Measuring Structural Changes in Cytochrome c under Crowded Conditions Using In Vitro and In Silico Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Protein and Reagents
2.2.2. Spectroscopic Techniques
UV-Visible Spectra Measurements
Circular Dichroism (CD) Measurements
Fluorescence Spectra Measurements
2.2.3. Computational Studies
Molecular Dynamic (MD) Simulations
Molecular Docking
3. Results
3.1. Measuring Structural Changes in Cyt c Caused by the Mixture of Crowders (PEG 400 + EG)
3.1.1. Absorption Spectroscopy
3.1.2. Tryptophan Fluorescence Measurements
3.1.3. Near-UV and Soret Circular Dichroism (CD) Measurements
3.1.4. Far-UV Circular Dichroism (CD) Measurements
3.2. Computational Studies (In Silico Approaches)
3.2.1. Molecular Dynamic (MD) Simulation Studies
3.2.2. Molecular Docking Studies
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medalia, O.; Weber, I.; Frangakis, A.S.; Nicastro, D.; Gerisch, G.; Baumeister, W. Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography. Science 2002, 298, 1209–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulton, A. How crowded is the cytoplasm? Cell 1982, 30, 345–347. [Google Scholar] [CrossRef]
- Minton, A.P. The effect of volume occupancy upon the thermodynamic activity of proteins: Some biochemical consequences. Mol. Cell.Biochem. 1983, 55, 119–140. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, S.B.; Trach, S.O. Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J. Mol. Biol. 1991, 222, 599–620. [Google Scholar] [CrossRef] [Green Version]
- Chebotareva, N.A.; Kurganov, B.I.; Livanova, N.B. Biochemical effects of molecular crowding. Biochemistry 2004, 69, 1239–1251. [Google Scholar] [CrossRef]
- Lim, W.K.; Denton, A.R. Depletion-induced forces and crowding in polymer-nanoparticle mixtures: Role of polymer shape fluctuations and penetrability. J. Chem. Phys. 2016, 144, 024904. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.J. Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 2001, 11, 114–119. [Google Scholar] [CrossRef]
- Ellis, R.J. Macromolecular crowding: Obvious but underappreciated. Trends Biochem. Sci. 2001, 26, 597–604. [Google Scholar] [CrossRef]
- Ellis, R.J.; Minton, A.P. Cell biology: Join the crowd. Nature 2003, 425, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.; Minton, A.P. Macromolecular crowding: Qualitative and semiquantitative successes, quantitative challenges. Biochim. Biophys. Acta 2003, 1649, 127–139. [Google Scholar] [CrossRef]
- Minton, A.P. Implications of macromolecular crowding for protein assembly. Curr. Opin. Struct. Biol. 2000, 10, 34–39. [Google Scholar] [CrossRef]
- Minton, A.P. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 2001, 276, 10577–10580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.X.; Rivas, G.; Minton, A.P. Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys. 2008, 37, 375–397. [Google Scholar] [CrossRef] [Green Version]
- Asakura, S.; Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 1958, 33, 183–192. [Google Scholar] [CrossRef]
- Sapir, L.; Harries, D. Is the depletion force entropic? Molecular crowding beyond steric interactions. Curr. Opin. Colloid Interface Sci. 2015, 20, 3–10. [Google Scholar] [CrossRef]
- Minton, A.P. How can biochemical reactions within cells differ from those in test tubes? J. Cell Sci. 2006, 119, 2863–2869. [Google Scholar] [CrossRef] [Green Version]
- Chandler, D. Hydrophobicity: Two faces of water. Nature 2002, 417, 491. [Google Scholar] [CrossRef] [PubMed]
