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Abstract: Polylactic acid (PLA) has been widely used in the field of medical devices. However, few
studies have been conducted on the extrusion molding of PLA micro tubes for the preparation of
biodegradable vascular stents. In this paper, the extrusion die for PLA single-cavity micro tubes was
designed and manufactured by micro-extrusion theory. Taking the outer diameter, wall thickness,
wall thickness uniformity and ovality of micro tubes as the evaluation index, the influence of the main
extrusion process parameters on the evaluation index was studied. The experimental results show
that the outer diameter and wall thickness are significantly affected by screw speed, pulling speed
and gas flow rate; extrusion process parameters have little influence on wall thickness uniformity
and ovality within a certain range, which mainly depends on the processing accuracy and assembly
accuracy of the extrusion die. However, excessively high screw speed and low gas flow rate have
significant effects on ovality. Finally, according to the influence of extrusion process parameters on
the evaluation index, a series of micro tubes that meet the design requirements are extruded and
carved into vascular stent structures.

Keywords: polylactic acid; microtube extrusion; extrusion die; extrusion process; biodegradable
polymeric stent

1. Introduction

Biodegradable polymer stents are one of the most promising directions in the field
of interventional medical devices for the future, which are mainly manufactured by the
laser machining of thin-walled single-cavity micro tubes. Polylactic acid (PLA) is gradu-
ally used as the main material in biodegradable polymer vascular stents due to its good
biocompatibility, biodegradability and renewability [1–3]. In addition, PLA has the char-
acteristics of light weight, large deformation, strong plasticity and low manufacturing
cost, showing broad application prospects in medical and health, electronic communi-
cations, aerospace and other fields [4–6]. W. Yang et al. [7–11] blended PLA with other
materials, such as lignin nanoparticles, nanocrystalline cellulose, chitin nanoparticles, and
organically modified montmorillonite powder, etc. to improve its toughness and biodegrad-
ability. Malwela et al. [12] studied the degradation rate of PLA with different components.
Pooja Bhati et al. [13] prepared porous PLA tubes by extrusion foaming, and studied the
effects of different extrusion process parameters on the morphological characteristics and
surface hydrophilicity of porous PLA tubes. It can be seen that although some progress has
been made in the research of PLA, it is mainly focused on improving its thermodynamic
properties, degradation properties and hydrophilic properties. There are few studies on
the extrusion of PLA micro tubes.

In recent years, polymer microtubule extrusion molding technology has received more
and more attention with the rapid development of minimally invasive interventional medi-
cal technology and the increase in demand for medical interventional catheters. However,
due to the small size of the micro tubes, it is different from the traditional extrusion molding
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in terms of mold design, mold manufacturing and extrusion process. In particular, the med-
ical micro tube has higher requirements for geometric accuracy, which puts forward higher
requirements for micro tube extrusion molding. Therefore, polymer micro tube extrusion
technology has become the focus of scholars’ research. Jin et al. [14,15] separately designed
and manufactured single-lumen and multi-lumen micro extrusion die. Polypropylene (PP)
or thermoplastic polyurethanes (TPU) was taken as a material, and the effects of extru-
sion process parameters on shape accuracy were studied. Tian et al. [16] focused on the
extrusion process of polymer multi-lumen micro tubes and established a pre-compensation
design method of micro tubes extrusion die based on the parison deformation control.
PP was taken as a material, and the feasibility and effectiveness of the proposed method
were validated through extrusion process experiments of micro tubes. According to the
above-mentioned studies, most of the existing research has taken PP, TPU and other hose
materials with relatively good fluidity as the research object. However, relatively few
papers are devoted to the studies on the extrusion process of PLA micro tubes, and little is
known about the effects of extrusion process parameters on PLA microtubule dimension
and shape precision.

