Enhanced Soft Sensor with Qualified Augmented Samples for Quality Prediction of the Polyethylene Process
Abstract
:1. Introduction
2. Preliminaries
2.1. Problem Statement
2.2. WGAN-GP Data Augmentation Approach
3. The SWGAN-Based Soft Sensor Framework
3.1. Virtual Sample Selection Strategy
3.2. SWGAN-SVR Soft Sensor Model
4. Results and Discussion
4.1. Numerical Example
4.2. Industrial Polyethylene Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fortuna, L.; Graziani, S.; Rizzo, A.; Xibilia, M. Soft Sensors for Monitoring and Control of Industrial Processes; Springer: New York, NY, USA, 2007. [Google Scholar]
- Kadlec, P.; Grbic, R.; Gabrys, B. Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 2011, 35, 1–24. [Google Scholar] [CrossRef]
- Sun, Q.; Ge, Z. A survey on deep learning for data-driven soft sensors. IEEE Trans. Ind. Inform. 2021, 17, 5853–5866. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.; Zhang, M.; Dai, Y.; Yao, Y. Development of adversarial transfer learning soft sensor for multigrade processes. Ind. Eng. Chem. Res. 2020, 59, 16330–16345. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, M. Rebooting data-driven soft-sensors in process industries: A review of kernel method. J. Process Control 2020, 89, 58–73. [Google Scholar] [CrossRef]
- Fuentes-Cortes, L.; Flores-Tlacuahuac, A.; Nigam, K. Machine learning algorithms used in PSE environments: A didactic approach and critical perspective. Ind. Eng. Chem. Res. 2022, 61, 8932–8962. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, S.; Dong, J.; Kaynak, O. A review on soft sensors for monitoring, control, and optimization of industrial processes. IEEE Sens. J. 2021, 21, 12868–12881. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, R.; Parashar, A. Enhanced thermal transport across a bi-crystalline graphene–polymer interface: An atomistic approach. Phys. Chem. Chem. Phys. 2019, 21, 6229–6237. [Google Scholar] [CrossRef]
- Verma, A.; Parashar, A.; Packirisamy, M. Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite. Appl. Surf. Sci. 2019, 470, 1085–1092. [Google Scholar] [CrossRef]
- Sharmin, R.; Sundararaj, U.; Shah, S.; Griend, L.V.; Sun, Y.-J. Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant. Chem. Eng. Sci. 2006, 61, 6372–6384. [Google Scholar] [CrossRef]
- Qin, S.; Dong, Y.; Zhu, Q.; Wang, J.; Liu, Q. Bridging systems theory and data science: A unifying review of dynamic latent variable analytics and process monitoring. Annu. Rev. Control 2020, 50, 29–48. [Google Scholar] [CrossRef]
- Rasmussen, C.; Williams, C. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Liu, Y.; Chen, T.; Chen, J. Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions. Ind. Eng. Chem. Res. 2015, 54, 5037–5047. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, H.; Funatsu, K. Development of soft sensor models based on time difference of process variables with accounting for nonlinear relationship. Ind. Eng. Chem. Res. 2011, 50, 10643–10651. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X. A real-time model based on optimized least squares support vector machine for industrial polypropylene melt index prediction. J. Chemometr. 2016, 30, 324–331. [Google Scholar] [CrossRef]
- Chitralekha, S.; Shah, S. Application of support vector regression for developing soft sensors for nonlinear processes. Can. J. Chem. Eng. 2010, 88, 696–709. [Google Scholar] [CrossRef]