- Parray, Z.A.; Ahmad, F.; Hassan, M.I.; Ahmed, A.; Almajhdi, F.N.; Malik, A.; Hussain, T.; Islam, A. Structural Refolding and Thermal Stability of Myoglobin in the Presence of Mixture of Crowders: Importance of Various Interactions for Protein Stabilization in Crowded Conditions. Molecules 2021, 26, 2807. [Google Scholar] [CrossRef]
- Das, N.; Sen, P. Structural, Functional and Dynamical Responses of Protein in Restricted Environment Imposed by Macromolecular Crowding. Biochemistry 2018, 57, 6078–6089. [Google Scholar] [CrossRef]
- Sarkar, M.; Li, C.; Pielak, G.J. Soft interactions and crowding. Biophys. Rev. 2013, 5, 187–194. [Google Scholar] [CrossRef]
- Das, N.; Sen, P. Shape-Dependent Macromolecular Crowding on the Thermodynamics and Microsecond Conformational Dynamics of Protein Unfolding Revealed at the Single-Molecule Level. J. Phys. Chem. B 2020, 124, 5858–5871. [Google Scholar] [CrossRef]
- Parray, Z.A.; Ahamad, S.; Ahmad, F.; Hassan, M.I.; Islam, A. First evidence of formation of pre-molten globule state in myoglobin: A macromolecular crowding approach towards protein folding in vivo. Int. J. Biol. Macromol. 2019, 126, 1288–1294. [Google Scholar] [CrossRef]
- Das, N.; Sen, P. Size-dependent macromolecular crowding effect on the thermodynamics of protein unfolding revealed at the single molecular level. Int. J. Biol. Macromol. 2019, 141, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Kundu, J.; Mukherjee, S.K.; Chowdhury, P.K. Mixed Macromolecular Crowding: A Protein and Solvent Perspective. ACS Omega 2018, 3, 4316–4330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahid, S.; Ahmad, F.; Hassan, M.I.; Islam, A. Mixture of Macromolecular Crowding Agents Has a Non-additive Effect on the Stability of Proteins. Appl. Biochem. Biotechnol. 2019, 188, 927–941. [Google Scholar] [CrossRef]
- Venturoli, D.; Rippe, B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: Effects of molecular size, shape, charge, and deformability. Am. J. Physiol. Renal. Physiol. 2005, 288, F605–F613. [Google Scholar] [CrossRef]
- Ma, T.Y.; Hollander, D.; Krugliak, P.; Katz, K. PEG 400, a hydrophilic molecular probe for measuring intestinal permeability. Gastroenterology 1990, 98, 39–46. [Google Scholar] [CrossRef]
- Chen, Y.S.; Chiu, Y.-H.; Li, Y.-S.; Lin, E.-Y.; Hsieh, D.-K.; Lee, C.-H.; Huang, M.-H.; Chuang, H.-M.; Lin, S.-Z.; Harn, H.-J.; et al. Integration of PEG 400 into a self-nanoemulsifying drug delivery system improves drug loading capacity and nasal mucosa permeability and prolongs the survival of rats with malignant brain tumors. Int. J. Nanomed. 2019, 14, 3601–3613. [Google Scholar] [CrossRef] [Green Version]
- Philippova, O.E.; Kuchanov, S.I.; Topchieva, I.N.; Kabanov, V.A. Hydrogen bonds in dilute solutions of poly(ethylene glycol). Macromolecules 1985, 18, 1628–1633. [Google Scholar] [CrossRef]
- Farruggia, B.; Garcia, G.; D’Angelo, C.; Picó, G. Destabilization of human serum albumin by polyethylene glycols studied by thermodynamical equilibrium and kinetic approaches. Int. J. Biol. Macromol. 1997, 20, 43–51. [Google Scholar] [CrossRef]
- Farruggia, B.; Nerli, B.; Pico, G. Study of the serum albumin-polyethyleneglycol interaction to predict the protein partitioning in aqueous two-phase systems. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 798, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Parray, Z.A.; Ahmad, F.; Alajmi, M.F.; Hussain, A.; Hassan, I.M.; Islam, A. Formation of molten globule state in horse heart cytochrome c under physiological conditions: Importance of soft interactions and spectroscopic approach in crowded milieu. Int. J. Biol. Macromol. 2020, 148, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Qu, P.; Wang, Y.; Wu, G.; Lu, Z.; Xu, M. Effect of polyethylene glycols on the alkaline-induced molten globule intermediate of bovine serum albumin. Int. J. Biol. Macromol. 2012, 51, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Rebsdat, S.; Mayer, D. Ethylene Glycol. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar] [CrossRef]