In this paper, PLA micro tubes were taken as the research object. Firstly, the rheological
properties of PLA were studied, and extrusion die for single-cavity micro tubes was
designed and manufactured through micro-extrusion theory. The influence of extrusion
process parameters on PLA microtubule dimension and shape precision and its mechanism
were studied through experiments of the extrusion process. Finally, by adjusting the
extrusion process, a series of micro tubes with different dimensions that meet the design
requirements were extruded and carved into vascular stent structure.

2. PLA Capillary Rheology Experiments

The rheological properties of polymer materials are the basis of polymer molding,
which is of great significance to the design of extrusion die and the research of extrusion
process. Capillary rheological experiment is an important method to determine the rheo-
logical properties of materials. Therefore, the capillary rheological experiment of PLA was
carried out firstly.

2.1. Experimental Equipment and Methods

A twin bore capillary rheometer (Rosand-RH7D) made by Malvern instruments Ltd.
(Malvern, UK) was used for the experiments. Long length die with diameter of 0.5 mm
and corresponding zero length die were selected. PLA (NatureWorks 4032D) was dried in
drying box for 4 h at 79 ◦C before the test, then the rheological properties of the PLA were
tested under the temperature of 190 ◦C, 200 ◦C, 210 ◦C, 220 ◦C, respectively.

2.2. Results of the Rheological Experiments

The experimental results are shown in Figure 1. Shear viscosity of PLA decreases
with the shear rate, which means PLA is a pseudoplastic fluid. When the shear rate is
less than 8000 s−1, shear viscosity decreases exponentially with the increase of shear rate.
However, with the further increase of shear rate, the downward trend tends to be gentle.
Shear viscosity decreases with the increase of temperature, but when the temperature is
higher than 200 ◦C, the difference in shear viscosity at different temperatures is very small.
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Figure 1. Rheological characteristic curves of PLA.

3. Design and Manufacture of Extrusion Die for PLA Micro Tubes

The section of designed PLA micro tubes is shown in Figure 2. The outer diameter Dout
is within the range of 1.00~2.50 mm, wall thickness is within the range of 0.05~0.15 mm,
Wall thickness uniformity > 90% and ovality < 5.0% were required for the micro tubes.

Figure 2. Section of the PLA micro tube.

3.1. Structure of the Extrusion Die

An in-line extrusion structure was adopted for extrusion die. A micro gas injection
system was introduced because of the tiny size of the designed micro tubes, and the gas
injection direction is perpendicular to the melt flow direction [14]. The structure of the
extrusion die is shown in Figure 3.
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3.2. Calculation of Inner Diameter of Die Land and Outer Diameter of Mandrel Land

The inner diameter of the die land and the outer diameter of mandrel land are critical
to the dimension of the extruded micro tubes. It will be impossible to achieve the required
tube dimension by adjusting the extrusion process if the two parameters are too large or too
small. Nevertheless, there is no accurate formula for the calculation of the two parameters
for micro-scale extrusion die. Usually, they are determined by experience, combined with
the draw ratio of material. The draw ratio can be calculated according to Equation (1).
The draw ratio of PLA ranges from 1.1 to 4.8, which is determined through the previous
extrusion process experiments. The inner diameter of the die land and outer diameter of
mandrel land were initially determined to be 3.40 mm and 3.00 mm, respectively, according
to the experiment. Then, the required maximum and minimum draw ratios which satisfy
the requirements of the designed microtubule dimensions can be obtained by calculation.
The calculated maximum draw ratio was less than 3.44, and the minimum draw ratio was
greater than 1.36, which were within the allowable range of the material.

I =
D1 + d1

Dout + din
(1)

where I is draw ratio, D1 and d1 are respectively outer diameter of the die land and inner
diameter of the mandrel land, Dout and din are respectively outer diameter and inner
diameter of the designed micro tubes.

3.3. Calculation of Land Length

Land length has a significant effect on the quality and production efficiency of the
micro tubes. If the land length is too short, the extrudate swell will be serious, and the
micro tubes cannot be extruded. On the contrary, if the land length is too long, productivity
will be reduced, because of too much pressure loss, and the melt will be easily decomposed
or degraded due to the excessive residence time of the melt in the extrusion die.