- Liu, K.; Ma, Z.; Liu, Y.; Yang, J.; Yao, Y. Enhanced defect detection in carbon fiber reinforced polymer composites via generative kernel principal component thermography. Polymers 2021, 13, 825. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, C. Condition-driven probabilistic adversarial autoencoder with nonlinear Gaussian feature learning for nonstationary process monitoring. J. Process Control 2022, 117, 140–156. [Google Scholar] [CrossRef]
- Liu, Q.; Jia, M.; Gao, Z.; Xu, L.; Liu, Y. Correntropy long short term memory soft sensor for quality prediction in industrial polyethylene process. Chemometrics Intell. Lab. Syst. 2022, 231, 104678. [Google Scholar] [CrossRef]
- Wang, C.; Peng, X.; Shang, C.; Fan, C.; Zhao, L.; Zhong, W. A deep learning-based robust optimization approach for refinery planning under uncertainty. Comput. Chem. Eng. 2021, 155, 107495. [Google Scholar] [CrossRef]
- Roman, A.; Qin, S.; Rodriguez, J.; Gonzalez, L.; Zavala, V.; Osswald, T. Natural rubber blend optimization via data-driven modeling: The implementation for reverse engineering. Polymers 2022, 14, 2262. [Google Scholar] [CrossRef]
- Yuan, X.; Ou, C.; Wang, Y. Development of NVW-SAEs with nonlinear correlation metrics for quality-relevant feature learning in process data modeling. Meas. Sci. Technol. 2020, 32, 015006. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H. Data supplement for a soft sensor using a new generative model based on a variational autoencoder and Wasserstein GAN. J. Process Control 2019, 85, 91–99. [Google Scholar] [CrossRef]
- Wu, H.; Lo, Y.; Zhou, L.; Yao, Y. Process modeling by integrating quantitative and qualitative information using a deep embedding network and its application to an extrusion process. J. Process Control 2022, 115, 48–57. [Google Scholar] [CrossRef]
- Jin, H.; Li, Z.; Chen, X.; Qian, B.; Yang, B.; Yang, J. Evolutionary optimization based pseudo labeling for semi-supervised soft sensor development of industrial processes. Chem. Eng. Sci. 2021, 237, 116560. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; He, Y.; Zhu, Q. Novel manifold learning based virtual sample generation for optimizing soft sensor with small data. ISA Trans. 2021, 109, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Poggio, T.; Vetter, T. Recognition and structure from one 2D model view: Observations on prototypes object classes and symmetries. Mass. Inst. Technol. 1992, 1347, 1–25. [Google Scholar]
- Cho, S.; Jang, M.; Chang, S. Virtual sample generation using a population of networks. Neural Process. Lett. 1997, 5, 21–27. [Google Scholar] [CrossRef]
- He, Y.; Hua, Q.; Zhu, Q.; Lu, S. Enhanced virtual sample generation based on manifold features: Applications to developing soft sensor using small data. ISA Trans. 2022, 126, 398–406. [Google Scholar] [CrossRef]
- Wei, S.; Chen, Z.; Arumugasamy, S.; Chew, I. Data augmentation and machine learning techniques for control strategy development in bio-polymerization process. Env. Sci. Ecotechnol. 2022, 11, 100172. [Google Scholar] [CrossRef]
- Chao, G.; Tsai, T.; Lu, T.; Hsu, H.; Bao, B.; Wu, W.; Lin, M.; Lu, T. A new approach to prediction of radiotherapy of bladder cancer cells in small dataset analysis. Expert Syst. Appl. 2011, 38, 7963–7969. [Google Scholar] [CrossRef]
- Li, D.; Wu, C.; Tsai, T.; Lina, Y. Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge. Comput. Oper. Res. 2007, 34, 966–982. [Google Scholar] [CrossRef]