- Ismailova, O.; Berezin, A.S.; Probst, M.; Nazmutdinov, R.R. Interfacial Bond-Breaking Electron Transfer in Mixed Water–Ethylene Glycol Solutions: Reorganization Energy and Interplay between Different Solvent Modes. J. Phys. Chem. B 2013, 117, 8793–8801. [Google Scholar] [CrossRef]
- Kaiser, A.; Ritter, M.; Nazmutdinov, R.; Probst, M. Hydrogen Bonding and Dielectric Spectra of Ethylene Glycol–Water Mixtures from Molecular Dynamics Simulations. J. Phys. Chem. B 2016, 120, 10515–10523. [Google Scholar] [CrossRef] [PubMed]
- Parray, Z.A.; Ahmad, F.; Hassan, M.I.; Islam, A. Conformational changes in cytochrome c directed by ethylene glycol accompanying complex formation: Protein-solvent preferential interaction or/and kosmotropic effect. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118788. [Google Scholar] [CrossRef]
- Goodsell, D.S. A Look inside the Living Cell. Am. Sci. 1992, 80, 457–465. [Google Scholar]
- Thirumalai, D.; Liu, Z.; O’Brien, E.P.; Reddy, G. Protein folding: From theory to practice. Curr. Opin. Struct. Biol. 2013, 23, 22–29. [Google Scholar] [CrossRef]
- Goto, Y.; Takahashi, N.; Fink, A.L. Mechanism of Acid-Induced Folding of Proteins. Biochemistry 1990, 29, 3480–3488. [Google Scholar] [CrossRef] [PubMed]
- Margoliash, E.; Frohwirt, N. Spectrum of horse-heart cytochrome c. Biochem. J. 1959, 71, 570–572. [Google Scholar] [CrossRef]
- Tumolo, T.; Angnes, L.; Baptista, M.S. Determination of the refractive index increment (dn/dc) of molecule and macromolecule solutions by surface plasmon resonance. Anal. Biochem. 2004, 333, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Bunyatova, U.; Masimov, A.A.; Özer, M. Investigations of aqueous solutions of dextran-poly(ethylene glycol) and dextran-poly(vinyl pyrrolidone) near the binodial curve. Polymer 1996, 37, 2191–2194. [Google Scholar] [CrossRef]
- Fogg, E.T.; Hixson, A.N.; Thompson, A.R. Densities and Refractive Indexes for Ethylene Glycol-Water Solutions. Anal. Chem. 1955, 27, 1609–1611. [Google Scholar] [CrossRef]
- Nozaki, Y. The preparation of guanidine hydrochloride. Methods Enzymol. 1972, 26, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Morrisett, J.D.; David, J.S.; Pownall, H.J.; Gotto, A.M., Jr. Interaction of an apolipoprotein (apoLP-alanine) with phosphatidylcholine. Biochemistry 1973, 12, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Bushnell, G.W.; Louie, G.V.; Brayer, G.D. High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 1990, 214, 585–595. [Google Scholar] [CrossRef]
- Parray, Z.A.; Ahmad, F.; Hassan, M.I.; Hasan, I.; Islam, A. Effects of Ethylene Glycol on the Structure and Stability of Myoglobin Using Spectroscopic, Interaction, and In Silico Approaches: Monomer Is Different from Those of Its Polymers. ACS Omega 2020, 5, 13840–13850. [Google Scholar] [CrossRef] [PubMed]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar]
- Schrödinger, L. The PyMOL Molecular Graphics System, Version 1.8; Schrödinger LLC: New York, NY, USA, 2016.
- MaestroSchrödinger, Release 1; Schrödinger LCC: New York, NY, USA, 2016.
- Biovia, D.S. Discovery Studio Modeling Environment, Release 4; Dassault Systemes: San Diego, CA, USA, 2015.