The flow channel structure of slit-shaped die is shown in Figure 4. It is assumed that
there is a fluid unit at a certain distance z from the entrance of the die z = 0, which flows
towards the exit of the die under the action of pressure dp, and is also affected by the shear
stress between the polymer fluid layers. According to the principle of force balance, it can
be obtained that [17]:

y · dx · dp = dz · dx · τ (2)

Figure 4. The flow channel structure of slit-shaped die.

Equation (2) can be converted to

τ = y ·
dp

dz
(3)
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For pseudoplastic polymer fluids, the power-law function equation is:

τ = −K · (dvz

dy
)

n
(4)

where τ is shear stress, K is fluid consistency and n is non-Newtonian index.
Combined with the Equations (3) and (4), the volume flow rate of the polymer melt in

the slit-shaped die is finally obtained:

Qv =
2n

2n + 1
(

∆P
KL

)

1
n
· (H

2
)

2n+1
n

· W (5)

where Qv is the volume flow rate, ∆P is the pressure drop, L is the length of the forming
section, K is the fluid consistency, n is the non-Newtonian index, W is the slit width, and H
is the slit thickness.

The length of the die can be derived from Equation (5):

L =
H∆P

2K( 4n+2
n )

n · ( Qv
WH2 )

n (6)

In general, the die can be considered as a slit-shaped die when W/H ≥ 10 is satisfied.
For the designed microtubule extrusion die, H is the gap between the die and the

mandrel, and W is the average circumference of the ring formed by the die and the mandrel,
according to Equations (7) and (8), H = 0.2 mm, W = 10.05 mm, W/H = 50.25 > 10, therefore,
the land length can be calculated on the basis of the theory of slit-shaped die.

H = D1 − d1 (7)

W = π ×
[

D1

2
+

d1

2

]
(8)

where D1 and d1 are respectively the inner diameter of die land and outer diameter of
mandrel land.

K and n in Equations (5) and (6) were obtained by extracting the rheological data of
PLA at a certain temperature and fitting the power law equation of non-Newtonian fluid
(Equation (9)). ∆P and Qv were obtained through experiments. After calculation, n = 0.306,
K = 23.79 kPa, ∆P = 14.3 Mpa, Qv = 129.6 mm3/s.

τ = K
.
γ

n (9)

where τ is shear stress, K is fluid consistency,
.
γ is shear rate, n is non-Newtonian index.

Finally the land length L ≈ 5.00 mm was achieved by substituting W, H, n, K, ∆P, Qv
into Equation (6).

3.4. The Manufacture of Extrusion Die

The difficulties of machining extrusion die are mainly in the processing of mandrel
forming land and vent holes in the mandrel. Machining of outer surface of the mandrel
was carried out by turning-milling machining center, and he machining of the gas injection
hole was conducted by wire cutting processing. The extrusion die is shown in Figure 5.
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Figure 5. The extrusion die for PLA micro tubes: (a) The cross section of extrusion die; (b) Mandrel;
(c) Assembly of extrusion die.

4. Extrusion Process Experiments of PLA Micro Tubes
4.1. Experimental Equipment and Methods

The extrusion equipment was single extruder system (Model: HPE-100H, Davis-
Standard LLC, Pawcatuck, CT, USA). The dimension measuring device was the digital-
image-tool microscope (Model: VTM-3020F, Suzhou Aoka Optical Instrument Co., Ltd.,
Suzhou, China) with the measurement accuracy of ±0.001 mm. The gas flow control device
was the gas mass flow controller (Model: FLC-100D, Shenzhen Flow Method Measure &
Control Systems Co., Ltd., Shenzhen, China), unit: g/min.

