG-0.2 demonstrated an
improvement in tensile, impact, and especially bending strength, due to the buildup effect
of SG with high specific surface areas. The bending and impact strengths increased by
32.2 and 5.7%, respectively, compared to those of pure nylon 6. However, in the case
of NSG-3.0 with the highest SG content, the mechanical properties decreased. The low
mechanical properties are due to the low molecular weight of grafting nylon 6 chains
on the SG sheets. It also decreased with the elongation at break of the NSG composites
with increasing SG content, due to the high density of grafting and the inability molecular
“slippage”. Therefore, mechanical properties may be maintained and improved by using
an appropriate SG content.
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4.9. Analysis Methods of Properties for Graphene/Polymer Nanocomposites

The mechanical properties and thermal stability of the graphene/polymer nanocom-
posite are influenced by the internal microstructure and crystallinity. Thermal properties
of polymers can be confirmed with various measuring equipment (DSC, TGA, DMA etc.)
and the Tm, Tg, Tc of nanocomposites can be found from the measurement data [142].
In particular, glass-transition temperature, Tg, is one of the important factors in polymer
treatment and production applications, and it depends on the molecular weight of the
polymer chain and the spatial structure of the polymer [143].

Differential scanning calorimetry (DSC) is used to study the thermal behavior of
the nanocomposites and to follow their melting and crystallization behavior [89]. Liang
et al., [109] used DSC to compare Tg of pure PVA with the Tg of graphene/PVA nanocom-
posites. As a result, it can be observed that Tg of the graphene/PVA nanocomposite
increased compared to pure PVA. The increase in Tg indicates that the polymer chain was
limited by the H-bonding interaction. Load transfer is largely dependent on the interfacial
interaction between the filler and the wrapped polymer matrix [144]. In addition, the
molecular-level dispersion of graphene sheets in the PVA matrix and the large aspect ratio
of graphene are also advantageous for stress transfer through graphene/PVA interfaces.
Therefore, significant improvement in tensile stress and modulus of the nanocomposite
was greatly improved. The crystallization temperature (Tc) may also be obtained through
DSC measurement. As the content of GNP in the PP/GNP nanocomposites increases, Tc
shifted to a higher temperature, indicating that the presence of GNP as a nucleating agent in
nanocomposites promotes the crystallization of PP [145,146]. The addition of GNP provides
more surfaces in the nucleation process that facilitates the crystallization process [89].

The thermal stability and composition of the nanocomposites are investigated using
thermogravimetric analysis (TGA). Additionally, TGA was used to confirm filler loading
and evaluate the effect of filler loading on the thermal stability in nanocomposites. The
degradation performance was improved as filler loading increased, due to the hindered
effect of the filler upon the diffusion of oxygen and volatile products throughout the
nanocomposite material. That is, it can be seen that the thermal stability of the polymer
was improved by adding graphene [89].

Tensile test and dynamic mechanical analysis (DMA) have been conducted to evaluate
the enhancement properties of nanofillers [147]. According to the storage modulus mea-
sured by DMA, it can be seen that the values of the IL-G/PU nanocomposites are higher
than the value of the pure PU. The data of tan δ measured by DMA showed that as the ILG
content increases, the Tg of the composites gradually transfers to higher temperatures [123].
The high specific surface area of the IL-G sheet provides an excellent contact area with the
PU matrix, obtaining a strong interfacial attraction through π-π and/or cation-π as well as
electrostatic interactions and van der Waals forces. Additionally, the presence of tertiary
amine on the IL-G sheets may interact with the carbonyl group in the PU chain through
hydrogen bonding [148,149]. The synergistic effects improve Tg of the PU nanocomposite
by constraining the mobility of PU chains segment [123].