- Moosavi-Movahedi, A.A.; Chamani, J.; Ghourchian, H.; Shafiey, H.; Sorenson, C.M.; Sheibani, N. Electrochemical evidence for the molten globule states of cytochrome c induced by N-alkyl sulfates at low concentrations. J. Protein Chem. 2003, 22, 23–30. [Google Scholar] [CrossRef]
- Moza, B.; Qureshi, S.H.; Ahmad, F. Equilibrium studies of the effect of difference in sequence homology on the mechanism of denaturation of bovine and horse cytochromes-c. Biochim. Biophys. Acta 2003, 1646, 49–56. [Google Scholar] [CrossRef]
- Karplus, M. Molecular dynamics simulations of biomolecules. Acc. Chem. Res. 2002, 35, 321–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Cherstvy, A.G.; Kim, W.K.; Zaburdaev, V. Elasticity-based polymer sorting in active fluids: A Brownian dynamics study. Phys. Chem. Chem. Phys. 2017, 19, 18338–18347. [Google Scholar] [CrossRef] [Green Version]
- Karplus, M.; Petsko, G.A. Molecular dynamics simulations in biology. Nature 1990, 347, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Caflisch, A.; Karplus, M. Molecular dynamics simulation of protein denaturation: Solvation of the hydrophobic cores and secondary structure of barnase. Proc. Natl. Acad. Sci. USA 1994, 91, 1746–1750. [Google Scholar] [CrossRef] [Green Version]
- Karplus, M.; Kuriyan, J. Molecular dynamics and protein function. Proc. Natl. Acad. Sci. USA 2005, 102, 6679–6685. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Cherstvy, A.G.; Metzler, R. Polymer Looping Is Controlled by Macromolecular Crowding, Spatial Confinement, and Chain Stiffness. ACS Macro Lett. 2015, 4, 202–206. [Google Scholar] [CrossRef]
- Stiehl, O.; Weiss, M. Heterogeneity of crowded cellular fluids on the meso- and nanoscale. Soft Matter 2016, 12, 9413–9416. [Google Scholar] [CrossRef] [PubMed]
- Lobanov, M.Y.; Bogatyreva, N.S.; Galzitskaya, O.V. Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 2008, 42, 623–628. [Google Scholar] [CrossRef]
- Hamidur, R.; Khan, M.K.; Hassan, M.; Wahid, M.; Singh, S.; Singh, T.; Moosavi-Movahedi, A.; Ahmad, F. Sequence and stability of the goat cytochrome c. Biophys. Chem. 2008, 138, 23–28. [Google Scholar] [CrossRef]
- Myer, Y.P.; Kumar, S. Methionine-oxidized horse heart cytochrome c. III. Ascorbate reduction and the methionine-80-sulfur-iron linkage. J. Protein Chem. 1989, 8, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Dixon, M.; Hill, R.; Keilin, D. The Absorption Spectrum of the Component c of Cytochrome. Proc. R. Soc. London Ser. B Contain. Pap. Biol. Character 1931, 109, 29. [Google Scholar]
- Boffi, A.; Verzili, D.; Chiancone, E.; Leone, M.; Cupane, A.; Militello, V.; Vitrano, E.; Cordone, L.; Yu, W.; Di Iorio, E.E. Stereodynamic properties of the cooperative homodimeric Scapharcaina equivalvis hemoglobin studied through optical absorption spectroscopy and ligand rebinding kinetics. Biophys. J. 1994, 67, 1713–1723. [Google Scholar] [CrossRef] [Green Version]
- Mahato, M.; Pal, P.; Kamilya, T.; Sarkar, R.; Chaudhuri, A.; Talapatra, G.B. Hemoglobin-silver interaction and bioconjugate formation: A spectroscopic study. J. Phys. Chem. B 2010, 114, 7062–7070. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Das, B. A study on the interaction of horse heart cytochrome c with some conventional and ionic liquid surfactants probed by ultraviolet-visible and fluorescence spectroscopic techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 198, 278–282. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Ahmad, F. Mechanism of Denaturation of Cytochrome-C by Lithium-Salts. Indian J. Chem. Sect. B 1992, 31, 874–879. [Google Scholar]