PLA (NatureWorks 4032D) was dried in a drying box for 4 h at 79 ◦C before the tests.
The barrel temperature from the inlet to the outlet of the extruder were set respectively at
180 ◦C, 190 ◦C, 195 ◦C on the basis of the properties of PLA and the plasticizing performance
of the extruder, and kept the barrel temperature unchanged during the experiments. The
effects of screw speed, pulling speed, die temperature, gas flow rate and vacuum degree on
the outer diameter, wall thickness, wall thickness uniformity and ovality of micro tubes
were studied by single factor method. Sixteen points were selected evenly from the cross
sections of the micro tubes in the circumferential direction, then the outer diameter and
wall thickness at each selected point were measured by tool microscope. The measured
average values were considered as the dimensions of the micro tube outer diameter and
wall thickness. Wall thickness uniformity can be calculated according to Equations (10)–(12),
ovality can be calculated according to Equation (13) [18].

G = 100% − Std

δ
· 100% (10)

Std =

√
1

n − 1∑n
i=1(δi − δ)2 (11)

δ =
1
n
(δ1 + δ2 + . . . + δn) (12)

where G is wall thickness uniformity, Std is standard deviation of wall thickness, δi is wall
thickness measured at each point in the circumferential direction of the micro tubes, δ is
the average value of the wall thickness, n is the number of the measured point.

Y0 = 2(Dmax − Dmin)/(Dmax + Dmin) (13)

where Y0 is ovality, Dmax and Dmin represent the maximum and minimum outer diameter
of the micro tubes, respectively.

To prevent the failure of the experiment due to unreasonable parameters, such as melt
degradation, microtubule tensile fracture or rupture, the range of the extrusion process
parameters were determined through rheological experiments and preliminary exploratory
experiments, which are shown in Table 1.
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Table 1. The value ranges of extrusion process parameters.

Extrusion Process Parameter Value

Screw speed (r/min) 1~8
Pulling speed (m/min) 7~12
Die temperature (◦C) 190~220
Gas flow rate (g/min) 5~50

Vacuum degree (inH2O) 0~45

4.2. Results and Discussion

(1) Effects of screw speed on evaluation index of PLA micro tubes.

The screw speed has significant effects on the melt volume flow rate, since the melt
is extruded from extruder through screw rotation. When studying the influence of screw
speed on the evaluation index, the rotational speed of the extruder ranges from 1 to
8 r/min, and the die temperature, pulling speed, gas flow rate and vacuum degree are
200 ◦C, 10 m/min, 22 g/min and 0 inH2O, respectively. The relationship between the
screw speed and the evaluation index is shown in Figure 6. It can be seen that both outer
diameter and wall thickness of the micro tubes increase nonlinearly, and the increase trend
become gradually slower with the increase of screw speed. When the rotational speed is
lower than 4 r/min, the extruder rotational speed has little influence on the wall thickness
uniformity and ovality. With the continuous increase of the extruder rotational speed,
wall thickness uniformity decreases slightly and ovality increases significantly. Figure 7
shows the cross-section of micro tubes extruded at the screw speed of 1 r/min, 5 r/min
and 8 r/min, respectively.

Figure 6. The relationships between evaluation index with screw speed: (a) The relationship between
outer diameter with screw speed; (b) The relationship between wall thickness with screw speed;
(c) The relationship wall thickness uniformity with screw speed; (d) The relationship between ovality
with screw speed.
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Figure 7. Cross section of micro tubes at different screw speeds: (a) Screw speed = 1 r/min; (b) Screw
speed = 5 r/min; (c) Screw speed = 8 r/min.