- Li, D.; Chen, C.; Chang, C.; Lin, W. A tree-based-trend-diffusion prediction procedure for small sample sets in the early stages of manufacturing systems. Expert Syst. Appl. 2012, 39, 1575–1581. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Chen, J.; Song, Z. Synthesizing labeled data to enhance soft sensor performance in data-scarce regions. Control Eng. Practice 2021, 115, 104903. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. In Proceedings of the 28th Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014. [Google Scholar]
- Gao, S.; Dai, Y.; Li, Y.; Jiang, Y.; Liu, Y. Augmented flame image soft sensor for combustion oxygen content prediction. Meas. Sci. Technol. 2023, 34, 015401. [Google Scholar] [CrossRef]
- Gao, S.; Dai, Y.; Li, Y.; Liu, K.; Chen, K.; Liu, Y. Multiview Wasserstein generative adversarial network for imbalanced pearl classification. Meas. Sci. Technol. 2022, 33, 085406. [Google Scholar] [CrossRef]
- Liu, K.; Zheng, M.; Liu, Y.; Yang, J.; Yao, Y. Deep autoencoder thermography for defect detection of carbon fiber composites. IEEE Trans. Ind. Inform. 2022. [Google Scholar] [CrossRef]
- Xu, X.; Lin, K.; Yang, Y.; Hanjalic, A.; Sheng, H. Joint feature synthesis and embedding: Adversarial cross-modal retrieval revisited. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3030–3047. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Li, F.; Pan, T.; He, S. A small sample focused intelligent fault diagnosis scheme of machines via multimodules learning with gradient penalized generative adversarial networks. IEEE Trans. Ind. Electron. 2021, 68, 10130–10141. [Google Scholar] [CrossRef]
- Jiang, X.; Ge, Z. Data augmentation classifier for imbalanced fault classification. IEEE Trans. Autom. Sci. Eng. 2021, 18, 1206–1217. [Google Scholar] [CrossRef]
- Li, Z.; Xia, P.; Tao, R.; Niu, H.; Li, B. A new perspective on stabilizing gans training: Direct adversarial training. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 1–12. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the Machine Learning Research, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. A Improved training of Wasserstein GANs. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Berger, J. Statistical Decision Theory and Bayesian Analysis; Springer-Verlag: New York, NY, USA, 1985. [Google Scholar]
RMSE | R2 | MAE | |
---|---|---|---|
SVR | 30.399 | 0.933 | 27.248 |
WGAN-SVR | 20.083 | 0.971 | 18.548 |
WGAN-SVR(S1) | 18.222 | 0.976 | 16.653 |
WGAN-SVR(S2) | 16.249 | 0.981 | 15.478 |
SWGAN-SVR | 14.144 | 0.986 | 13.407 |
RMSE | R2 | MAE | |
---|---|---|---|
SVR | 50.925 | 0.015 | 33.061 |
WGAN-SVR | 36.227 | 0.502 | 22.550 |
WGAN-SVR(S1) | 32.923 | 0.588 | 22.835 |
WGAN-SVR(S2) | 34.597 | 0.546 | 21.828 |
SWGAN-SVR | 28.854 | 0.684 | 19.379 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Liu, A.; Chen, M.; Liu, Y.; Yao, Y. Enhanced Soft Sensor with Qualified Augmented Samples for Quality Prediction of the Polyethylene Process. Polymers 2022, 14, 4769. https://doi.org/10.3390/polym14214769
Dai Y, Liu A, Chen M, Liu Y, Yao Y. Enhanced Soft Sensor with Qualified Augmented Samples for Quality Prediction of the Polyethylene Process. Polymers. 2022; 14(21):4769. https://doi.org/10.3390/polym14214769
Chicago/Turabian StyleDai, Yun, Angpeng Liu, Meng Chen, Yi Liu, and Yuan Yao. 2022. "Enhanced Soft Sensor with Qualified Augmented Samples for Quality Prediction of the Polyethylene Process" Polymers 14, no. 21: 4769. https://doi.org/10.3390/polym14214769
APA StyleDai, Y., Liu, A., Chen, M., Liu, Y., & Yao, Y. (2022). Enhanced Soft Sensor with Qualified Augmented Samples for Quality Prediction of the Polyethylene Process. Polymers, 14(21), 4769. https://doi.org/10.3390/polym14214769