- Fisher, W.R.; Taniuchi, H.; Anfinsen, C.B. On the role of heme in the formation of the structure of cytochrome c. J. Biol. Chem. 1973, 248, 3188–3195. [Google Scholar] [CrossRef]
- Kelly, S.M.; Price, N.C. The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 2000, 1, 349–384. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.H.; Kumar, A.; Prakash, A.; Taneja, B.; Islam, A.; Hassan, M.I.; Ahmad, F. Structural and thermodynamic characterization of L94F mutant of horse cytochrome c. Int. J. Biol. Macromol. 2016, 92, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Moza, B.; Qureshi, S.H.; Islam, A.; Singh, R.; Anjum, F.; Moosavi-Movahedi, A.A.; Ahmad, F. A unique molten globule state occurs during unfolding of cytochrome c by LiClO4 near physiological pH and temperature: Structural and thermodynamic characterization. Biochemistry 2006, 45, 4695–4702. [Google Scholar] [CrossRef] [PubMed]
- Breslow, E.; Weis, J. Contribution of tyrosine to circular dichroism changes accompanying neurophysin-hormone interaction. Biochemistry 1972, 11, 3474–3482. [Google Scholar] [CrossRef] [PubMed]
- Gebicka, L.; Gebicki, J.L. Kinetic studies on the interaction of ferricytochrome c with anionic surfactants. J. Protein Chem. 1999, 18, 165–172. [Google Scholar] [CrossRef] [PubMed]
- D’Anna, J.A., Jr.; Tollin, G. Studies of flavin-protein interaction in flavoproteins using protein fluorescence and circular dichroism. Biochemistry 1972, 11, 1073–1080. [Google Scholar] [CrossRef]
- Parray, Z.A.; Shahid, S.; Ahmad, F.; Hassan, M.I.; Islam, A. Characterization of intermediate state of myoglobin in the presence of PEG 10 under physiological conditions. Int. J. Biol. Macromol. 2017, 99, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Flower, D.R. Receptor-binding sites: Bioinformatic approaches. Methods Mol. Biol. 2006, 316, 291–358. [Google Scholar] [CrossRef] [PubMed]
- Feig, M.; Sugita, Y. Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding. J. Phys. Chem. B 2012, 116, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Gnutt, D.; Gao, M.; Brylski, O.; Heyden, M.; Ebbinghaus, S. Excluded-volume effects in living cells. Angew. Chem. Int. Ed. Engl. 2015, 54, 2548–2551. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.; Kallianpur, M.V.; Udgaonkar, J.B.; Krishnamoorthy, G. Molecular crowding causes narrowing of population heterogeneity and restricts internal dynamics in a protein. Methods Appl. Fluoresc. 2016, 4, 014003. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.; Lu, J.; Pielak, G.J. Protein crowder charge and protein stability. Biochemistry 2014, 53, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, B.; Ellis, R.J.; Dobson, C.M. Effects of macromolecular crowding on protein folding and aggregation. EMBO J. 1999, 18, 6927–6933. [Google Scholar] [CrossRef] [PubMed]
- Wirth, A.J.; Platkov, M.; Gruebele, M. Temporal variation of a protein folding energy landscape in the cell. J. Am. Chem. Soc. 2013, 135, 19215–19221. [Google Scholar] [CrossRef] [PubMed]
- Kao, H.P.; Abney, J.R.; Verkman, A.S. Determinants of the Translational Mobility of a Small Solute in Cell Cytoplasm. J. Cell Biol. 1993, 120, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.; Ahmad, F.; Hassan, M.I.; Islam, A. Relationship between protein stability and functional activity in the presence of macromolecular crowding agents alone and in mixture: An insight into stability-activity trade-off. Arch. Biochem. Biophys. 2015, 584, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Shahid, S.; Hassan, M.I.; Islam, A.; Ahmad, F. Size-dependent studies of macromolecular crowding on the thermodynamic stability, structure and functional activity of proteins: In vitro and in silico approaches. Biochim. Biophys. Acta 2017, 1861, 178–197. [Google Scholar] [CrossRef] [PubMed]