There are two main reasons for the increase of microtubule outer diameter and wall
thickness. On one hand, the increase of the screw speed leads to the increase of the
melt volume flow rate, then the shear rate increases. For a pseudoplastic fluid, extrusion
swelling ratio usually increases with the increase of the shear rate before melt fracture in
the extrusion process [19]. Therefore, outer diameter and wall thickness increase with the
increase of the screw speed. On the other hand, according to the continuity theorem:

V0 × S0 = V × S (14)

where V0 and S0 are separately melt flow rate in the cavity and sectional area of the cavity.
V and S are separately pulling speed and sectional area of final micro tubes. An increase in
screw speed means an increase in V0, while S0 and V do not change, then S increases, that
is, the wall thickness increases. Since the inner wall of the micro tubes cannot move inward
under the gas injection pressure, the outer diameter of the micro tubes also increases. With
the increase of screw speed, the shear rate of the melt increases resulting in shear thinning,
which makes the increase of the melt volume flow rate slow down. Therefore, the increase
in micro tubes outer diameter and wall thickness becomes gradually slower. In order to
verify this point of view, the capillary rheological experiments were carried out.

The volume flow rate of capillary die can be expressed as

Qv = (
nπ

3n + 1
)

.
γR3 (15)

where Qv is volume flow rate, n is non-newton index,
.
γ is shear rate, R is radius of capillary

die.
Capillary die is radius R is 0.25 mm. According to rheological data at any temperature

by rheological experiments, the volume flow rate can be obtained by extracting the n and
.
γ

at different compression rates and substituting them into the formula.
For example, when the melt temperature is 200 ◦C, rheological experimental data

are extracted to obtain n,
.
γ and calculated shear rates at different compression rates, as

is shown in Table 2. The relationship between shear rate and volume flow rate is shown
in Figure 8. It can be seen that the volume flow rate increases with the increase of shear
rate, and the increasing trend gradually slows down, which verifies the correctness of the
proposed viewpoint, a the viewpoint is consistent with the extrusion molding of PP micro
tubes [20].
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Table 2. n,
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Figure 8. The relationship between shear rate and volume flow rate.

It is assumed that the gap between the die and the mandrel is equal at the extrusion die
forming section, and the melt flow is balanced so each point on any concentric circle of the
cavity cross section has the same velocity field and stress field. In theory, the wall thickness
uniformity and ellipticity of the micro tubes are not affected as long as the gap between the
die and the mandrel in the forming section is equal. Therefore, the shape accuracy of the
micro tube mainly depends on the processing accuracy and assembly accuracy of extrusion
die. However, in the actual extrusion process, there must be a certain error between the die
and mandrel in the processing and assembly, which results in a gap in the molding section
is not exactly equal, and with it the rotational speed of the extruder, the shear rate of the
melt, the expansion rate, the wall thickness uniform and ovality increase. However, it is
not obvious when the screw speed is at a low level. In addition, due to the increase of the
screw speed and volume flow rate, the cooling and solidification rate become slow, leading
to deformation under the influence of gravity. As a result, the wall thickness uniformity
decreases and the ovality increases.

(2) Effects of pulling speed on evaluation index of PLA micro tubes

Micro tubes, under the action of the upper and lower splints of the tractor, make the
extruded melt move along the extrusion direction. The pulling speed ranges from 7 m/min
to 12 m/min. The screw speed, die temperature, gas flow rate and vacuum degree are
2 r/min, 200 ◦C, 11 g/min and 0 inH2O respectively. The relationships between pulling
speed and evaluation index are shown in Figure 9. It can be seen that both the outer
diameter and the wall thickness of the micro tubes decrease nonlinearly with the increase
of pulling speed. The decrease is significant at the beginning, and with the continuous
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increase of pulling speed, the decrease trend becomes slower gradually. Pulling speed has
little effect on wall thickness uniformity and ovality. Figure 10 shows the cross-section of
micro tubes extruded at the pulling speed of 7 m/min, 12 m/min, respectively.

Figure 9. The relationships between evaluation index with pulling speed: (a) The relationship
between outer diameter with pulling speed; (b) The relationship between wall thickness with pulling
speed; (c) The relationship wall thickness uniformity with pulling speed; (d) The relationship between
ovality with pulling speed.

Figure 10. Cross section of micro tubes at different pulling speeds: (a) Pulling speed = 7 m/min;
(b) Pulling speed = 12 m/min.