5. Applications

An optimized graphene content in a polymer matrix is typically used for structural
reinforcement areas [150–153]. Owing to the potential multifunctional properties of poly-
mers with graphene, graphene/polymer nanocomposites have been utilized in several
areas. The noteworthy enhancement of the mechanical performance of polymers suggests
the use of graphene in diverse applications to achieve a combination of high strength and
light weight. Additionally, it has demonstrated a potential to enhance the safety, reliability,
and cost-effectiveness of graphene/polymer nanocomposites, which can increase the range
of material options in the aerospace, automotive, marine, sports, biomedical, and energy
industries (Figure 8).
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Owing to the outstanding structural strength and conductivity of graphene, poly-
mer nanocomposites have become a potential candidate for aerospace applications [150].
Thermosetting polymers are predominantly used as matrices for aerospace as they are ther-
mally stable, chemically inactive, and have reasonable mechanical and electrical properties.
However, most thermosetting polymers are fragile at low temperatures due to their stiff
cross-linked structures, which mean that they crack easily according to thermal-fatigue
loading [154]. Therefore, to resolve various issues, it is essential to improve the properties
of the matrix or its interfacial bonding. Diverse types of graphene can be utilized for this
purpose. This will be extremely helpful in satisfying the normal requirements of aerospace
applications.

Graphene/polymer nanocomposites have advantages in diverse environmental applica-
tions including water treatment, energy production, and contaminant sensing [150,151,155].
Graphene/polymer nanocomposites preserve them against corrosion, thus, they were
useful as adsorbents for the removal of metal ions, organic materials, and gases in the
aquatic environment, and were also utilized to eliminate water contaminants.

Research is being conducted on the use of graphene as a new and renewable en-
ergy source. In solar cells, graphene either acts as the active medium or as a transpar-
ent/distributed electrode material [151,156]. It is a highly flexible and stretchable electrode
that can be used in diverse electrolytes.

Graphene possesses properties that are distinct from those used in biotechnological
and bio-based applications. Owing to its large surface area, chemical stability, and function-
alization feasibility, it is a promising candidate for tissue engineering, drug delivery, and
DNA sequencing [157]. Furthermore, ultrasensitive measurement equipment to sensitively
detect diverse biological molecules, including glucose, hemoglobin, cholesterol, and DNA,
can be prepared using chemically functionalized graphene. Graphene membranes with
nanopores are ideal for achieving higher permeate flux, higher selectivity, and increased
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stability by controlling the pore size and aspect. Graphene paints were concatenated with
conductive ink, antistatic, magnetic shielding, and gas barriers. Thus, to expand the appli-
cation areas of graphene/polymer nanocomposites, new graphene chemical modifications
to control the properties of products have been reported.

6. Future Perspectives

Among the various reinforcement materials, graphene has excellent mechanical, ther-
mal, and electrical properties, and is regarded as a better alternative to general nanofillers.
Thus, graphene/polymer nanocomposites have properties that are extraordinary for di-
verse applications. Several studies on the exceptional graphene properties have revealed
that it plays an imperative role in enhancing the specific properties of polymer nanocom-
posites, which can be utilized in diverse applications [32,150,158]. Other than in the
above-mentioned application, in order to utilize graphene/polymer nanocomposites, im-
provements are required in graphene dispersion in a matrix, interfacial interaction, mass
production and remarkable quality, etc. The interfacial interaction between graphene and
the polymer and the homogeneous dispersion of graphene generally enhances nanocom-
posite properties. A suitable interaction between graphene and polymer guarantees the
technological advancement of graphene/polymer nanocomposites, but is still insufficient.
Therefore, the challenge is to maintain the inherent properties of graphene in the nanocom-
posite as much as possible, many people continue to strive to overcome this issue.

7. Conclusions

Current polymer nanocomposites are useful in various aspects. Many studies have
been reported demonstrating that graphene/polymer nanocomposites can be applied in
various fields through the chemical functionalization of graphene used as fillers. The
uniform dispersion of graphene is one of the factors that can improve performance. Addi-
tionally, the interaction between the polymer and the filler, the surface area, filler loading,
and dispersion are various factors that determine the quality of the nanocomposite. Despite
numerous challenges related to graphene, a suitable interaction between graphene and
polymers is yet to be developed. However, the manufacturing industry cannot neglect the
use of graphene (or graphene-like materials) in commercial products. It is expected that it
will be transformed from a typical to a high-performance material that can offer the best so-
lutions for industry and consumers. Therefore, the business influence of graphene/polymer
nanocomposites is growing continuously.
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