- Nasreen, K.; Ahamad, S.; Ahmad, F.; Hassan, M.I.; Islam, A. Macromolecular crowding induces molten globule state in the native myoglobin at physiological pH. Int. J. Biol. Macromol. 2018, 106, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Rawat, S.; Suri, C.R.; Sahoo, D.K. Molecular mechanism of polyethylene glycol mediated stabilization of protein. Biochem. Biophys. Res. Commun. 2010, 392, 561–566. [Google Scholar] [CrossRef]
- Sasahara, K.; McPhie, P.; Minton, A.P. Effect of dextran on protein stability and conformation attributed to macromolecular crowding. J. Mol. Biol. 2003, 326, 1227–1237. [Google Scholar] [CrossRef]
- Zhang, D.L.; Wu, L.J.; Chen, J.; Liang, Y. Effects of macromolecular crowding on the structural stability of human alpha-lactalbumin. Acta Biochim. Biophys. Sin. 2012, 44, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Kundu, J.; Kar, U.; Gautam, S.; Karmakar, S.; Chowdhury, P.K. Unusual effects of crowders on heme retention in myoglobin. FEBS Lett. 2015, 589, 3807–3815. [Google Scholar] [CrossRef] [Green Version]
- Mittal, S.; Chowhan, R.K.; Singh, L.R. Macromolecular crowding: Macromolecules friend or foe. Biochim. Biophys. Acta. 2015, 1850, 1822–1831. [Google Scholar] [CrossRef] [PubMed]
- Parray, Z.A.; Ahmad, F.; Alajmi, M.F.; Hussain, A.; Hassan, M.I.; Islam, A. Interaction of polyethylene glycol with cytochrome c investigated via in vitro and in silico approaches. Sci. Rep. 2021, 11, 6475. [Google Scholar] [CrossRef] [PubMed]
- Parray, Z.A.; Naqvi, A.A.T.; Ahmad, F.; Hassan, M.I.; Islam, A. Characterization of different intermediate states in myoglobin induced by polyethylene glycol: A process of spontaneous molecular self-organization foresees the energy landscape theory via in vitro and in silico approaches. J. Mol. Liq. 2021, 342, 117502. [Google Scholar] [CrossRef]
- Roccatano, D.; Daidone, I.; Ceruso, M.-A.; Bossa, C.; Nola, A.D. Selective Excitation of Native Fluctuations during Thermal Unfolding Simulations: Horse Heart Cytochrome c as a Case Study. Biophys. J. 2003, 84, 1876–1883. [Google Scholar] [CrossRef] [Green Version]
- Ladbury, J.E.; Chowdhry, B.Z. Sensing the heat: The application of isothermal titration calorimetry to thermodynamic studies of biomolecular interactions. Chem. Biol. 1996, 3, 791–801. [Google Scholar] [CrossRef] [Green Version]
- Rehman, M.T.; Ahmed, S.; Khan, A.U. Interaction of meropenem with ‘N’ and ‘B’ isoforms of human serum albumin: A spectroscopic and molecular docking study. J. Biomol. Struct. Dyn. 2016, 34, 1849–1864. [Google Scholar] [CrossRef]
- Sarkar, M.; Smith, A.E.; Pielak, G.J. Impact of reconstituted cytosol on protein stability. Proc. Natl. Acad. Sci. USA 2013, 110, 19342–19347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batra, J.; Xu, K.; Zhou, H.X. Nonadditive effects of mixed crowding on protein stability. Proteins 2009, 77, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, D.E.; Frydman, J. Protein folding in vivo: The importance of molecular chaperones. Curr. Opin. Struct. Biol. 2000, 10, 26–33. [Google Scholar] [CrossRef]
- Guigas, G.; Weiss, M. Effects of protein crowding on membrane systems. Biochim. Biophys. Acta BBA Biomembr. 2016, 1858, 2441–2450. [Google Scholar] [CrossRef]
- Smith, A.E.; Zhou, L.Z.; Gorensek, A.H.; Senske, M.; Pielak, G.J. In-cell thermodynamics and a new role for protein surfaces. Proc. Natl. Acad. Sci. USA 2016, 113, 1725–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharp, K.A. Unpacking the origins of in-cell crowding. Proc. Natl. Acad. Sci. USA 2016, 113, 1684–1685. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, A.E.; LoConte, M.A.; Slade, K.M. Effects of Macromolecular Crowding on Alcohol Dehydrogenase Activity Are Substrate-Dependent. Biochemistry 2016, 55, 3550–3558. [Google Scholar] [CrossRef] [PubMed]