The reduction in the outer diameter and wall thickness of micro tubes can still be
analyzed according to Equation (14). As the pulling speed V increases, while V0 and S0 do
not change, the S inevitably decreases. That is, wall thickness decreases, which leads to an
inward contraction of the outer wall, i.e., the outer diameter decreases. Die swell occurs
when the melt leaves the die. Deformation caused by die swell is first straightened under
the traction force. Therefore, the microtubule outer diameter and wall thickness decrease
more obviously at low pulling speed. With the continuous increase of pulling speed, the
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deformation caused by die swell is gradually weakened, and even disappeared. So, the
decrease becomes slow gradually.

The pulling speed mainly affects the tensile ratio of micro tubes, and has little effect
on wall thickness uniformity and ovality. However, it is worth noting that the appropriate
range of pulling speed should be selected, or the gap of tractor clamping should be adjusted
at different pulling speeds when studying the influence of pulling speed on evaluation
index. Otherwise, the experiment will fail. The reason is that the micro tubes are large
and are easily compressed and deformed by the splint of the tractor at low pulling speed,
resulting in an increase of ovality. On the contrary, when pulling speed is too high, the
diameter of the micro tubes are too small, leading to the splint can not effectively hold the
micro tubes.

(3) Effects of die temperature on evaluation index of PLA micro tubes

Die temperature mainly affects the viscosity of the melt. When studying the influence
of die temperature on the evaluation index, the die temperature ranges from 190 ◦C to
220 ◦C. The screw speed, pulling speed, gas flow rate and vacuum were 2 r/min, 10 m/min,
8 g/min and 0 inH2O, respectively. The relationships between the die temperature and
the evaluation index are shown in Figure 11. It can be seen that the outer diameter and
wall thickness of PLA micro tubes are affected very little by die temperature. When the
temperature is lower than 205 ◦C, the wall thickness uniformity and ovality almost do not
change with the increase in temperature. When the die temperature is higher than 205 ◦C,
the wall thickness uniformity decreases slightly, and the ovality increases slightly. Figure 12
shows the cross section of micro tubes at the die temperatures of 190 ◦C, 205 ◦C and 220 ◦C,
respectively.

Figure 11. The relationships between evaluation index with die temperature: (a) The relationship
between outer diameter with die temperature; (b) The relationship between wall thickness with die
temperature; (c) The relationship wall thickness uniformity with die temperature: (d) The relationship
between ovality with die temperature.
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Figure 12. Cross section of micro tubes at different die temperatures: (a) Die temperature = 190 ◦C;
(b) Die temperature = 205 ◦C; (c) Die temperature = 220 ◦C.

The die temperature mainly affects the viscosity of the melt, however, it has little
effect on volume flow rate. Therefore, the outer diameter and wall thickness are mini-
mally affected by temperature. The point of this view can also be verified by rheological
experiments.

The non-Newton index n, corrected shear rate
.
γ in the rheological data of PLA at

temperatures of 190 ◦C, 200 ◦C, 210 ◦C and 220 ◦C were extracted and substituted into
Equation (14). The volume flow rates at different temperatures were obtained by calculation,
as shown in Figure 13. It can be seen that as the temperature increases, the melt volume
flow rate hardly change. Therefore, the temperature has almost no effect on the outer
diameter and wall thickness of micro tubes.

Figure 13. The relationship between die temperature and volume flow rate.

When the die temperature is high, the wall thickness uniformity decreases and the
ovality increases slightly. The reason is that when the melt leaves the die, the cooling and
solidification rate become slow, leading to deformation under the influence of gravity.

(4) Effects of gas flow rate on evaluation index of PLA micro tubes

During the extrusion, gas is injected into the interior of the micro tubes at a certain
rate to prevent parison from sticking together for the deformation caused by gravity when
the melt leaves the die. When studying the influence of gas flow rate on the evaluation
index, the gas flow rate ranges from 5 to 50 g/min. The screw speed, die temperature,
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pulling speed and vacuum degree were 3 r/min, 200 ◦C, 8.5 m/min, 0 inH2O, respectively.
The relationships between gas flow rate and the evaluation index are shown in Figure 14.
It is worth noting that when gas flow rate is lower than 20 g/min, billet deformation is
serious, so the wall thickness and outer diameter are not measured. It can be seen from
Figure 14 that with the increase of gas flow rate, microtubule outer diameter increases
and microtubule wall thickness decreases, and both the changes are nonlinear, ahe rate of
changes decreases gradually. The effect of gas flow rate on the wall thickness uniformity
is small. The ovality decreases with the increase of the gas flow rate. The decrease is
significant at the beginning and becomes stable when gas flow rate reaches a certain level.
Figure 15 shows the cross section of micro tubes at gas flow rates of 5 g/min, 20 g/min,
35 g/min and 50 g/min respectively.

Figure 14. The relationships between evaluation index with gas flow rate: (a) The relationship
between outer diameter with gas flow rate; (b) The relationship between wall thickness with gas flow
rate; (c) The relationship wall thickness uniformity with gas flow rate; (d) The relationship between
ovality with gas flow rate.

Figure 15. The cross section of micro tubes at different gas flow rates: (a) Gas flow rate = 5 g/min;
(b) Gas flow rate = 20 g/min; (c) Gas flow rate = 35 g/min; (d) Gas flow rate = 50 g/min.
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The increase of the gas flow rate leads to a pressure increase of the parison inner
wall, then the parison gradually expands outwardly under the pressure difference of
inside and outside parison, meanwhile, the parison becomes thinner. Therefore, the outer
diameter of the micro tubes increases and the wall thickness decreases. With the continuous
increase of the outer diameter of the micro tubes, the degree of molecular orientation in
the circumferential direction of the melt increases, and intermolecular force is enhanced.
Therefore, the deformation caused by the gas pressure would be suppressed. As a result,
the rate of changes of the outer diameter and wall thickness of the micro tubes gradually
decreases with the increase of the gas flow rate.

The effect of gas flow rate on wall thickness uniformity and ovality is mainly reflected
in the case of low gas flow rate. When the gas flow rate is at a low level, the gas pressure
inside the parison is not sufficient to resist the deformation caused by gravity, which leads
to a serious deformation of the micro tubes, therefore the effects of the gas flow rate on wall
thickness uniformity and ovality are prominent. When gas flow rate increases to a certain
degree, the internal pressure of the parison is sufficient to resist the deformation caused by
gravity, then gas flow rate has little effect on wall thickness uniformity and ovality.

(5) Effects of vacuum degree on evaluation index of PLA micro tubes

Vacuum degree refers the pressure of the gas above the water surface in the cooling
water tank. When studying the influence of vacuum degree on the evaluation index, the
vacuum degree ranges from 0 to 45 inH2O. The screw speed, die temperature, pulling
speed and gas flow rate were 4 r/min, 200 ◦C, 9 m/min, 26 g/min, respectively. Figure 16
shows the relationships between evaluation index and vacuum degree. It can be seen that
with the increase of vacuum degree, the outer diameter, wall thickness and wall thickness
uniformity almost do not change, and the ovality slightly decreases. Figure 17 shows the
cross section of micro tubes at vacuum levels of 0 inH2O and 45 inH2O, respectively.

Figure 16. The relationships between evaluation index with vacuum degree: (a) The relationship
between outer diameter with vacuum degree; (b) The relationship between wall thickness with vac-
uum degree; (c) The relationship wall thickness uniformity with vacuum degree; (d) The relationship
between ovality with vacuum degree.
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Figure 17. The cross section of micro tubes at different vacuum degrees: (a) Vacuum degree = 0 inH2O;
(b) Vacuum degree = 45 inH2O.