- Johansson, H.; Jensen, M.R.; Gesmar, H.; Meier, S.; Vinther, J.M.; Keeler, C.; Hodsdon, M.E.; Led, J.J. Specific and nonspecific interactions in ultraweak protein-protein associations revealed by solvent paramagnetic relaxation enhancements. J. Am. Chem. Soc. 2014, 136, 10277–10286. [Google Scholar] [CrossRef] [PubMed]
[PEG 400 + EG], mg/mL | a MRE at 222 nm, [θ]222 | b % α-Helical Content |
---|---|---|
0 + 0 | −12,488 (±530) | 41.6 (±1.2) |
0 + 50 | −13,306 (±632) | 42.5 (±1.4) |
0 + 300 | −15,199 (±690) | 44.1 (±1.2) |
50 + 0 | −13,599 (±566) | 43.2 (±1.3) |
300 + 0 | −12,199 (±532) | 41.4 (±1.1) |
50 + 50 | −14,633 (±663) | 43.8 (±1.4) |
50 + 300 | −14,603 (±704) | 43.3 (±1.1) |
300 + 50 | −13,522 (±643) | 42.0 (±1.4) |
Cyt c (Different Solvent Conditions) | Rg (nm) | RMSD (nm) | RMSF (nm) | SASA (nm2) |
---|---|---|---|---|
Water | 1.359 (±0.014) | 0.237 (±0.037) | 0.162 (±0.068) | 72.73 (±2.280) |
50 mg/mL (0.8 M) EG | 1.34 (±0.008) | 0.207 (±0.017) | 0.120 (±0.051) | 70.17 (±1.59) |
300 mg/mL (4.8 M) EG | 1.37 (±0.015) | 0.240 (±0.046) | 0.174 (±0.096) | 74.64 (±2.49) |
300 mg/mL (0.75 M) PEG 400 | 1.30 (±0.007) | 0.182 (±0.014) | 0.105 (±0.046) | 69.89 (±1.415) |
300 + 50 mg/mL (0.75 + 0.8 M) PEG 400 + EG | 1.341 (±0.0016) | 0.190 (±0.051) | 0.135 (±0.053) | 70.59 (±1.68) |
50 + 300 mg/mL (0.125 + 4.8 M) PEG 400 + EG | 1.365 (±0.0018) | 0.240 (±0.044) | 0.172 (±0.081) | 74.9 (±2.62) |
GdmCl (6 M) | 1.269 (±0.0016) | 0.167 (±0.041) | 0.098 (±0.081) | 88.152 (±1.623) |
Crowder Molecule | Bonds | Amino Acid Interacted | Type of Interactions | Bond Distance (Å) | b ΔG (kcal mol−1) | cKb (M−1) |
---|---|---|---|---|---|---|
EG | 1 | Asn31 a (additional amino acids: Leu 32 a, Arg38 a, Ala43 a, His 26 a, Pro44 a) | Vander Walls and hydrophobic interactions | 2.98 | −2.7 | 0.99 × 102 |
2 | His33 a | Conventional hydrogen bond and unfavorable donar-donar or acceptor-acceptor bond | 3.01 and 2.98 | |||
PEG 400 | 1 | Arg38 a, His33 a Gly24 (Additional amino acids: Leu 32 a, Arg38 a, Ala43 a, His26 a, Gly23, Pro44 a) | Conventional hydrogen bond Conventional hydrogen bond Conventional hydrogen bond Vander Walls and hydrophobic interactions | 3.26 2.95 3.29 | −3.3 | 2.6 × 102 |
3 | Asn31 | Conventional hydrogen bonds | 2.81, 3.01 and 2.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parray, Z.A.; Naqvi, A.A.T.; Ahanger, I.A.; Shahid, M.; Ahmad, F.; Hassan, M.I.; Islam, A. Measuring Structural Changes in Cytochrome c under Crowded Conditions Using In Vitro and In Silico Approaches. Polymers 2022, 14, 4808. https://doi.org/10.3390/polym14224808
Parray ZA, Naqvi AAT, Ahanger IA, Shahid M, Ahmad F, Hassan MI, Islam A. Measuring Structural Changes in Cytochrome c under Crowded Conditions Using In Vitro and In Silico Approaches. Polymers. 2022; 14(22):4808. https://doi.org/10.3390/polym14224808
Chicago/Turabian StyleParray, Zahoor Ahmad, Ahmad Abu Turab Naqvi, Ishfaq Ahmad Ahanger, Mohammad Shahid, Faizan Ahmad, Md. Imtaiyaz Hassan, and Asimul Islam. 2022. "Measuring Structural Changes in Cytochrome c under Crowded Conditions Using In Vitro and In Silico Approaches" Polymers 14, no. 22: 4808. https://doi.org/10.3390/polym14224808
APA StyleParray, Z. A., Naqvi, A. A. T., Ahanger, I. A., Shahid, M., Ahmad, F., Hassan, M. I., & Islam, A. (2022). Measuring Structural Changes in Cytochrome c under Crowded Conditions Using In Vitro and In Silico Approaches. Polymers, 14(22), 4808. https://doi.org/10.3390/polym14224808