The vacuum degree mainly affects the pressure in the cooling water. Due to the small
size of the micro tubes, the force on the micro tubes is small, so the vacuum degree has
little influence on the outer diameter, wall thickness and wall thickness uniformity. With
the increase of vacuum degree, the ovality decreases slightly, which is because the micro
tubes will have a certain deformation under the influence of buoyancy and water gravity
in the cooling water. When the vacuum degree increases, a certain negative pressure will
be formed on the cooling water, which will reduce the pressure in the cooling water, thus
reducing the deformation of the microtubule products.

In summary, the screw speed, pulling speed and gas flow rate have significant effects
on the microtubule outer diameter and wall thickness. The die temperature and the vacuum
degree have almost no effects on the microtubule size. Therefore, the required outer
diameter and wall thickness of PLA micro tubes can be obtained by coordinating the screw
speed, pulling speed and the gas flow rate. The extrusion process parameters have little
influence on wall thickness uniformity and ovality within a certain range, which mainly
depends on the processing accuracy and assembly accuracy of the extrusion die. However,
if the process parameters are too large or too small, wall thickness uniformity and ovality
will also be greatly affected. For example, when the screw speed and die temperature are
too high and the traction speed is too low, the parison is seriously deformed due to gravity,
resulting in poor wall thickness uniformity and large ovality; even the extrusion will be
interrupted due to the inability to pull the parison. If the gas flow rate is too small, the
deformation caused by the insufficient pressure of the parison inner wall to support gravity
will also lead to the reduction of the wall thickness uniformity and the increase of the
ovality. If the gas flow rate is too large, the parison will be broken, and the extrusion will
be interrupted. With the increase of vacuum degree, ovality decreases, but the variation
range is very small. Therefore, in order to obtain better shape accuracy, the screw speed
and die temperature should not be too high, the gas flow rate should be sufficient and
properly increase the vacuum degree. Accordingly, a series of PLA micro tubes with high
shape accuracy that meet the design requirements were processed by adjusting the process
parameters. Table 3 lists the specific size and shape accuracy of some representative micro
tubes, and the cross-sections are shown in Figure 18. Finally, a micro tube with an outer
diameter of 2.50 mm and a wall thickness of 0.15 mm was processed into a vascular stent
structure by laser engraving process. During the engraving process, the inability to cut or
partially cut did not occur, and the engraved vascular stent is shown in Figure 19.
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Table 3. Dimensions and shape accuracy of processed micro tubes.

Outer Diameter (mm) Wall Thickness (mm) Wall Thickness Uniformity (/%) Ovality (/%)

1.00 0.07 94.0% 1.7%
1.50 0.14 95.1% 1.6%
2.00 0.12 93.0% 2.1%
2.50 0.09 94.8% 1.9%

Figure 18. Cross sections of different specifications of micro tubes: (a) D = 1.00 mm; (b) D = 1.50 mm;
(c) D = 2.00 mm; (d) D = 2.50 mm.

Figure 19. The engraved vascular stent.

5. Conclusions

In this paper, PLA single-cavity micro tubes were used as the research object. Firstly,
the rheological properties of PLA were studied, and extrusion die for single-cavity micro
tubes were designed and manufactured through micro-extrusion theory. Taking the outer
diameter of single–cavity micro tubes as the evaluation index, the influence of the main
extrusion process parameters on the evaluation index was studied. The results show that
the main factors affecting the outer diameter and wall thickness of the micro tubes are screw
speed, pulling speed. The gas flow rate, die temperature and vacuum degree have almost
no effect. Extrusion process parameters have little influence on wall thickness uniformity
and ovality within a certain range, which mainly depends on the processing accuracy and
assembly accuracy of the extrusion die. However, excessively high screw speed and low
gas flow rate have significant effects on ovality, and have little effect on wall thickness
uniformity. The pulling speed, die temperature and vacuum degree have little effect on
the wall thickness uniformity and ovality. Finally, according to the influence of extrusion
process parameters on the size and shape accuracy of microtubes, a series of specifications
of PLA single-cavity micro tubes that meet the design requirements were processed, and
these micro tubes were successfully carved into vascular stent structures.
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